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Hello everyone. Welcome to this lecture. So, till now our focus was on perfectly secure

broadcast and Byzantine agreement problems. We will now shift our attention to

Cryptographically Secure and Statistically Secure protocols for Byzantine agreement and

Broadcast. In that context, we will see today a very popular protocol for reliable broadcast

known as the Dolev-Strong protocol. And, we have two variants of this protocol;

cryptographically secure as well as statistically secure, depending upon what is the type of

signature scheme we are using ok.

And, this Dolev-Strong protocol works even if you have a dishonest majority; that means, it

will work as long as there are t corrupt parties, where t can be as large as n - 1 ok. That

means, the only condition which you require here is that t < n. This is unlike the perfectly

secure protocols where you had t < n/3 as the necessary condition.
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So, let me quickly recall the reliable broadcast problem RB ok. So, we have a synchronous

system of n parties connected by pair-wise secure channels. And, among those n parties we

have a designated sender party with some input m, from a domain it could be as simple as a

single bit or it could be a message consisting of bits. And, at most t Byzantine faults could𝑙

be there in the system, potentially including the sender ok. And, we want to design a protocol

according to which the parties interact with each other and obtain an output.

So, the security requirements of any reliable broadcast protocol are the following. We need

the termination or the liveness guarantee which demands that every honest party should

obtain an output after some fixed time, say T which will be determined by the protocol. That

means, it never happens that the parties keep on running the protocol forever. We need the

consistency property; that means, the output after time T for all the honest parties should be

same, say and this should hold even if the sender is corrupt.𝑚⋆

That means, it should not happen that one honest party outputs a message m’ and another

honest party outputs message m’’ and another honest party outputs a message m’’’ and so on.

So, the consistency demands that all the honest parties should have a common output even if

the sender is corrupt. That means, even if sender sends different versions of its message to

different honest parties, there should be a mechanism in the protocol according to which the

parties should interact and have a common output.



And, the third property is the validity property which demands that if the sender is honest

during the protocol execution, then this common output should be the sender’s message m𝑚⋆

ok. It cannot be any other message different from m. So, these are the three properties which

we want to achieve.
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So, now let us discuss about the requirements of honest majority in the context of reliable

broadcast and Byzantine agreement. So, whenever I say honest majority, I mean to say that

the majority of the parties in the system are honest. And, dishonest majority means that the

condition is not there; that means, more than half of the parties could be bad. So, we had seen

BA protocols, Byzantine agreement protocols with perfect security where, we had t < n/3 as

one of the necessary conditions.

So, we had seen the EIG protocol and we have seen the Phase-king protocol ok. And, we also

know that the Byzantine agreement problem can be reduced to the reliable broadcast problem

in the sense that, if we have a protocol for Byzantine agreement then using it we can design a

protocol for reliable broadcast. So; that means, we can use the EIG protocol and the phase

king protocol to even get reliable broadcast protocols with perfect security and the condition t

< n/3.

Now, the condition t < n/3 was required if we want to achieve perfect security, namely

security against unbounded adversaries. But, interestingly if we are fine with cryptographic



and statistical security, then we can design a reliable broadcast protocol where we just need

the condition t < n ok. So, it is as good it is like saying the following, say if your n is equal to

100, you have 100 participants in the protocol.

Then for perfect security you can tolerate at most 33 corruptions, even if at most 33 parties

get corrupt you can achieve the required properties. And, even if those 33 parties are

computationally unbounded you are fine. But, if we make the assumption that the corrupt

parties are only polynomially time bounded. That means the notion of security is

cryptographic security, then we can design a broadcast protocol where even if up to 99

participants are corrupt, the properties will be achieved.

And, interestingly we can achieve statistical security as well, even if the adversary is

computationally unbounded we can have a statistically secure version of the Dolev-Strong

protocol, where we can tolerate up to 99 corruptions. However, the notion of security will be

cryptographic or statistical; that means, a negligible error might be there in the properties

achieved whereas, in the perfectly secure protocols, all properties are achieved without any

error ok. So, you have the trade off.

If you do not want to have any kind of compromise on the security guarantees and you want

perfect security, then you have to pay a price. Namely, you can tolerate only a small fraction

of corrupt parties compared to the case when you are willing to allow a very small error in the

properties achieved ok.

So, if we have this Dolev-Strong protocol with cryptographic security or statistical security,

then using the conversion from reliable broadcast to Byzantine agreement we can in fact, get

a Byzantine agreement protocol with cryptographic or statistical security as long as t < n/2

right.
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So, the Dolev-Strong protocol is based on digital signatures which is a very important

cryptographic primitive. So, let us spend some time to understand what digital signatures are,

what are their security properties. So, we have physical signatures which has tremendous

applications in real world. The main purpose is to verify the authenticity of a document.

So, if I sign a document then it is authentic in the sense that anyone can show it to a third

party and convince them that actually I have signed this document right, or if I sign a blank

cheque right, if I have a signature on a cheque then that is an authentic piece of information,

authentic piece of data for the bank, so that they can go ahead with the transaction right.

And, physical signatures are transferable in the sense that any third party can verify the

authenticity of a document. So, if X have sent a signed document to Y, then Y can show it to

anyone that here is a piece of document received from the party X ok. And, what is the

security requirement from a physical signature? The requirement is that it should be difficult

to forge a legitimate signature ok.

That means if someone has seen me signing multiple documents physically, then it should be

very difficult for that person to copy my signature ok. Of course, there might be some

possibility, some probability with which he can do that, but that should be very very small.

So, intuitively we require same properties from digital signatures. So, digital signatures are

digital versions of your physical signature. They are transferable and the main security

requirement is that they should be unforgeable.



That means, it should be difficult to forge a legitimate signature for anyone who is

computationally bounded. So, it has got tremendous real-world applications like digital

certificates, public infrastructure, software updates, contract signing, wherever we have legal

applications. In all such applications digital signatures are used on a very large scale ok.
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So, let us see the formal definition of digital signatures. So, whenever we say that we have a

digital signature scheme , we are talking about a triplet of algorithms, a key generationΠ

algorithm, a signing algorithm and a verification algorithm. And, this scheme will be over

some message space, namely the set of all possible messages which can be signed using this

scheme; namely, the message space which is supported by the scheme. So, it is a set of all

messages which can be signed using the scheme.

Now, how this scheme will be used? So, let us first understand the syntax and semantics of

each of these three algorithms, key generation, signing and verification algorithm. So, the key

generation algorithm is a randomized algorithm. When I say a randomized algorithm; that

means, every time you run this algorithm, it will produce different outputs with different

probabilities.

So, that is why I am not using an assignment operator rather I am using this arrowhead to

denote the output of the key used to express the outputs of randomized algorithms.

Assignment operators are used for deterministic algorithms, to denote the outputs of the, key



generation algorithms which is a randomized algorithm, we use this arrow notation to denote

the output of this key generation algorithm ok.

So, it outputs two values: a verification key and a signing key ok. So, for instance if I am the

signer ok and I want to use this scheme for signing documents, then I can run the key

generation algorithm myself which will output two keys for me; a verification key and a

signing key. And, verification key vk will be available publicly. It will be known to everyone

that this is the verification key of the so called signer.

And it will be an authentic copy; that means, it will be authenticated by some third party that

indeed this verification key belongs to so and so signer. Now, the signing algorithm takes two

inputs, the signing key and the message m to be signed and it outputs a signature, a bit string

which is considered as the signature on the message. And, this algorithm, the signingσ

algorithm need not be randomized. That means, if I sign the same message using the same

signing key, its not necessary it should produce different signatures every time.

So, again if I am the signer and if I have my own signing key with me and if I want to sign a

message, then what I will do is, I will run this signing algorithm which will generate a

signature. And, now I can give the my message, whatever message on which I have signed,

along with the signature to anyone ok. So, the both the message as well as signature is given

to any party to whom I want to pass on my signed document.

And, then there will be a verification algorithm which is a two input algorithm. It takes the

verification key and the message signature pair and it outputs either a value 0 or 1. 0 means

the signature is considered as invalid, 1 means that the signature is considered as valid. So,

again the way it is deployed is, if I have passed on a signed document to the third party,𝑚,  σ

then the third party can take the verification key from the public domain and run the

verification algorithm using the verification key. And, if the output of the verification

algorithm is 1, then it accepts the document otherwise it rejects the document; that is typically

that is typically the way digital signature scheme operates in practice. Now, a signature is

called a valid signature on a message with respect to some verification key vk, if the message

signature pair successfully passes the verification under the key vk ok. And, a valid signature

on the message received by a receiver guarantees the authenticity and integrity of the

message.



Authenticity means it is authentic, it is coming from the so called signer and integrity means

that the contents have not been modified. So, we read two security properties from a

signature scheme. The first is the correctness property which demands that for every pair of

keys obtained by the key generation algorithm and every message m from the message space,

if I sign the message using the signing key and later that message and signature are verified,

then the probability that the verification fails is upper bounded by some negligible function.

So, negl here denotes a negligible function, negligible function in this parameter n, where n is

the security parameter. Negligible intuitively means a function which is very very small. Its

value is so small that you can consider it to be 0 for most practical purposes, if the value of n

is significantly large. Namely, as limit n tends to infinity, the value of this negligible function

turns to be 0. Examples of such functions 1 over 2 power n, 1 over n log n, 1 over n power

log n and so on ok.

So, what does this correctness means? That means that it should never happen that if I am the

signer, I obtained a pair of keys by running the key generation algorithm. And, I have

legitimately signed a document and someone tries to verify that document using the

corresponding verification key and the verification fails. It should never happen, the

probability that it happens should be very very small.

The important property of the signature scheme is the unforgeability property ok, which

demands that if there is an adversary, there is an attacker who does not know my signing key

sk. Then, it should be very difficult for that adversary to produce a signature on a message

which I have never signed in the past, except with some negligible probability. And, this

should hold even if that attacker has seen me signing several messages in the past, using the

same signing key.

And, this precisely captures the unforgeability property that we expect from the physical

signature. So, if every month if I go to my bank and submit a signed checque for some

transaction and if there is a bank clerk who has seen me signing over a period of say 5 years,

then still it should be difficult for that clerk to mimic my signature. Of course, it can do that,

but that probability should be very small. So, intuitively we require the similar security

property from a signature scheme and that is called as the unforgeability property.
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Now, this unforgeability property is captured through a security experiment. So, typically in

cryptography we model the security requirements through a challenge-response experiment

between two entities, between an attacker and an hypothetical verifier. So, this experiment is

called as the sign forge experiment. Here we have a publicly known signature scheme and

there is a computationally bounded adversary.

Now, there are two phases in this experiment, a training phase and an output phase. In the

training phase the adversary demands signatures of several messages of its choice. So, let Q

denotes the set of messages on which adversary wants to see the signature. This basically

models the fact that adversary who want to forge a signature of the sender might have seen

signatures of the same sender on some earlier messages. So, those messages could be

adversary’s favorite messages.

So, to model that, we in this experiment provide the adversary a training where we say to the

adversary that ok, you yourself get trained on messages of your choice. We will give you the

signatures on those messages. So, to give the training to the adversary, the verifier will run

the key generation algorithm, obtain pair of verification and signing key. And, the signing

key is not revealed to the adversary, the verification key is revealed along with that signature

on the messages for which adversary wants to see the signature.

So, through this communication adversary submitting a some set of messages and getting the

verification key and the signatures on those messages correspond to the real world



deployment scenario, where adversary will be knowing the verification key of the signer. It

will be available in the public domain along with that adversary will have several message

and signature pairs from the past which were created using the signing key, which is held by

the signer.

Remember, the signing key is a very critical component. It cannot be available in the public

domain, because if the signing key is available in the public domain then anyone can forge

my signature ok.
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So, that is a training phase and then there is an output phase where we ask the attacker that

ok, let us see whether you can forge the signature or not, on any message of your choice𝑚⋆

which is different from all the messages on which you have seen the signatures in the past.

So, in this phase basically adversary submits a message signature pair. And, we say that the

experiment is successful, which is denoted by saying that the output of the experiment is 1, if

and only if the message on which adversary has produced a signature is different from all the

messages on which it has seen signature in the past. And, indeed the signature is a validσ⋆

signature on the message under the verification key vk. This is like saying that adversary𝑚⋆

has indeed forged a signature on a new message which was not signed earlier by the sender.

We say that a signature scheme is secure, if for every polynomial time adversary who

participates in this experiment there is some negligible function such that the probability



adversary wins the experiment is upper bounded by some negligible function. That means,

even though there is a non-zero chance that adversary wins the experiment or adversary

comes up with a forgery, that non-zero probability should be very very small. Namely, it

should be a negligible function.

Why there is a possibility that adversary wins this experiment with a negligible probability?

Well, adversary can simply guess my signature. It does not know the value of the signing key

fine, but it knows the details of the sign algorithm. It has the message on which it wants to𝑚⋆

generate a forgery. So, it can just guess a value for because, at the end of the day is aσ⋆ σ⋆

binary string. And, there is always a non-zero probability that the guessed passes theσ⋆

verification test.

So, that is why there is always a non-zero chance that adversary wins this experiment, but

that should be very very small. And, our scheme will be called secure even if an adversary

after getting trained for q number of messages, where q is some polynomial function in your

security parameter, fails to forge a signature ok. There are several candidates, several

instantiations for digital signature schemes ok. So, I will not be going into the details. For the

Dolev-Strong protocol, we will assume that we have a digital signature scheme available.
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Now, in the digital signature schemes we assumed the computationally bounded adversary.

Namely, it should be difficult for a computationally bounded adversary to come up with a



forgery. We have a corresponding equivalent version of the signature schemes which are

called as pseudo signatures and they remain secure even against computationally unbounded

adversaries.

When I say secure, I mean to say they remain unforgeable even if the adversary is

computationally unbounded. That means, if we go into the experiment then even a

computationally unbounded adversary who has seen signatures on several messages failed to

come up with a signature on a new message except with some negligible probability ok.

However, these information theoretic signature schemes which are also called as pseudo

signature schemes provide limited transferability property.

That means, it will not be the case that if I sign a document and give it to you, you can show

it to any number of parties, any number of third parties that is not going to be the case. This is

unlike the digital signature scheme, where if I sign a document and if it is available in the

public domain, it can be verified infinitely many number of times by any number of parties.

Digital signature schemes where the transferability property has no restriction, namely any

digitally signed document can be transferred to any number of parties, any number of third

parties.

This information theoretic pseudo signatures have limited transferability property. Because,

every time it gets transferred to a new party, we lose some information regarding the signing

key intuitively. So, the number of times it can be transferred is set as a parameter, say P. And

once a signed document is transferred P number of times, we can we cannot transfer it to a

new third party ok. So, that way it has a limited transferability property which you can set as

a parameter of the scheme right.
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So, now let us see the Dolev-Strong reliable broadcast protocol ok. And, this reliable

broadcast protocol will require a setup ok, a setup for a signature scheme. So, what is the

setup? Here we assume that every party has a signing key and a verification key, where the

signing key for the ith party ski is available only to the ith party. So, here we have party 1

with its signing key, party i with its signing key, party j with its own signing key and party n

with its own signing key. And, the verification key of all the parties will be known to

everyone else.

So, this is the setup which we assume is present at the beginning of the protocol right. Only in

the presence of this setup, we can run the Dolev-Strong protocol. So, no setup was required

for perfectly secure protocols which we had seen till now right. Only setup was pair wise

secure channels among the parties, but for the Dolev-Strong protocol we need actually this

special setup, namely the signature scheme setup. You might be wondering who does this

setup. So, this setup we can assume is done by a trusted party at the beginning of the

protocol.

If we are using a cryptographically signature secure signature scheme, then that setup can be

reused for polynomially many instances of the Dolev-Strong protocol ok. That means, say for

instance a setup is used for 1000 number of instances of Dolev-Strong protocol or 100

numbers or 10,000 number of instances of Dolev-Strong protocol depending upon the exact

values of your security parameter.



Whereas, if you are using the pseudo signature setup, namely the setup for the information

theoretic signature scheme, then we cannot reuse the same setup for multiple invocations of

the reliable or Dolev-Strong protocol. Namely, for each invocation or each instance of the RB

protocol, a fresh setup has to be established; that is a downside if you are using an

information theoretic signature scheme setup.

But, security wise we get more security, namely we get statistical security which will hold

even against an unbounded adversary. Whereas, if you are reusing the same setup for

polynomially many instances of the protocol, then we get cryptographic security ok. So, we

will explain the steps of the Dolev-Strong protocol irrespective of the type of the signature

scheme, whether it is cryptographically secure or whether it is information theoretic secure.

We will just assume it has a signature setup, depending upon the nature of the setup whether

it is cryptographically secure or information theoretic secure, we get a cryptographically

secure version of Dolev-Strong protocol or a statistically secure version of the Dolev-Strong

protocol.
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So, what are the protocol steps? So, remember in the reliable broadcast protocol we have a

designated sender. So, for simplicity we assume that P 1 is the sender with some message m

and protocol works if it is any sender. The assumption regarding the sender is without loss of

generality. In the first round, the sender sends its signed message to everyone ok.



As a basic step, it sends the message to everyone, but to prove that it is an authentic data it is

coming from the sender, it signs it and send to everyone including itself. Of course, if the

sender is corrupt it can send different versions of signed message to different parties ok. But

if the sender is honest, it will follow this protocol instruction correctly and it will send an

identical copy of the signed message to everyone.
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Now, the rest of the protocol, the remaining rounds of the protocol will be interaction among

the parties to identify whether sender has sent different signed messages to different parties

ok. Namely, for round r equal to 1 to t + 1, every party P i does the following in round r. So, it

maintains a set of signed documents, namely it maintains a set of valid signatures on any

message v, including sender signature which has been received till now namely by the end of

round r.

So, by the end of round r party P i might have received several signed messages. Among all

those signed messages whichever are the valid signed messages, it maintains them in a set

SK. The only criteria is that among those signed messages for any value v or any message v,

there should be sender’s signature also which is present there; otherwise it will not be

included in SK.

Now, what party P i does during the round r? It checks whether the number of signatures on

this message v is at least r, including the sender’s signature. If that is the case, then it

accumulates that message v as a valid message in its accumulative set ACCi, which is



initialized to empty set. And, if this message v is accumulated newly; that means, if it is the

first time when this message v is accumulated during the round r. And, if there are further

more rounds available in the protocol, then in the next round what this Pi does is the

following. So, it already got at least r number of signed messages v, where v is identical. It

has received signed v from at least r number of parties. And, it is during the round r, that P i

has accumulated this message v in its accumulative set. Then, it checks that if there are more

rounds available after this round, if there are more rounds available, then in the next round

what this party Pi does is the following. It relays the set of signed messages v to everyone

along with its own signature on the message v.

So, that in the next round whoever not yet; whoever has not yet accumulated this message v

will do that. Because, in the next round there will be now r + 1 number of signatures which

will be available on the message v. And, if some party P j is there who has not yet

accumulated the message v, it will accumulate it; that is the idea here.

So, if I am the ith party, I have accumulated a new message and if there are rounds available

to relay this information, I put my own signature on that collection of signatures. And, relay

that collection of signatures to everyone as a witness that I have sufficient amount of

signatures received in the previous round to accumulate the value v. So, you also do the same,

that is basically the idea.
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Now, what is the decision rule for the ith party after t + 1 rounds? So, remember this process

of collecting, accumulating messages and relaying signed messages happens for t + 1 number

of rounds. After t + 1 rounds no communication will happen. The output decision for the ith

party will be the following. It goes and check checks its accumulative set. If it is a singleton

set, namely there is only one message which has been accumulated during the whole

protocol, then that is the output value for party Pi. But, if there are multiple messages which

has been accumulated by the party Pi, then it outputs some default message v0 which could

be say all 0s; that is the decision rule for the party Pi. So, that is a very simple Dolev-Strong

protocol; t + 1 rounds of communication; first round only sender sends its signed message to

everyone. As a party during the round r my step will be, I will check whether there exists a

message v which has been signed at least r number of times by r different parties including

the sender. If that is the case, I accumulate it and if this is the first time I am accumulating it;

in the next round if it is available, I relay this information that I have accumulated v by

relaying those collection of signatures along with my own signature, so that every other party

who has not yet accumulated the value v, does the same in the next round. Because, it could

be possible that only I have received that collection of r signatures. If sender was corrupt, it

can just send a signed message along with some other parties signature on the same value to

me right, but may not may send to others. But, through this relay process it is ensured that in

the next round it will be accumulated by everyone else as well.
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So, I have not gone through the analysis of the protocol. In the next lecture, we will do the

rigorous analysis of the Dolev-Strong protocol. So, there are several texts where you can find

a description of the Dolev-Strong protocol. For my presentation I have taken the description

available in this research paper.

Thank you.


