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Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: We will 

start with the problem of secret-sharing, which is one of the fundamental primitives which we 

are going to use in our MPC protocols. And as part of secret-sharing, we will first try to 

understand the problem definition of secret-sharing and we will see a special case of secret-

sharing, namely threshold secret-sharing.  
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So, let us start with the problem of secret-sharing. So, the setting is as follows: We have a 

designated party which we often call us dealer, and denoted by D. And it has some private 

input, which I denote by s. So, it is an abstract input. It could be a single bit, it could be your 

file, it could be any kind of data which is known only to the dealer; or it could be, for example, 

your AES encryption key and so on.  

 

Now, there are n parties denoted by 𝑃ଵ, 𝑃ଶ, 𝑃ଷ, 𝑃ସ, 𝑃௡. So, for instance, in this particular 

example, I am taking the case where we have 4 shareholders, namely where 𝑛 =  4, but in 

general, you can have up to n number of shareholders. And each of these shareholder is 

connected with the dealer by what we call as secure channel. That means, if I consider for 

instance party number 𝑃ଵ as part of the setting, it is given to us that there is a mechanism by 

which dealer can communicate privately to this party 𝑃ଵ.  

 

And by privately I mean that, whatever communication happens over this channel between 

dealer and 𝑃ଵ, no other party can find out what exactly is the communication that is happening 

between D and the party 𝑃ଵ over this channel. In the same way, if I consider, say for instance, 

the channel between D and party number 𝑃ଷ, only D and 𝑃ଷ can communicate over this channel 

and no other party can make out anything regarding the communication which is happening 

over this channel between D and 𝑃ଷ.  

 

So, that is what we mean by secure channel. So, as part of the setting, it is given to us that there 

is a mechanism by which dealer can communicate privately and securely to, with any of these 

n shareholders.  
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We are also given 2 different collections of parties or these shareholders. One collection is 

what we call us access structure, which can be interpreted as some kind of a collection of 

authorised subsets. So, for instance, I can have one authorised subset consisting of 𝑃ଵ, 𝑃ଶ, 𝑃ସ; 

or I can have an authorised subset consisting of party 𝑃ଵ, party 𝑃ଷ, party 𝑃ସ; or my authorised 

subset could be party 𝑃ଶ and party 𝑃ଷ.  

 

So, collection of this authorised subsets which is also called as access structure will be given 

to you as part of the problem definition. And with respect to this access structure, we have a 

complimentary structure which we call as forbidden structure, which is a collection of 

unauthorised subsets. So, the authorised subsets, they are denoted in green colour; the 

unauthorised subsets, they are in red colour.  

 

So, given the authorised subsets, I can compute the unauthorised subsets. I will very soon 

discuss how exactly we compute the unauthorised subsets, given the authorised subsets. So, 

with respect to this specific example, if I am given subset number 1, subset number 2 and subset 

number 3, with respect to these 3 possible authorised subsets, I have 5 forbidden structures or 

unauthorised structures, subsets, which I call as, denote as 𝐵ଵ, 𝐵ଶ, 𝐵ଷ, 𝐵ସ and 𝐵ହ. 

  

So, what are the things given to you? You are given the fact that there is a designated dealer 

and it has a private input. The value of the private input is not known, but it will be known that 

its input from some specific space. And you are given a collection of authorised subsets. And 



with respect to those authorised subsets, you have another collection consisting of unauthorised 

subsets. Now, what is the goal?  

 

We want a mechanism which allows the dealer to compute what we call as shares, shares for 

his secret 𝑠. So, since there are 𝑛 shareholders, we want a mechanism which allows the dealer 

to compute 𝑛 shares and distribute the shares to the respective shareholders over the 

corresponding private channel. So, for instance, here we have 4 shareholders. So, we want a 

mechanism which allows the dealer to compute 4 shares, 𝑠ଵ, 𝑠ଶ, 𝑠ଷ and 𝑠ସ, out of its secret 𝑠.  

 

And the shares are computed and the shares are distributed to the respective shareholders. So, 

the first share which I denote as 𝑠ଵ, dealer will communicate over the private channel to 𝑃ଵ. 

And when 𝑠ଵ is communicated to 𝑃ଵ, none of the remaining 3 parties can make out what is the 

value of 𝑠ଵ, which dealer has given to 𝑃ଵ. The second share 𝑠ଶ, dealer will give over the private 

channel to party number 𝑃ଶ, and none of the remaining 3 parties 𝑃ଵ, 𝑃ଷ, 𝑃ସ, can make out what 

is the value of 𝑠ଶ.  

 

In the same way, the share 𝑠ଷ is given to party 𝑃ଷ, and share 𝑠ସ is given to party 𝑃ସ. If there 

would have been 𝑛 shareholders, there dealer would have computed 𝑛 shares, and each share 

would have been communicated to the corresponding shareholder. Now, we want 2 properties 

to be achieved by this sharing mechanism.  

(Refer Slide Time: 08:07) 

 

The first property is the following: If we consider any authorised subset from your access 

structure, it could be either the collection number 𝑆ଵ or the collection number 𝑆ଶ or the 



collection 𝑆ଷ. You take any authorised subset of shareholders, there should be a mechanism for 

them to kind of combine their shares and get back the secret 𝑠. And that is why they are called 

as authorised subset.  

 

They are authorised in the sense that they are allowed, they are supposed to get back the secret 

𝑠 if they somehow combine their shares; there should be a mechanism to get back the secret 𝑠 

from their shares. So, for instance, what I am saying is, they should; the sharing mechanism or 

computing the shares from the secret, that process should be such that, if we take the share 

number 𝑠ଵ, share number 𝑠ଶ and share number 𝑠ସ, then, there should be a mechanism to get 

back the secret 𝑠. So, because 𝑃ଵ, 𝑃ଶ, 𝑃ସ constitutes an authorised subset.  
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In the same way, there should be a mechanism to combine your share number 𝑠ଵ, share number 

𝑠ଷ and share number 𝑠ସ to get back the secret.  
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And there should be a mechanism to combine your share 𝑠ଶ and share 𝑠ଷ, and get back your 

secret 𝑠. Because, 𝑆ଵ, 𝑆ଶ, 𝑆ଷ, the subset 𝑆ଵ, subset 𝑆ଶ, subset 𝑆ଷ, they constitute authorised 

subsets. So, that is the first requirement from this sharing mechanism.  
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And the second property that we need here is the following: If any unauthorised subset of 

parties combine their shares, then they should not learn anything about the secret 𝑠. That means, 

what I am saying here is the following: If I consider, say the unauthorised subset 𝐵ଵ, which is 

consisting of 𝑃ଵ and 𝑃ଶ; that means, just by combining the shares 𝑠ଵ and 𝑠ଶ, the secret should 

not be reconstructed back.  
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In the same way, if I consider the shares 𝑠ଶ and 𝑠ଷ, then there should not be any mechanism to 

get back the secret 𝑠 by combining these 2 shares and so on. So, that is a problem of secret-

sharing. And now, you can imagine that why this problem is called as secret-sharing. You want 

to share your secret, you want to compute shares of the secret and distribute to individual 

shareholders, so that certain specific collection of parties should be able to get back the secret 

by combining their shares.  

 

Whereas, there are some blacklisted or unauthorised subset of parties who should not be able 

to get back the secret by combining their shares. Now, let us try to understand that how exactly 

we get this collection of unauthorised subsets from given the collection of authorised subsets. 

So, I will demonstrate it with this specific example only, but you can generalise it for the case 

when there are n parties.  
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So, the first thing to understand here is the following: That this access structure is basically the 

collection of what we call as minimal subset of authorised parties. So, what do we mean by 

minimal subset of authorised party? Minimal in the sense that, if, say for instance 𝑃ଵ, 𝑃ଶ and 

𝑃ସ, together they are eligible to get back the secret 𝑠. Then, if we include any additional party 

in this collection, then together, they also are eligible to get back the secret.  

 

So, for instance, in this collection 𝑃ଵ, 𝑃ଶ, 𝑃ସ, if I also include 𝑃ଷ, by default, that whole 

collection, the bigger collection, that is also authorised to get back the secret 𝑠. That means, 

any superset of any authorised subset is by default is also an authorised subset. So, that is why, 

when we are specifying the access structure, we specify the collection of only minimal subsets, 

the minimal collection of parties which you require to get back the secret 𝑠.  

 

That also means that you take any superset of them, they are also authorised. So, we have this 

minimal collection or minimal subsets of authorised parties. Now, the unauthorised parties are 

what we call as collection of maximal subset of unauthorised parties. So, there is a difference 

here. For the case of access structure, that was the collection of minimal subsets of authorised 

parties.  

 

But when we are taking or talking about forbidden structure, that is a collection of maximal 

subsets, not minimal subsets. It is a collection of maximal subsets in the sense that, if I consider 

this specific forbidden set 𝐵ଷ which consists of party number 𝑃ଵ and 𝑃ସ, it means that, even 𝑃ଵ 

and 𝑃ସ, if they come together and combine their shares, they should not be able to learn the 

secret s.  



That also means that, even if 𝑃ଵ alone tries to learn the secret, he should fail. Or, if 𝑃ସ alone 

tries to learn the secret, she should fail. That means, any proper subset of 𝐵ଷ will also be 

considered as an unauthorised subset. This is just a reverse of what was the case for the 

authorised subset. For the authorised subset, any superset of authorised subset is also 

authorised.  

 

For the case of unauthorised subsets, any proper subset of it will be also unauthorised. So, that 

is why we focus on the largest possible or maximal possible subsets of unauthorised sets. And 

that collection is called as the forbidden structure. So, now, let us see how we computed this 

forbidden structure. So, we consider what we call as the power subset of the shareholders. So, 

in this case, we have 4 parties.  
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And the power subset will consist of all possible subsets of these 4 parties. So, you have the 

null set; and then you have the singleton sets consisting of just 1 party each; and then you have 

collections consisting of 2 parties; and then you can write down the subsets consisting of 3 

parties; and then the whole set. Now, what we are going to do is the following: You are given 

the authorised subsets.  

 

So, you are given, say the subset number 𝑆ଵ, 𝑆ଶ and 𝑆ଷ. Basically, what we are trying to do 

here is, we are trying to take the compliment of the power set; we are trying to compute the 

compliment of the access structure with respect to the power set and focusing only on the 

maximal subsets. Roughly, that is our forbidden structure. So, what does that mean? So, this 

is; so, I have not written down the full power set; you have other sets as well.  



So, by default ϕ is always going to be a member of forbidden structure. Because, if no party 

comes together, then you are not supposed to get back the secret. So, ϕ is definitely a member 

of your forbidden structure, because that will be present in the complement of your access 

structures. If my access structure is Γ, then basically, what I have constructed here is what I 

call as the complement of Γ; but I would not be writing down all the sets in my complement of 

Γ, but I will be focusing on the maximal subsets.  

 

So, of course, ϕ is a member of gamma compliment, but it would not be represented in my 

forbidden structure, because that is implicitly there, that is implicitly present. In the same way, 

𝑃ଵ will be present in gamma complement, 𝑃ଶ is also present in the gamma complement; 

singleton sets, all the singleton sets. They are going to be present in the forbidden structure, 

but I would not be writing down explicitly because they are implicitly present.  

 

Because, as I said, any proper subset of the maximal subsets in your forbidden structure are 

also unauthorised; so, they are also going to be present in gamma complement. Now, I take the 

subsets consisting of 2 parties. So, it turns out that except the collection 𝑃ଶ, 𝑃ଷ which is an 

authorised subset, all other remaining subsets consisting of 2 parties will be present in 

forbidden structure, and that I have listed down.  

 

Now, I take the collection of subsets of size 3. So, there are 2 subsets of size 3 which are 

authorised. So, those subsets are 𝑃ଵ, 𝑃ଶ, 𝑃ସ; and you have 𝑃ଵ, 𝑃ଷ, 𝑃ସ. So, what about the case 

𝑃ଵ, 𝑃ଶ, 𝑃ଷ? So, 𝑃ଵ, 𝑃ଶ, 𝑃ଷ, even though it is not explicitly present in the access structure, it is 

present because that is a superset of this subset 𝑃ଶ, 𝑃ଷ. So, that is why 𝑃ଵ, 𝑃ଶ. 𝑃ଷ is also present 

here.  

 

Because, along with 2 and 3, you include any party, that also be considered as an access 

structure. So, that is why, I am not writing down 𝑃ଵ, 𝑃ଶ, 𝑃ଷ in the complement of gamma, 

because that is present in gamma actually, implicitly. So, basically, what you have to do here 

is, you have to expand your gamma with respect to the minimal subsets; include all proper 

supersets as well in gamma.  

 

That will be your actual, bigger authorised subsets access structure. And now you take the 

complement of that set with respect to your universal set which is the power set of your 



shareholders, that will give you the forbidden structure. So, that is how you compute your 

forbidden structure with respect to your access structure. So, coming back to the problem of 

secret-sharing, basically, our goal is that we want to compute or split my secret into shares and 

distribute the shares in such a way that certain specific collection of parties should be able to 

get back the secret, while the remaining, not remaining, while they are specific blacklisted 

subset of parties who should not be able to get back the secret.  
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So, now, let us try to see where exactly we face this problem of secret-sharing. So, there are 

plenty of real-world examples which we can model by this abstract problem of secret-sharing. 

So, consider this problem of granting access to a locker. So, imagine there is a locker which is 

operated by a password, but the password is kind of shared among 3 managers, 𝑚ଵ, 𝑚ଶ and 

𝑚ଷ.  

 

And the sharing has been done in such a way that, only if 2 managers goes together and enter 

their respective passwords, then the locker can be opened. But if any one manager tries to open 

the locker, he or she should fail. So, for instance, if manager 1 just tries to open the locker, he 

should fail. If manager 2 tries, he should fail. If manager 3 tries, she should fail.  
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Whereas, if say the first and the second manager goes together and enter their respective 

password, the locker should be open.  
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Similarly, if say, the first and the third manager goes and enter their respective password, the 

locker should be open and so on.  
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Now, let us take another example. It is believed according to Times magazine that, in nineties, 

the access to Russia's nuclear weapon was as follows, was done in the following way: So, there 

was a password to launch the nuclear weapon, and that password was shared among 3 entities, 

The President, Prime Minister and Defence Minister. And the sharing was believed to be done 

in such a way that the nuclear weapon could be accessed only if at least 2 of the above 3 entities 

come together and enter their respective passwords.  

 

That means, if just President tries to launch the nuclear weapon, he should fail. If Prime 

Minister tries to launch, and it should fail. If the Defence Minister only tries to launch, it should 

fail. But if say President and Prime Minister both of them agree and want to launch, they should 

be able to do that. If Prime Minister and Defence Minister, they agree and want to launch, they 

should be able to do that. In fact, if all 3 of them wants to launch, they also should be able to 

do it.  
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In the same way, imagine that you are, you consider a corporate company where you have, say 

a bunch of important people. You have, say a project manager, HR manager, secretary and a 

clerk. And suppose there is a requirement to digitally sign documents, and each of these entity 

has its own signing key for digitally signing documents. But the arrangement for signing the 

document has been done in such a way that, no single entity should be able to digitally sign a 

document on the behalf of the company.  

 

So, for instance, if just project manager wants to digitally sign a document on the behalf of the 

company, he should fail. If the clerk only wants to sign the document, he should fail, and so 

on. But say the arrangement has been done in such a way that, if clerk, project manager and 

HR manager, they agree and decide to digitally sign the document, then only when all 3 of 

them sign with respect to their individual signing key, that signature should be produced. Even 

if one of these 3 entities is missing, the signature should not be generated.  
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Or, there could be another way to generate the signature. Say for instance, it could be the project 

manager, HR manager and secretary coming together, and then only they can collectively sign.  
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Or, it could be the case that only clerk or secretary are privileged to kind of combine or come 

together and sign the document.  
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So, those were some examples real-world motivation for studying the secret-sharing problem. 

So, now, let us come to the formal definition. So, you are given an access structure Γ, over a 

set of parties, 𝑛 parties. So, a secret-sharing scheme; when I say a scheme, it is basically a 

collection of 2 algorithms; an algorithm for sharing the secret or computing the shares of the 

secret and an algorithm for reconstructing the secret based on the shares of a collection of 

parties.  

 

And both these algorithms will be publicly known. Because, as per the Kirchhoff’s (26:37) 

principle which we have seen in the previous course, in cryptography, we never assume that 

the algorithms are hidden. Algorithms are always assumed to be publicly available. So, let us 

try to understand first the syntax of our sharing and reconstruction algorithm. So, the sharing 

algorithm will take an external input, namely, a value of a secret from a bigger space.  

 

That bigger space will be called as a secret space and denoted by this fancy set 𝒦. And 

everyone will know the description of this fancy set 𝒦. The secret space will be publicly 

known. But what value from that secret space is used as an input for the sharing algorithm, that 

may not be publicly known. So, that is the external input for the sharing algorithm.  
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And this sharing algorithm should be randomised. So, again, based on whatever we have seen 

in the previous course, whenever we want to denote a randomised algorithm, I use this symbol. 

This mean that there are some internal random values which will be generated when this 

algorithm 𝑆ℎ will be executed. So, apart from the external input, there will be internal random 

inputs used inside the algorithm 𝑆ℎ.  

 

And now, what this algorithm 𝑆ℎ will do is, based on the internal randomness and the value of 

your secret 𝑠, it will compute 𝑛 pieces or 𝑛 values which we call as shares 𝑠ଵ to 𝑠௡. And each 

of this share 𝑠௜ will be an element from a bigger space, which we call as the share space. Again, 

I stress that the steps of the algorithm 𝑆ℎ are publicly known. So, anyone can find out that, if 

this is the value of 𝑠 and if this is the value of candidate randomness, then it can easily compute 

the shares 𝑠ଵ to 𝑠௡.  

 

During the actual deployment of the sharing algorithm, the dealer will pick the secret 𝑠 and 

internal randomness which will be generated as part of the instantiation of 𝑆ℎ, and the shares 

will be produced. So, that is the syntax of your sharing algorithm. Now, you might be 

wondering that why we require the sharing algorithm to be randomised. Why cannot it be a 

deterministic algorithm?  

 

We need it for the purpose of security which will be clear soon. And when I say it is a 

randomised algorithm, by that, I mean that, if you invoke the sharing algorithm 𝑆ℎ with the 

same secret 𝑠, you will be getting different values of the shares, depending upon what is the 

internal randomness generated during the invocation of your sharing algorithm. So, do not 



think that every time you call the sharing algorithm with the input 𝑠, you will get the same 

value of the shares 𝑠ଵ to 𝑠௡.  

 

Depending upon your internal randomness, the values of the shares 𝑠ଵ to 𝑠௡ will be different. 

The 𝑅𝑒𝑐 algorithm will take a subset 𝐵 from your access structure. Say for instance that a 

subset 𝐵 consists of 𝑘 parties with indices 𝑖ଵ to 𝑖௞ and the external, the other input for this 𝑅𝑒𝑐 

function will be the shares corresponding to the parties 𝑃௜భ
, 𝑃௜మ

, … , 𝑃௜ೖ
. And again, you have the 

option of either having a deterministic 𝑅𝑒𝑐 algorithm or a randomised 𝑅𝑒𝑐 algorithm; but for 

most of the secret-sharing schemes, the 𝑅𝑒𝑐 algorithm is deterministic.  

 

So, based on the value of the shares and depending upon whether the shares correspond to an 

authorised set or unauthorised set, a value will be obtained as an output. Let me denote that 

output as 𝑠ᇱ. Now, what are the properties that we need from this pair of algorithms 𝑆ℎ and 

𝑅𝑒𝑐. The first property that we need is the correctness property, which demands that, if your 

subset 𝐵 is actually an authorised subset from the access structure, then the output 𝑠ᇱ should 

be same as 𝑠.  

 

It is like saying the following: If dealer has shared the secret as per the algorithm 𝑆ℎ, and later 

if an authorised subset 𝐵 combines or produce their shares; by combining their shares means, 

applying the 𝑅𝑒𝑐 algorithm. So, if they make their shares available to the 𝑅𝑒𝑐 algorithm, then 

they should be able to get back the secret. That means, it should not be the case that even an 

authorised subset fails to get back the secret. That should not be the case.  

 

So, more formally, for every secret 𝑠 from the secret space, if the sharing algorithm has 

generated the shares 𝑠ଵ to 𝑠௡; so, what is the interpretation of this notation? 𝑆ℎ(𝑠) gives the 

shares 𝑠ଵ to 𝑠௡. Since my sharing algorithm is a randomised algorithm, I am not using an 

assignment operator. I am not saying that output of 𝑆ℎ(𝑠) is equal to 𝑠ଵ to 𝑠௡, because this is 

again based on what we learnt in the previous course.  

 

If your algorithm is a randomised algorithm, then 𝑆ℎ(𝑠), namely the output of the sharing 

algorithm with the input 𝑠 may generate different shares. So, that is why, I am using this 

notation arrow. So, the correctness requirement says that, if the sharing algorithm for the secret 

𝑠 has generated 𝑠ଵ to 𝑠௡, then, for any authorised subset 𝐵, where the set 𝐵 consists of the 



parties 𝑃௜భ
, 𝑃௜మ

, … , 𝑃௜ೖ
, the output of the 𝑅𝑒𝑐 algorithm should be equal to 𝑠, namely, 𝑠ᇱ should 

be equal to 𝑠.  

 

And this should hold for every possible 𝐵 in your access structure. Now, let us try to understand 

the privacy condition which we need from the sharing algorithm. So, recall. We require 2 

properties. Authorised subsets, they should be able to get back the secret. Unauthorised subsets, 

they should not learn anything about the secret 𝑠. Now, what do we mean by learn nothing 

about the secret.  

 

So, remember, in the last course, we had seen that how difficult it is to formalise a very simple 

intuition that nothing should be learnt from your ciphertext. We formalized those simple 

looking intuition in terms of complex games and so on. So, what does it mean when I say that 

any unauthorised subset of parties learn nothing about 𝑠? Does that mean they should not learn 

anything about the magnitude of 𝑠, or does that mean they should not learn anything regarding 

the first bit of 𝑠, the last bit of 𝑠, or so on?  

 

So, intuitively, the way to interpret this privacy condition is that, whatever was the uncertainty 

about the underlying 𝑠, that this unauthorised subset of parties 𝐵 had prior to the execution of 

the sharing algorithm, that uncertainty should remain the same. What does that mean? So, 

imagine that the set 𝐵 consists of parties, say 𝑃ଵ and 𝑃ଶ. Before the sharing algorithm had been 

executed, they might have some kind of prior information regarding dealer's secret.  

 

Of course, they will be knowing that the secret is from the space fancy 𝒦. But they might have 

some other kind of prior knowledge as well. That, for instance, it could be the case that secret 

is 𝑠, secret is say this specific value or the secret is going to be this specific value and so on; 

any kind of prior information. That is the view of the parties in 𝐵, before the sharing algorithm.  

 

And after 𝑆ℎ, this collection of parties 𝐵, 𝑃ଵ, 𝑃ଶ would have the shares 𝑠ଵ and 𝑠ଶ. We want to 

formally capture that whatever they could learn from 𝑠ଵ, 𝑠ଶ, after the execution of the sharing 

algorithm, that they could have already known before the sharing algorithm would have been 

executed. That means, whatever was the uncertainty in the left-hand side case, the same 

uncertainty they have of about the secret 𝑠, even after learning 𝑠ଵ and 𝑠ଶ.  
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So, how do we formally state this requirement? The way to formally state this requirement is 

the following: We will say that the probability distribution of the shares of unauthorised subset 

of parties should be independent of the secret 𝑠. So, why I am bringing probability distribution? 

So, remember, I said that my sharing algorithm should be randomised. That means, the shares 

will take values depending upon what is the internal randomness used during the execution of 

the sharing algorithm.  

 

That means, the value of the share simply does not depend only on the secret 𝑠. Of course, it 

will depend with this. That means, the shares will be a function of both the secret as well as the 

internal randomness. And depending upon the value of the internal randomness, the shares will 

take different values with different probability. So, that is why, we cannot say that shares will; 

that means, I cannot say that, for the secret s, 𝑠ଵ can take only one specific value.  

 

𝑠ଵ could take multiple possible values from the share space, depending upon what is the internal 

randomness. Similarly, 𝑠ଶ cannot take a unique value corresponding to a fixed 𝑠. Even though 

you fix 𝑠, the second value of the share, namely, 𝑠ଶ can take different values depending upon 

what is the internal randomness. So, that is why, we have to now consider the probability 

distribution of the shares, rather than saying the values of the shares.  

 

Because, for the same secret, the shares can take different values depending upon the internal 

randomness. So, that is why, to formally capture this privacy requirement, we bring this 

function 𝑔஻ or this variable 𝑔஻. So, what is this variable 𝑔஻? So, imagine 𝐵 is a collection of 



parties, which is unauthorised. So, 𝑔஻(𝑠) is a random variable which denotes the shares 

corresponding to the parties in 𝐵, when the secret 𝑠 is shared by your sharing algorithm.  

 

So, again, if your 𝐵 is equal to, say 𝑃ଵ, 𝑃ଶ, then the shares learned by 𝑃ଵ and 𝑃ଶ are 𝑠ଵ and 𝑠ଶ. 

So, since I said that 𝑠ଵ and 𝑠ଶ can take different values for the same secret 𝑠, depending upon 

the internal randomness, 𝑠ଵ and 𝑠ଶ can have different values. So, I can denote, I can use a 

variable which denotes the values of, combined value of 𝑠ଵ and 𝑠ଶ. So, that random variable is 

my 𝑔஻(𝑠).  

 

If my 𝐵 would have been, say 𝑃ଶ and 𝑃ଷ, then my 𝑔஻(𝑠) will denote that what could be the 

possible values of the shares 𝑠ଶ, 𝑠ଷ, when the secret 𝑠 would have been shared by the sharing 

algorithm 𝑆ℎ. So, that is a random variable, 𝑔஻(𝑠). And in the same way, 𝑔஻(𝑠ᇱ) denotes the 

random variable; it denotes a variable which stands or which captures the shares of the parties 

in the unauthorised collection 𝐵, when the secret 𝑠ᇱ is shared.  

 

And again, as I said that if 𝑠ᇱ is shared, then it would not be the case that the values of the 

shares corresponding to the parties in 𝐵 will be the same shares. It will take different values 

depending upon internal randomness. So, that is why we bring a random variable 𝑔஻ for 𝑠ᇱ. So, 

now, the privacy condition is formally the following: We demand that for every possible pair 

of secrets 𝑠 and 𝑠ᇱ from the secret space, where 𝑠 and 𝑠ᇱ are different secrets, the probability 

distribution, so, this notation, {𝑔஻(𝑠)}, it denotes the probability distribution.  

 

Namely, the shares corresponding to the parties in 𝐵 when the secret 𝑠 would have been shared 

with whatever probability. And on your right-hand side, you have the probability distribution 

for the shares of the parties in 𝐵 corresponding to the secret 𝑠ᇱ. And this notation ≡ which 

looks like an equal symbol, it is not an equal symbol, it denotes equivalent. That means, we 

want here that, with whatever probability the shares of the parties in 𝐵 can occur for the secret 

𝑠, the same shares could occur with same probability even if the secret 𝑠ᇱ would have been 

shared.  

 

So, that means, if, say for instance, if I consider 𝐵 to be the parties 𝑃ଵ, 𝑃ଶ; and say, if they see 

the shares 𝑠ଵ = 2 and 𝑠ଶ = 3; I am just taking an abstract example. Then, with equal 

probability, this shares 𝑠ଵ = 2 and 𝑠ଶ = 3 could occur for the secret 𝑠. And with same 



probability, the share 𝑠ଵ = 2 and 𝑠ଶ = 3 should have occurred for the secret 𝑠ᇱ as well, if 𝑠 and 

𝑠ᇱ would have been independently secret shared by the algorithm 𝑆ℎ.  

 

If this property is ensured by your sharing algorithm, then this is equivalent to saying that, if 

the parties in 𝐵 see the value of their shares, then they cannot pinpoint or they cannot 

distinguish whether they are seeing the shares for the secret being 𝑠, or whether they are seeing 

the shares corresponding to the secret being 𝑠ᇱ. And hence, for them, it could be as if both 𝑠 or 

𝑠ᇱ would have been shared. And hence, they learn nothing about the underlying secret.  

(Refer Slide Time: 43:11) 

 

Now, let us focus on a special case of secret-sharing, which we call as threshold secret-sharing 

or 𝑡 out of 𝑛 secret-sharing. And here, 𝑡 will be a input parameter given to you. And this is a 

special kind of secret-sharing scheme where the access structure consists of all subsets of 𝑡 +

 1 or more parties. That means, your minimal authorised subsets will have cardinality 𝑡 +  1.  

 

And complimentarily you will have the forbidden structure where each maximal unauthorised 

subset will have cardinality 𝑡. Namely, any subset of 𝑡 or small number of parties should fail 

to learn the secret. So, if I take the case of 𝑛 =  4 and 𝑡 =  2, then it means that you have these 

subsets as the authorised subsets. So, subset 𝑃ଵ, 𝑃ଶ, 𝑃ଷ; 𝑃ଵ, 𝑃ଶ, 𝑃ସ; 𝑃ଶ, 𝑃ଷ, 𝑃ସ; and of course, if I 

include any additional party along with any 3 parties, that also constitute an authorised subset.  

But I would not be explicitly listing it out in my access structure. Because, in my access 

structure, remember, I focus only on the minimal authorised subset. And why we are interested 

in this 𝑡 out of 𝑛 secret-sharing? Because, looking ahead, we can design specialised efficient 

schemes which are tailor made only for this specific case of threshold setting.  



(Refer Slide Time: 45:05) 

 

So, with that I end today's lecture. There are plenty of references to understand the problem of 

secret-sharing. I used the textbook by Douglas Stinson as for the purpose of reference. Thank 

you. 


