
Secure Computation: Part II
Prof. Ashish Choudhury

Department of Computer Science and Engineering
Indian Institute of Science, Bengaluru

Lecture - 14
Randomized Protocol for Byzantine Agreement: Part III

(Refer Slide Time: 00:25)

Hello everyone, welcome to this lecture. So, in this lecture we will do the exact analysis for

the constant expected round Byzantine Agreement protocol.

(Refer Slide Time: 00:36)

.

So, recall that this was the framework, where we combine the vote and the common coin

primitive, to get a byzantine agreement protocol. So, the framework basically involves

several iterations. In every iteration the parties do the following: they first run an instance of

the vote protocol, to check whether all the honest parties have the same input. And depending

upon that, the parties output either a bit or . Independent of whatever output they obtain⊥

during the instance of the vote, they run the coin protocol, and now they again run an instance

of the vote protocol. But before doing that, they would like to decide their inputs for this

second instance of the vote protocol by comparing the output from the previous instance of

the vote protocol. So, if the output from the previous instance of the vote protocol for a party

was , then it changes it input to the output of the coin primitive. Whereas, if the output from⊥

the previous instance of the vote was a bit, then the party sticks to that output during the next

invocation of the vote. And now, whatever parties obtained from the second instance of the

vote, that is treated as the input for the next iteration. And then again the parties run the same

sequence of actions ok.

So, in our earlier lecture we have proved 2 properties regarding this framework, the first

property was that if all the honest parties have the same input at the beginning of any

iteration, say, the input was b, then their output remains b even at the end of that iteration.

And this simply comes from the property of the vote protocol. So, say for the Kth iteration,

all the honest parties have the same input at the beginning. Then the first instance of the vote,

will give the output b for all honest parties and they will never consider what the coin outputs

for them. And again they participate in the second instance of the vote with the same input

and obtain the same output. So, basically this property says that, if we reach an iteration

where all the honest parties start that iteration with the same input, then agreement is

achieved.

And it will never get disturbed; it will keep on outputting that same common bit. And the

second property that we proved was that if in any iteration the honest parties have a mixed

bag of inputs at the beginning, then with probability at least p over 2 they will have a

common output at the end of the iteration and here p is the commonness probability of your

coin primitive; that means, with probability at least p all the honest parties have a random and

a common bit during the instance of the coin primitive. Again how we proved it? Well, if all

the honest parties have a mixed bag of inputs, then we do not get any guarantee whatsoever

regarding their outputs at the end of the first invocation of vote, some honest parties may

output a bit b; while others may output the value bot. And now, before they start the second

instance of the vote protocol, some honest parties might be switching their outputs from bot

to the output of coin, while others might be sticking to whatever output they have obtained

from the first instance of vote. So, what is the probability that the parties who are switching

their inputs from bot to a non-bot value, that non-bot value which is actually the output of

coin turns out to be the output of vote? That probability is p over 2 because the instance of

coin is invoked only after the vote gets over. And what is the probability that the output of

coin is equal to the non-bot output from 1st instance of vote in an iteration, its p over 2,

because with probability p the output of coin will be random and common for all honest

parties, and given that it is random and common for all honest parties; what is the probability

that output is actually the same output b which is obtained from the first invocation of vote,

its 1 over 2. So, overall probability turns out to be p over 2 ok.

So, the basic idea behind this framework was that, remember for the ba we need to satisfy the

validity and consistency. Validity means, if the parties start the protocol with the same input,

then this first property guarantees that they have agreement on that input throughout the

protocol; that never gets changed during any of the iterations. Whereas, to get the consistency

of the agreement property, for the case when the honest party start with a mixed bag of input,

we basically depend or take the help of this coin primitive to guarantee, that at the end of

every iteration, the parties reach agreement. And once they reach agreement at the end of the

iteration from next iteration onward, this first property will be triggered and agreement will

be maintained. That was basically the idea, that is basically the idea behind the framework.

But now the challenge behind this framework is that, when should the honest parties exit the

loop? Ok. What is the condition?

Because parties will be unaware, whether agreement is reached or not. So, for instance if I am

a party, and if at the end of an iteration I obtain a non-bot value, I am not sure whether other

honest parties also obtained a non-bot output or not. They could output bot. Because I do not

know, who are the honest parties in the system. And if I leave the protocol, right, if I simply

leave the protocol and do not participate in the subsequent invocation subsequent iterations,

then the other honest parties who might have obtained bot and who goes to the next iteration,

they might be waiting forever for the vote protocol or the coin protocol to get over ok.

Because my participation is critical for the subsequent invocations of the vote and the coin.

So, one option to deal with this challenge is that irrespective of when exactly agreement is

achieved, run this framework for k number of iterations, where k is some parameter and we

can set k to be a large value say 1000.

And with probability (1 – p/2)^k, agreement will be reached after k iterations. This is

because, if anyhow parties have reached an iteration where they have the same input to begin

with, agreement is reached. And what is the probability that in none of the k iterations, the

parties have the common output at the end of the iteration, its 1 – p/2. And since we are doing

it for k iteration, it is (1 - p/2)^k.

So that means, the probability that at least in one of the k iterations the agreement is achieved

is this much. And this turns out to be a very small quantity if we keep on increasing the value

of k. So, this quantity approaches 0 sorry, it approaches 1 sorry. This quantity will be almost

1, if I set the k to be large. So, it approaches 1 as k increases; that means, the probability that

agreement is not achieved, as I keep on increasing the number of iterations will eventually

approach to 0.

But this approach has a huge disadvantage because, it results in a huge wastage of iterations.

Because it could be possible that the party started the protocol with the same input. In that

case, even though the agreement would have been achieved at the end of the first iteration

itself, the parties would be unnecessarily running the protocol for 1000 iterations. So, now,

the challenge is how exactly we decide, when should the honest parties exit the loop.

(Refer Slide Time: 11:16)

So, we will not use this idea of running this framework for some fixed number of iterations,

irrespective of when the agreement is achieved. Rather we will do the following ok. If any

party Pi obtains a bit during any instance of vote in an iteration, so remember, in each

iteration there are 2 invocations of vote; 1 at the beginning and 1 at the end. So, if a bit is

obtained in any of these 2 iterations, then it simply takes it to be the overall output for the BA

and it decides to exit the loop. But with a special halting signal to everyone, ok, that I have

obtained a bit from this instance of vote, and I am not going to participate in the future

iterations, but you can imagine that I am participating virtually with my bit being b for future

iterations of vote. This will be a signal for every other party that ok, Pi is participating

virtually; that means, there will not be any message coming from Pi. But on the behalf of Pi

everyone would take the bit b as the message coming from Pi in the future invocations of

vote. Of course, if Pi is honest, it will do it only when it indeed gets a bit as the output during

the instance of a vote, but if Pi is a corrupt party, it may unnecessarily send an halting

instruction, but that is fine. We need to ensure that the participation from the honest parties is

continued, either virtually or physically in all the instance of vote, till all the honest parties

terminate the protocol right. And if this halting signal has been sent by any party Pi, then that

is also an indication, that even in the future invocations of the coin primitive, Pi will not be

sending any message. So, take some default message as the message on the behalf of Pi, that

is the idea here. Now let us see how we can materialize this idea and how exactly we use it to

determine the termination condition.

(Refer Slide Time: 13:54)

So, we will first do a modification to our instantiation of the vote protocol, which we had

seen in the earlier lecture, where we will incorporate this idea of sending the special halting

message. So, this modified vote protocol in the literature is often called as the gradecast

primitive because, here every party will associate a grade, they will associate a grade with

their output and that grade will be basically a measure of confidence level which they have

regarding the output that they are going to obtain ok.

Let us see how the grades are assigned. So, the communication pattern remains the same, it is

still a 1 round protocol. So, every party will send its bit to everyone, including itself;

however, it could be possible that there is some party Pj from whom no message is coming.

He is supposed to send its input, but no input is coming from that party Pj, but on behalf of

that party Pj we have already received some halting instruction with a bit P in some previous

invocation, previous instance of the vote protocol, ok. If that is the case, then we assume that

party Pj is sending the bit b, even during this instance of the modified vote or the gradecast

protocol ok. So that means, if Pj would have been an honest party and it has already

terminated it has already gone out of that loop where we are designing the ba protocol, then

in all the future invocations of the vote protocol where Pjs participation is required

physically, we can imagine that Pj is still present there, but virtually with its message being b.

Because it would have sent a halting instruction during the instance of vote, where it would

have exited the loop.

Now the decision rule. So, every party Pi will decide its output as follows, it will check

whether any bit b is received at least n minus t times, either physically or virtually, when I say

physically; that means, indeed that party has sent a message b, with or without halting

instruction. And possibly including from other parties who have halted in previous

invocations of the gradecast. So, if there are total n minus t copies of the bit b, then output

that bit with the highest grade, full confidence. Whereas, if some bit is received physically or

virtually from at least n minus 2 t parties, then output that bit, but with a lower grade. So, you

see the confidence level is now low, confidence regarding whether other parties will be

outputting b or not.

If I output b with grade 2; that means, I am giving a very high confidence that every other

honest party will also output either this bit b or the value bot, but no other bit. But if I am

outputting the bit b with grade 1, then I am not sure what is going to be the case. But if there

is no bit b which is received n minus t times or n minus 2 t times either physically or

virtually, then I output the value bot and assign the lowest grade ok.

Apart from this there is a special halting message which is conditional and this message is

sent by Pi only when it is outputting a bit b with the highest grade. If it is outputting a bit b

with the highest grade, then it sends a conditional message, it sends an instruction that ok I

am halting, my identity is Pi, with the bit P and as a result of this for all the future instances

of the gradecast or the modified vote protocol in the ba protocol, you can imagine that I am

setting, I am sending the bit b, my participation will not be there physically ok. So, I stress

that this is a special halting message this will not be sent every time by Pi. It will be sent only

when Pi is going to obtain an output with the highest grade.

Now the claims regarding this gradecast protocol. If all the honest parties have the same input

bit either physically or virtually, then each party who is physically still present in the system,

who is still running that sequence of iterations, will be outputting the bit b with grade 2; the

highest grade. And this again simply comes from the fact that if all the honest parties have the

same bit, then since there are at least n minus t honest parties and since we are assuming they

have the same bit irrespective of whether they are present physically or virtually, when I say

virtually bit b; that means, they have sent the halting instruction with b as the message. So

that means, at this step every party would have received n minus t copies of the bit b and

hence they will output the bit b with the highest grade.

And the second claim is that, if any physical party outputs any bit b with the highest grade,

then every other physical honest party will output either the same bit with the highest grade,

or the same bit with grade 1. It cannot be the bit b prime with grade 2 or grade 1 ok or it

cannot be the value bot. And this simply comes from the fact that if any physical party say Pi,

it has output b with grade 2; that means, it has received b at least n minus t times from n

minus t different parties, among these n minus t different parties n minus 2 t are honest. So, if

I consider another physical party Pj, it is guaranteed to receive b at least n minus 2 t times.

Because it could be possible that among these n minus t parties who have sent b to Pi, t are

corrupt and they decide not to send b to Pj. They may decide either not to send anything or to

send b prime. But there are still n minus 2t honest parties in this collection, who will send the

same bit b as their input to the party Pj. So that means, this else condition is definitely going

to be true for Pj and it cannot be possible that Pj receives b prime from another set of n minus

t parties. Because there could be at most 2 t parties from whom it could get b prime, namely

the corrupt parties who would have sent Pi the bit b might decide to send b prime to Pj, along

with t parties who have sent some value to Pi outside the set of this n minus t parties. So,

overall 2t copies of b prime could come to Pj, but 2t is strictly less than n minus t, so that

means, this first if statement is not going to be true for Pj. So, second statement is definitely

going to be true for Pj. So, it is bound to get at least the output b with great one, but it could

be possible that Pj receives n minus t copies of b in which case it would output b with grade 2

ok. So, these are the two claims right; regarding the gradecast. If all the honest parties have

the same input then every honest party who is present, who is still running the code

physically will output b with highest grade. And if someone outputs a bit with highest grade,

then everyone else will output the same bit either with grade 2 or grade 1.

(Refer Slide Time: 23:46)

Now, let us see how what happens if we use this gradecast protocol in the framework instead

of the vote protocol ok. So, gradecast is still the vote protocol except that we now ask the

party to terminate the protocol and exit the loop with a special halting instruction; for all the

future instances of vote and coin in the framework.

So, in every iteration the parties do the following, they first run an invocation of gradecast to

check whether all the honest parties have the same input or not. And during this instance of

gradecast, if the output for any party is a bit with the highest grade, then that party decides to

exit the loop. And it sends the halting instruction, as part of the gradecast. Now, irrespective

of what output the parties obtained from the invocation of gradecast, the parties run an

instance of coin. And here, if some message is expected from Pi, but Pi has already sent the

halting instruction, then during the instance of coin, we can imagine that Pi is sending some

default message. And then, the parties decide how to participate in the second instance of

gradecast, they check, if any party has obtained the output bot with grade 0 during the first

invocation of gradecast. If that is the case, then they switch their input to whatever output

they have obtained from the coin primitive. Otherwise, they stick to the output that they have

obtained from the gradecast. And then they run the gradecast primitive. And again here there

is a possibility that, an output for an honest party is a bit with highest grade. If that is the

case, then it outputs that bit as the output for the byzantine agreement and exits the loop with

the halting instruction. And the parties go to the next iteration.

Whoever has not halted, whoever has not exited the loop, they go to the next iteration. But

the parties who have halted, who have decided to exit the loop, they simply exit with

whatever output they have obtained, with the highest grade from the corresponding instance

of gradecast.

(Refer Slide Time: 26:31)

Now, let us see the analysis of this protocol. So, the validity property is very simple to prove,

we can very easily prove that if all the honest parties have the same input bit b, then the

agreement is achieved during the first iteration itself. This is because, from the first

invocation of gradecast, everyone will obtain the output b with the highest grade and they

will send the halting instruction and then exit the loop that is all ok.

(Refer Slide Time: 27:12)

Now, arguing the consistency is slightly tricky. So, we will prove a sequence of statements.

So, let us prove the first property, first helping lemma regarding the termination and

agreement.

So, the first property is that, if some honest party exits the loop with an output b during the

iteration k, then all honest parties will also exit the loop with the same output, either during

the same iteration or definitely by the end of the next iteration. So, before we go into the

proof of this property, this property basically states that, there could be a difference of 1

iteration, regarding when the honest parties terminate. It is not always necessary that is the

case. But it could be possible that, one honest party terminates in say the iteration number 20,

and other honest parties terminate in iteration number 21, that could be possible. And

whenever an honest party is terminating, it will not be knowing, it will not be sure that

everyone else also will be terminating along with him in the same iteration. What it will

know? Definitely by the end of next iteration everyone else will also terminate ok.

So, let us prove this property ok. So, when exactly a party terminates, when it obtains the

highest grade output during an instance of gradecast. So, suppose there is a party Pi. So,

suppose Pi is the first honest party, to terminate during iteration k. Now there are 2

possibilities, where it would have terminated during iteration k, either at the end of the first

invocation of gradecast or at the end of the second invocation of gradecast.

If it has terminated at the end of the first invocation of the gradecast; that means, it has

obtained the output b with the highest grade, during that instance of gradecast and remember,

the property of gradecast guarantees that, if Pi has obtained b with the grade 2 as the output,

then every honest party would have obtained b either with grade 1 or b with grade 2, during

the same invocation of gradecast.

Well, if everyone else also has obtained this output b with the highest grade 2; that means,

everyone else also would have terminated in that iteration itself. But it could be possible that

Pi has obtained b with grade 2, but others have obtained b with grade 1 from this first

invocation of gradecast. Now when they go to the second invocation of the gradecast in the

same iteration, the inputs of all the parties including Pi will be b only. Because Pi would have

sent a halting message as part of this gradecast; that means, on behalf of Pi everyone will

consider the input b during the second invocation of gradecast, and anyhow all other parties

who are still participating physically during the second invocation of gradecast has the input

b; they will never switch their input to the output of the coin. Because, they will not obtain

bot from the first invocation of gradecast. And that will ensure that from the second

invocation of gradecast, every party who is still running the code physically by actually

sending the message, will obtain the output b with highest grade. So, irrespective of when

exactly it happens, it will be either during the first or the second invocation of gradecast, but

during the same iteration, when everyone else will output the value b with grade 2. And that

will imply that they also exit the loop during the same iteration ok.

(Refer Slide Time: 32:56)

Now, there is a second possibility, that the party Pi has actually exited the loop after the

second invocation of gradecast, during iteration k, right. In this case, what we can conclude is

that every other honest party Pj who decides to go to the k plus 1 th iteration, would also

obtain the output b with grade 2 right. Well, it could be possible that there are some parties Pi

who do not decide to go to the next iteration. Because they also would have obtained the

output b, with highest grade from the iteration k only. So, they also would have exited the

protocol with the output b during the iteration k itself. But if at all any honest party Pj decides

to go to the next iteration, then during the first invocation of gradecast, in the k plus 1 th

iteration, they are going to obtain the output b. Because all the honest parties who go to the

next iteration, namely the k plus 1 th iteration, they will have their input b; and anyhow the

honest parties who have exited the loop during the iteration k would have sent a halting

instruction, as part of this last invocation of gradecast in the iteration k. So, for those parties,

also the input will be considered as b. So, overall there will be n minus t honest parties,

participating physically or virtually with input b during the first invocation of gradecast

during iteration number k plus 1, and that will guarantee that whoever are continuing to the k

plus 1 th iteration, they terminate at the k plus 1 th iteration ok. So, it is this case number 2,

which actually results in a lag of 1 possible iteration between 2 honest parties regarding the

time when they are outputting ok.

So, if 1 if Pi decides to terminate because of this second invocation of gradecast, during the

iteration k then it is not necessary that every honest party Pj also decides to terminate because

of this second invocation of gradecast, during the iteration k. It may be possible that some of

them has to continue to the k plus 1 th iteration, but in the k plus 1 th iteration this first

invocation of gradecast will cause them to terminate ok right.

(Refer Slide Time: 35:43)

Now, let us prove the second helping lemma, regarding the termination and agreement. So,

this property states that in each iteration, if all the honest parties physically participate; that

means, they have not yet terminated, then at least one honest party terminates and exit the

loop, with an output either 0 or 1, with probability at least 1 over 3 ok. So, again there are 2

possibilities here.

So, suppose Pi is an honest party, who obtains the highest grade output during the first

invocation of the gradecast, during the iteration number k. Then in this case, with probability

1 everyone will terminate, at the end of the same iteration ok. This is because, since Pi has

obtained b with grade 2 from the first invocation, it will be guaranteed that either from the

same invocation of gradecast everyone else terminate with highest grade output b. Or

definitely from the second invocation of the gradecast during the same iteration k everyone

else would have terminated. So, there is no probability associated, it is a 100 percent

guaranteed event if that is the case.

(Refer Slide Time: 37:22)

Case number 2 is, no honest party has terminated in iteration k; that means, no one has

obtained any bit with the highest grade 2. Then, let us focus on what is the scenario regarding

the inputs of the honest parties, during the second invocation of gradecast.

So, recall that the commonness probability, the commonness is probability of our

cryptographically secure coin protocol is 2 over 3, namely p was 2 over 3. And we have

argued already, that during the second invocation of gradecast, the inputs of all honest parties

will be same with probability P over 2, this we have already argued earlier. Namely with

probability P, the output of all honest parties from the coin protocol will be common and

random. And that random output could be the output that the honest parties obtain from the

first invocation of gradecast, which is not a bot output, with probability half right. So, with

probability half, b equal to c, and the probability p all honest parties will have the same c, that

is why with probability p over 2, we can conclude that all honest parties will definitely have

the same input, at the beginning of the second invocation of gradecast, during iteration k. And

p over 2, where p is 2 over 3, guarantees that with probability at least 1 over 3 all honest

parties have the same input, during the second invocation of gradecast, and if that is the case

at least one honest party will obtain the output b with highest grade. In fact, all the honest

parties will obtain b with highest grade and they will exit the iteration. So, that is the case

number 2.

So, we have proved the validity property.

(Refer Slide Time: 39:35)

And now we have proved the termination and agreement ok. So, again to stress here, there

could be a difference of one iteration between the iteration number, when the honest parties

terminate. But they terminate with the same output. Now, we want to calculate here the

number of iterations; the expected number of iterations after which all the honest parties will

terminate ok and for that, we will be basically focus on this termination and agreement 2

property.

Of course, if all the honest parties start the protocol with the same input, due to the validity,

they terminate in iteration 1 itself. But it could be possible that the honest parties start the

protocol with a mixed bag of inputs, in which case it could be possible that the protocol keeps

on getting dragged, iteration after iteration. So, we now want to measure after how many

iterations in expectation, honest parties are bound to terminate.

So, for that we introduce a random variable tau and it is a random variable because there will

be a probability associated with the values of tau. So, this variable basically denotes the

number of iterations, after which all the honest parties will have the same input for the second

instance of gradecast, ok. Now, the probability that this random variable tau is equal to k; that

means, the first k - 1 iterations failed to reach agreement right.

And its only during the kth iteration, all the honest parties have the same input for the second

invocation of the gradecast. Well, if all the honest parties have the same input for the second

instance of the gradecast, we know that termination will be guaranteed in iteration number k.

Otherwise, the parties have to go to the next iteration again. Now what is the probability that

tau is equal to k?

Well, the termination and agreement two property says that, with probability at least 1 over 3,

each iteration should have ensured that agreement is achieved; that means, with probability 2

over 3, agreement is achieved in each iteration, and we are basically considering the scenario,

when the first k minus 1 iterations have failed to reach agreement; that means, the probability

of that is 2 over 3 raise to power k minus 1, times the probability that agreement is achieved

during the k th iteration.

Namely it is during the k th iteration, where all the honest parties have the same input at the

beginning of the second invocation of gradecast, which can happen with probability 1 over 3.

Now, this is the probability of the random variable tau being k, we want now to find the

expected value of k. So, the expected value of k as per the formula of expectation turns out to

be this.

And I can bound this 1 over 3, I can replace this 1 over 3 with 2 over 3, because of this

inequality. So, this inequality turns out to be this. And now this is an arithmetic geometric

progression, where the summation k can be treated as an arithmetic series, where the first

term is 1 and the common difference is 1, whereas this product of 2 over 3 raise to power k

and summation over that can be treated as a geometric series, where the common ratio is 2

over 3.

And there is a well-known formula for the summation of this series, which is given by this

formula; if I substitute the value of a and d and r, then the expected value of tau turns out to

be 9; that means, it requires expected 9 iterations to be more specific, for the parties to

terminate. Of course, it could be possible that parties never terminate, even after running for

10,000 or million number of iterations, and that can happen only when all the honest parties

start the protocol with a mixed bag of inputs and the output of coin and the output from the

first invocation of gradecast, always turn out to be different or the commonness probability is

not guarantees. In that case, the second invocation of gradecast, will fail to reach agreement

among the parties, in each iteration and the parties will keep on running the protocol forever.

But the probability of that is almost 0. Because we have derived that it requires only expected

9 iterations ok.

And the probability that even after k iterations, the parties do not terminate is 1 minus 1

minus p over 2 where is 1 over 3 raise to power k and this turns out to be 1 as we keep on

increasing the value of k ok.

(Refer Slide Time: 45:43)

So, this whole area of randomized byzantine agreement, where we want to design protocols

with expected constant number of rounds, is a very active area of research there is a lot of

scope of doing research, in terms of improving the efficiency and expected number of rounds.

And the level of security we achieved and to improve the resilience. So, we have designed the

protocol, the protocol that I have discussed is with t less than n over 3, but there are also

protocols available with t less than n over 2.

(Refer Slide Time: 46:28)

If you are interested to know more about those protocols, you can refer to any of these two

references, and this is the reference which I have used in my presentation.

Thank you.

