
Secure Computation: Part II
Prof. Ashish Choudhury

Department of Computer Science and Engineering
Indian Institute of Science, Bengaluru

Lecture - 13
Randomized Protocol for Byzantine Agreement: Part II

Hello everyone, welcome to this lecture. So, we will continue our discussion regarding

randomized protocols for Byzantine Agreement.

(Refer Slide Time: 00:28)

So, we will see the framework due to Benor and Rabin. We will see how we can combine the

vote and coin primitives to get a Byzantine agreement protocol with a constant expected

number of rounds and will do the analysis of the protocol.

(Refer Slide Time: 00:47)

So, let us first see the instantiation of the vote protocol and this instantiation will be perfectly

secure and it will be with . So, there can be at most Byzantine corruptions and𝑛 > 3𝑡 𝑡

. So, the protocol is very simple, it is a 1 round protocol, where each party just has to𝑛 > 3𝑡

send it is input to everyone else including itself.

And the output decision is made as follows. Every party checks that it has received a copy𝑃
𝑖

of some bit at least times from different parties, if that is the case then it𝑏 𝑛 − 𝑡 𝑛 − 𝑡

outputs that bit otherwise its output is . Now, we make some claims regarding this simple𝑏 ⊥

vote protocol. So, the first claim is that if all the honest parties have the same input, then

everyone outputs that bit .𝑏

And the proof is very simple. If every honest party have the same input and remember, we𝑏

have at least honest parties. That means, at the end of the round every honest party will𝑛 − 𝑡

receive at least copies of the bit and there could be at most corrupt parties who can𝑛 − 𝑡 𝑏 𝑡

send as their inputs. And what is the output decision rule?𝑏'

The output decision rule is that if a bit is received from parties, then output that bit.𝑛 − 𝑡

That is why every party will output and not . And no honest party will output because𝑏 𝑏' ⊥

there is a bit which is received at least times. The second claim is that if any honest𝑏 𝑛 − 𝑡

party outputs a bit , then every other honest party will also output either the same bit or𝑏 𝑏 ⊥

right. So, there is a difference now between the two claims.

For the first claim statement the hypothesis was that if all the parties have the same input, in

that case everyone will output that bit . The second claim states that it could be possible that𝑏

even though all the honest parties do not have the same input bit , it could be possible that𝑏

one of the honest parties outputs a bit which could be either 0 or 1.𝑏

If that is the case then no other honest party will output , the only output for the other𝑏'

parties could be either the bit or the value . So, again we have proved these claims several𝑏 ⊥

times in the past earlier in the context of phase king broadcast protocols and so on. So, the

idea behind the proof is as follows. So, imagine there is party and say the party outputs𝑃
𝑖

𝑃
𝑖

the bit .𝑏

Now, since outputs the bit ; that means, in the protocol would have received the bit𝑃
𝑖

𝑏 𝑃
𝑖

𝑏

from a set 𝒜 of parties. And among those parties at least are𝑛 − 𝑡 𝑛 − 𝑡 𝑛 − 2𝑡

guaranteed to be honest. Now those honest parties in the set 𝒜 will also send as𝑛 − 2𝑡 𝑏

their input to every other honest party . So, consider another honest party different from𝑃
𝑗

𝑃
𝑗

and let us see how many copies of will receive and how many copies of might𝑃
𝑖

𝑏 𝑃
𝑗

𝑏' 𝑃
𝑗

receive and let us see what the possible outputs for could be.𝑃
𝑗

So, the party may receive the complementary bit from at most parties. Who can be𝑃
𝑗

𝑏' 2𝑡

those parties? There could be up to corrupt parties in the set 𝒜, corrupt parties in 𝒜3𝑡 𝑡 𝑡

may send to because they are corrupt. They can send to one honest party and they can𝑏' 𝑃
𝑗

𝑏

send to another set of honest parties and there could be up to honest parties outside 𝒜.𝑏' 𝑡

So, all together there could be at most parties who may send a bit to the honest party .2𝑡 𝑏' 𝑃
𝑗

Now what is the output decision rule? Well would have output provided it would have𝑃
𝑗

𝑏'

received copies of , but is strictly less than because we are working with𝑛 − 𝑡 𝑏' 2𝑡 𝑛 − 𝑡

the condition . That means, if at all outputs a bit it must be it cannot be or𝑛 > 3𝑡 𝑃
𝑗

𝑏 𝑏'

otherwise would output . So, either would output or the value , but it cannot be .𝑃
𝑗

⊥ 𝑃
𝑗

𝑏 ⊥ 𝑏'

So, that is the vote protocol.

(Refer Slide Time: 06:52)

Now, we will give an instantiation of the coin protocol with and our instantiation𝑛 > 3𝑡

will be cryptographically secure. That means, it will be secure only against a computationally

bounded adversary. As a result of that when we will apply this instantiation of coin protocol

in the framework of Rabin and Benor, the resultant be a protocol will be cryptographically

secure.

Later on, once we discuss advanced primitives advanced tools, we will see an instantiation of

the coin protocol which is perfectly secure. So, since we are assuming here a computationally

bounded adversary whose running time is polynomial time, we are free to use cryptographic

tools. So, we will assume a digital signature setup for every party similar to what we have

done in the Dolev strong protocol, and the setup will be that every party will have its own𝑃
𝑖

signing key.

And the verification keys of all the parties will be publicly known, this will be a one-time

setup which can be used for polynomially many instances of the coin protocol.

(Refer Slide Time: 09:04)

Apart from that we will apart from this setup we will also use a cryptographically secure hash

function say , which is modeled as a random oracle. So, I am assuming here that all of you𝐻

know what a cryptographically secure hash function is. If you are not aware of what is a

cryptographically secure hash function, you can refer to any standard text on cryptography or

you can also refer to my NPTEL course on foundations of cryptography. Basically, a hash

function is a function which takes inputs of any size and gives you outputs of some fixed size.

And there are many security properties which we require from the hash function, the primary

being the primary security property that we require from the hash function is the collision

resistance property. Namely it should be difficult to come up with two different inputs and𝑥
1

which are not same, but their hash values are same, that should be difficult. Even though𝑥
2

there are multiple such in the domain, because our domain could be infinite, but co𝑥
1
, 𝑥

2

domain is finite.

So, from the pigeonhole principle it is straight forward to conclude that there will be multiple

such pairs of values which are different, but which have the same hash value. But𝑥
1
, 𝑥

2

collision resistance demands that it should be difficult to come up or identify or find such

pairs in polynomial amount of time. When I say that we are modeling the hash function as a

random oracle that also means we are making a very strong assumption regarding the

property of the hash function random oracle. Here, we assume that behaves like a random𝐻

function, a true random function.

That means hash of hash of are all independent values, are all random values, and they𝑥
1

𝑥
2

are unpredictable. That means, if I am the adversary and if I know the description of the hash

function, but I do not know the input for the hash function beforehand then for me the output

of the hash function on that input is unpredictable.

So, there are several practical instantiations of hash functions available which you can use by

instantiating this coin protocol. So, you can use the SHA family of hash functions. So, that is

the setup, a digital signature setup for every party and a hash function publicly known which

is treated like a random oracle.

And apart from that, as part of the setup, a publicly known uniformly random string is also

available to the parties. That is also a one-time setup which can be used for polynomially

many invocations instances of the coin protocol.

(Refer Slide Time: 13:29)

Now, suppose we want to instantiate the coin primitive coin protocol for the th iteration,𝑘

where is a input parameter here. And looking ahead, when we will be using this coin𝑘

protocol with the vote protocol in the framework of a Benor and Rabin recall that in that

framework there are several iterations; where in each iteration, there is one instance of the

coin primitive and 2 instances of the vote primitive. So, you can imagine that if we are

instantiating the coin primitive during the th iteration this will be the code which is going to𝑘

be executed.

So, each party during the coin protocol for the th iteration will do the following, it will𝑃
𝑖

𝑘

send the value a tuple of values to everyone. So, what exactly this tuple consists of? It𝑣
𝑖

𝑣
𝑖

consists of the identity of the party, the value of the random string, the iteration number and

the signature of the th party on the string followed by . If is an honest party it will send𝑖 𝑟 𝑘 𝑃
𝑖

this value this tuple identically to everyone, but if is a corrupt party it may not follow𝑣
𝑖

𝑣
𝑖

𝑃
𝑖

the protocol.

It may send to one set of parties it may send another to another set of honest parties or it𝑣
𝑖

𝑣
𝑖

may not send any at all, so it can behave in any arbitrary fashion. Now, once every party𝑣
𝑖

sends its tuple to every other party, what the party does is the following. It would have𝑣
𝑖

𝑃
𝑖

received the tuple from many parties from at least all the honest parties, it verifies whether𝑣
𝑗

the tuple is correct or not is as per the protocol. And how it can verify this?𝑣
𝑗

So, suppose for instance it has received this tuple . Now is supposed to consist of the𝑣
1

𝑣
1

identity of the parties it checks that it should have the value of the random string anyhow that

is publicly known. So, can verify that it should check the iteration number that is also a𝑃
𝑖

public information.

And what is the only thing which must check separately is the signature and that also can𝑃
𝑖

be verified, because the corresponding verification key for the party is publicly available.𝑃
1

So, whenever it receives a tuple from any party , can verify whether it is correct or𝑃
𝑖

𝑣
𝑗

𝑃
𝑗

not. If it is correct then it keeps it otherwise, it simply considers that has not sent any value𝑃
𝑖

has not sent any value or imagine that it has sent some default message. Now let be the𝑃
𝑗

𝑃
𝑚

least indexed party such that among all the tuples which are received by the hash value of𝑃
𝑖

the th party’s tuple is the least one.𝑚

So, again what we are doing here is that we are asking the party to compute the hash value𝑃
𝑖

of all the values that it has received. Now remember is modeled as a random function.𝑣 𝐻

So, it could be possible that there are 2 tuples which has received which results in the same𝑃
𝑖

hash value. So, what is doing is it is looking for the least indexed party whose hash value𝑃
𝑖

is strictly less than equal to whose hash value is less than equal to the hash value of the tuples

of the other parties.

So, imagine is the least such indexed party. Now what is the output for the party ? It𝑃
𝑚

𝑃
𝑖

simply outputs the LSB of the hash value that among. So, there will be the least LSB for all

the hash values that it has computed, among those least significant bit will be considering𝑃
𝑖

the LSB only for the tuple corresponding to the party which whose hash value is less than𝑃
𝑚

the hash values of all the other parties.

(Refer Slide Time: 18:20)

So, again you can see that this coin protocol is a 1 round protocol, because it requires each

part to send only the tuple and rest of the steps are local computations. So, that is the𝑣
𝑖

simple coin protocol, now we will analyze it.

(Refer Slide Time: 18:50)

So, the first claim here is that if we consider the hash values of all the tuples they𝑣
1
, 𝑣

2
, …, 𝑣

𝑛

are random strings from the co domain of the hash function. And this simply comes from the

fact that we are assuming the hash function to behave like a random function or a random

oracle. The second claim is a slightly stronger claim which states that if we consider the hash

values of all the tuples received from the parties across all the instantiations of the coined

protocol.

So, remember that coin protocol takes also as input the iteration number . So, the statement𝑘

basically says that if we take all possible instantiations of the coin protocol, in every instance

of the coin protocol the parties would have computed the tuples and their hash𝑣
1
, 𝑣

2
, …, 𝑣

𝑛

values.

Similarly, in the second invocation the parties would have computed the corresponding tuples

exchange and computed the hash values. Similarly, during the th invocation of the coin𝑘

primitive the parties would have exchanged the corresponding tuples and computed their𝑣

hash values and, like that, in every iteration they would have computed the corresponding 𝑣

tuples and compute exchange them and compute the hash values.

So, what we are claiming here is that if we take the hash values, they will be independent of

each other across all the iterations.

That means that if we consider say for instance the invocation and invocation of the𝑘 𝑘 + 1

coin primitive, then none of the hash values which are computed during the th invocation𝑘

will have any dependency on the hash values which are computed during the th𝑘 + 1

iteration. And this simply comes because in every iteration the hash values are computed on a

tuple which will be which are guaranteed to be different, if the party who is computed them

are different.

So, for instance if the th party has computed a tuple and if the th party has computed the𝑖 𝑗

tuple, then either the party indices will be different, or it could be possible that we are talking

about say and in the 2 consecutive instances of the coin primitive. So, both this𝐻 𝑣
2() 𝐻(𝑣

2
)

hash values will be depending upon the party . So, in that case also there will be at least𝑃
2

one component in the corresponding tuple which will be different.𝑣

So, for the th instance of the coin primitive the component of the tuple will be ; whereas𝑘 𝑘 𝑘

the corresponding component in the th instance will be . So, either the party𝑘 + 1 𝑘 + 1

indices will be different, or the iteration number will be different. And that ensures that the

hash values are computed for different tuples across all the iterations. Even if we consider the

same party, so that means even if I take say the party number 1 and if I focus on all the 𝑣
1

tuples which are computed by across all the instances of the coin primitive, they are going𝑃
1

to be different.

Because the iteration number will vary and since the tuples are different and since we are

assuming that the hash function is behaving like a random string. Since we are assuming that

the hash function is behaving like a random functions and since the tuples are different across

different iterations, the hash function when applied on those different tuples will result in

independent outputs. So, there is absolutely no dependency on the hash outputs which are

computed during different invocations of the coin primitive.

So, basically through this claim what we are stating here is that if the adversary has seen a set

of hash values during some invocation of the coin primitive, then in the next iteration it𝑛

cannot cook up its tuples. So, that it is hash value results in some specific value which𝑣

adversary would like to get that is not possible.

(Refer Slide Time: 24:42)

So, these are the 2 claims regarding this coin protocol. Now the third claim is that let be𝑃
𝑚

the least indexed party such that the hash value of it is tuple is less than or equal to the hash

value of all the tuples all other tuples corresponding to the other parties. Then the probability

that is an honest party is at least and this comes from the fact that the hash values of all𝑃
𝑚

2
3

the tuples are random strings and independent of each other.

So that means, now among the parties if we focus on the set of bad parties and a set of good𝑛

parties. So, suppose that is the set of honest parties and is the set of corrupt parties, then𝐻 𝐵

the ratio of the set of honest parties over the set of all parties is at least , because we are2
3

assuming . So, rd of the parties are honest and rd of the parties are corrupt and𝑛 > 3𝑡 2
3

1
3

since the hash values of all the tuples are independent of each other random strings; that

means, the LSBs are also random.

So that means, if I focus across the LSBs of all the hash values computed during the coin

protocol they are random string. And what we want to analyze here is that what is the

probability that the party whose hash value turned out to be smallest belongs to the set H.𝑃
𝑚

Well, the probability of that is , because there are number of parties and rd of them2
3 𝑛 2

3

could be honest. This automatically implies that all honest parties output a common random

bit with probability at least .2
3

Why is that the case? Because with probability the honest party the party whose hash2
3 𝑃

𝑚

value turn out to be the smallest one belongs to the set of honest parties. It is only with

probability that belongs to the set of bad parties. Now if belongs to the set of bad1
2 𝑃

𝑚
𝑃

𝑚

parties, then this claim then it is not guaranteed that all honest parties have the same output

bit, because what the bad party what the party can do is the following.𝑃
𝑚

If is a corrupt party, then it can do the following. So, in the protocol every party would𝑃
𝑚

have sent their tuples to every other party. So, if is a bad party then what it can do is it𝑣 𝑃
𝑚

waits for all the tuples to reach to and it has not yet computed and it and it has also𝑣 𝑃
𝑚

computed its tuple say . But right now, it has not sent its tuple to any other party it is𝑣 𝑣
𝑚

𝑣

holding it. Now since it has all the tuples, what can do? It checks if is the𝑛 𝑣 𝑃
𝑚

𝐻(𝑣
𝑚

)

smallest among it checks that.𝐻(𝑣
1
), 𝐻 𝑣

2(), …, 𝐻(𝑣
𝑛
)

And if it finds that indeed is the smallest among all this hash values then it can decide𝐻(𝑣
𝑚

)

to do the following, it can send to one honest . But it does not send anything it does not𝑣
𝑚

𝑃
𝑖

send a tuple to another honest party . This will result in the following scenario, so it𝑣
𝑚

𝑃
𝑗

𝑃
𝑖

will have all of them, whereas will have it would not have and it will𝑣
1
, 𝑣

2
, …, 𝑣

𝑛
𝑃

𝑗
𝑣

1
𝑣

2
𝑣

𝑚

have all other tuples. Now for it is the tuple whose hash value will be the least. So, it𝑃
𝑖

𝑣
𝑚

will output the corresponding LSB, but for it will be some other tuple whose hash value𝑃
𝑗

turned out to be the smallest.

Because the tuple whose hash value is supposed to be the smallest among the list is not𝑣
𝑚

available with , because the corresponding corrupt party has decided not to send it to ;𝑃
𝑗

𝑃
𝑚

𝑃
𝑗

in which case the bit which is going to output will be different from the bit which is𝑃
𝑗

𝑃
𝑖

going to output. This happens only if is a corrupt party which can happen with probability𝑃
𝑚

.1
3

Of course if belongs to the set of honest party, honest parties then will not do any such𝑃
𝑚

𝑃
𝑚

thing it will send the tuple both to as well as to and both and will find that its𝑣
𝑚

𝑃
𝑖

𝑃
𝑗

𝑃
𝑖

𝑃
𝑗

whose hash value turns out to be the smallest and both of them will output the same bit.𝑣
𝑚

And the probability of that is and that shows the commonness probability for this2
3

instantiation of this for the for this instantiation of the coin primitive is .2
3

(Refer Slide Time: 31:05)

So, that concludes this lecture. So, we have seen the instantiation for the vote protocol which

is perfectly secure. So, the vote protocol is perfectly secure, and our coin protocol is

cryptographically secure. Both are designed with and both are 1 round protocols. So,𝑛 > 3𝑡

vote protocol is also a 1 round protocol coin protocol is also 1 round protocol.

In the next lecture we will see how we club these two protocols two primitives vote and coin

in the framework of Rabin and Benor and get the exact byzantine agreement protocol. So, the

instantiation of the vote and the coin that I have discussed today is taken from this

manuscript.

Thank you.

