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Hello everyone, welcome to this lecture. So, in this lecture we will see a very nice and beautiful 

protocol for oblivious transfer due to a Ishai et al. 

(Refer Slide Time: 00:41) 



 

So, just to quickly recall the goal of the oblivious transfer extension is the following. Suppose 

sender and receivers are going to be involved in polynomial of λ number of OT instances. We want 

to get the effect of those OT instances by just executing λ number of OT instances between Alice 

and Bob and performing some additional symmetric key operations. 
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So, the protocol that I am going to discuss today it is called as IKNP OT extension protocol. A 

very beautiful protocol published in this paper in CRYPTO 2003. And let us see the roadmap for 

doing the OT extension. To do the OT extension we will 1st let Alice and Bob participate in λ 

number of OT instances, where the inputs of the sender are going to be λ bits and now assuming 

that sender and receiver have executed λ number of OT instances with λ bit inputs. 



 

We will get the effect of λ number of OT instances but where the sender's inputs are now k bit 

long, where k is significantly large than λ. Namely, k is some polynomial function of your security 

parameter. And how do we go from here to here? We had already seen how to go from here to 

here, this is done through domain extension. We know that by running the domain extension 

technique which we had seen in the last lecture. 

 

It is possible to get the effect of λ number of OT instances where the sender's input is k weights 

which is significantly large than the security parameter by actually running the same number of 

OT instances but on shorter inputs. So, we know how to get this thing done. But this is not the goal 

of OT extension, we are still running λ number of OT instances, we want to get the effect of 

polynomial of λ number of OT instances. 

 

So, the actual OT extension protocol which is the transformation 2 is to take these λ number of OT 

instances with k bit inputs and transfer it or transfer in the sense transform it into the effect of k 

number of OT instances, where sender’s inputs are now l bit long. Of course l is going to be some 

polynomial function in your security parameter and now since k is also polynomial function of 

your security parameter. 

 

Now you can see that we have actually transformed λ number of OT instances into k number of 

OT instances, where the inputs are now l bit long strings, so that is a roadmap. One part of the 

whole transformation, namely transformation 1 we had already seen, the question is how do we 

get this done? So, now our focus for today's lecture will be on transformation number 2. 
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So, what is the goal of transformation number 2? We have sender and receiver, so we make Alice 

as the sender, Bob as the receiver. Alice has k pairs of messages, they may not be random 

messages, they are some private inputs, private messages held by Alice. And in each pair the 

message length is l bit. Here k is some polynomial function of your security parameter λ. And now 

for each pair Bob has a choice picked, so from the 1st pair he is interested to receive the message 

with index b 1 and like that from kth pair he is interested to receive the message with index bk. We 

want a protocol according to which Alice and Bob should interact. 

 

And finally depending upon the indices in his vector B, from each pair he gets the corresponding 

messages. So, from the 1st pair, he gets the message with index b 1 and like that from the kth pair 

he gets the message with index b k. But for every pair he does not learn anything about the other 

message that is what will be the sender security. Whereas the receiver security will be that Alice 

should be completely unaware about what message from each pair got transferred to Bob. Namely, 

she should not learn anything about this choice vector B that is what we want to ensure. 

 

Of course one way of doing this is that Alice and Bob run k number of OT instances, where for 

the 1st OT instance is used for the 1st pair, the 2nd OT instance is used for the 2nd pair and like 

that the kth OT instance is use used for the kth pair. We do not want to do that, we want to run 

only λ number of OT instances and still get this whole thing done. So, how this is done? Imagine 

for the moment that we have a magical mechanism to do the following. 



 

How exactly this magical mechanism is implemented? That is the whole crux of this 

transformation number 2 but for the moment let us first try to understand the requirements of this 

magical mechanism, what exactly we want to get done through this magical mechanism? In this 

mechanism, Bob is going to pick a random matrix of values. Let me call that a random matrix at 

matrix T, it is a matrix of size k cross λ, so it has key number of rows and λ number of columns. 

 

And Alice is going to pick a completely random vector of length λ bits, call it S. And somehow 

the magical mechanism allows the Alice and Bob to interact and get Alice matrix call it Q, which 

is also of same size as T. So, let me call the rows of Q as Q1, Q2, Qi, Qk. And how exactly the rows 

of this Q matrix is related to the rows of T matrix? Well, it is related depending upon the entries 

in Bob's choice vector, so remember Bob has a choice vector B. 

 

Now, let us see the relationship between Q 1 and T 1, if b 1 = 0, then Q 1 will be same as T 1. If b 1 

= 1, then q 1 will be T 1 blinded with S. And in the process Alice should not learn what exactly is 

the value of Q 1, namely she should not learn anything about the value of b 1. She will be receiving 

a row of length λ bits that is the Q 1, but whether it is T 1 or whether T 1 blinded with S, she should 

not learn. Similarly Q 2 will be either equal to T 2 or T 2 blinded with S depending upon whether b 

2 is 0 or 1. 

 

And in the same way Qk will be either Tk or Tk blinded with S depending upon whether the last 

choice bit bk is 0 or 1. That is what is the whole purpose of this magical mechanism, how exactly 

this is implemented? Forget about it. That is the whole crux of OT extension or transformation to 

which we are going to see next. But assume for the moment, it is possible for Alice and Bob to do 

this or to get this done. 

 

And Bob should not learn anything about S in the whole process that is also is important. So, Alice 

should not learn anything about the choice vector B. That means whether the rows of the matrix Q 

or the T rows or whether the T rows blinded with S whereas a corrupt Bob should not learn 

anything about S. That is what we want to ensure through this magical mechanism. Assume for 

the moment this is done, assume this is done. 



 

Now the question is how exactly we get the actual OT done? Remember, sender has to somehow 

send the k pair of messages to Bob and it should be done in such a way that for each pair Bob 

should get back only one of the messages depending upon his corresponding choice bit. And for 

doing that we want this interaction between Alice and Bob, so that Alice gets this Q vector. Now 

the idea here will be the following. 

 

To get the actual oblivious transfer done, Alice has to use somehow the ith row of Q and ith row 

of Q XORed or blinded with S, she has to use these 2 piece of information to transfer the 2 

messages in her ith pair. And that is why the number of rows in the matrix here is k because she 

has k pair of messages to transfer. For each pair of message she is going to use a row of the Q 

matrix and a same row blinded with S. 

 

And she has to use those 2 piece of data to send her messages for ith pair and it should be done in 

such a way that Bob should get back only the message with index b i for the ith pair by just using 

the ith row from his T matrix, that is a whole idea. So, based on whatever we have seen in the 

oblivious transfer protocols till now, you might be tempted to propose the following. That let Alice 

do the following, for each of a rows i ranging from 1 to k, encrypt the 0th message in ith pair using 

Q i. 

 

And encrypt the other message in the ith row using Q i XORed with S as the pattern. Now we 

know that Q i and Q i XORed with S, one of them is definitely T i, definitely we know this. Alice 

does not know whether it is Q i which is T i or whether it is Q i XORed with S which that is T i. 

Because she does not know the value of index b i but she knows that ok one of these entries, namely 

Q i and Q i XORed with S is T i. So, that is why she is tempting to encrypt the 0th message and the 

ith pair with Q i and the message with index 1 with the paired Q i XORed with S. 

 

And a hope is that Bob should be able to recover back the message with index b i in ith pair by 

unmasking T i because he has T i. And Alice will hope that since Bob does not have S, because 

Bob has not learned the value of S in the magical mechanism. He cannot figure out what is the 

message with index 1 - b i in the ith pair. Because that will require the knowledge of S and Alice 



will think that ok, Bob does not know S. So, you might be tempted to propose the following way 

of sending the messages from Alice to Bob. Assuming that this magical mechanism of 

communicating the rows of T in an obvious way to Alice has been done but there is a slight problem 

here. 
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Problem number 1 is the following. What are the length of the messages available with Alice? 

They are all l bit long. But what is the length of the rows of the Q matrix and the T matrix? They 

are only λ bit long. So, you have an incompatibility in the size. How can you mask l bit long string 

using a λ bit string? That is not possible. One way of getting around this problem is that ok, let 

Alice use a pseudorandom generator on the rows of Q and expand it to get a suitable pad and then 

do the actual masking of our messages and get it transferred to Bob, fine, that might solve your 

problem. 

 

But a bigger problem is this problem number 2, there is a huge security bug involved here. And 

the security bug that is involved here is the following that is because of the following. If you 

consider both the messages in the ith pair, they are actually masked using related pads; they are 

not completely independent pad. One of the messages is XORed with Q i, another message is Q i 

XORed with S and it is the same as which is used across all the pairs of Alice. 

 



If S would have been independent for each of the pairs of Alice, then again no problem but it is 

the same as which is used across all the pairs of messages which Alice wants to communicate to 

Bob. So, if you say for instance, take a case where Alice has just 2 pairs of messages and if it is 

the same as which is used and Alice uses the same as to transfer both pairs of our messages. Then 

a very simple attack which Bob can launch is the following. 

 

If we XORes the encryptions of the all the messages that he is receiving, then the effect of S and 

S will cancel out. And Bob might end up learning the XOR of all the messages of Alice, apart from 

of course the message that he is interested from each pair and that is a security breach here. So, 

that is why we might be tempted to use this idea of using the rows of the matrix Q to encrypt the 

messages available with Alice, doing it in the naive way will not work. 
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But we still want to retain this idea because once this magical mechanism is done, this obviously 

communicating the rows of T to Alice. Then almost we are done here, the only question is that 

how exactly the rows of Q can be used to mask the pair of messages which are available with 

Alice. And here we use a very nice technique; we use a hash function which we call a co-relation 

robust hash function. 

 

And his hash function takes a pair of inputs, the first entry is an index in the range 1 to k and the 

second entry is a λ bit string and it produces a string of length l bits. Why it is called co-relation 



robust hash function? By co-relation robust hash function, we mean that the joint probability 

distribution of this 2 k number of entries is pseudorandom from the viewpoint of a computationally 

bounded adversary or distinguisher. 

 

That means if I want to compare this distribution with another distribution, where the 1st k entries 

are random. So, the 1st k entries are T 1 to T k, which are the rows of this matrix T and they are 

picked uniformly at random. So, the rows T 1, T 2, T k they are all uniformly random λ bit strings. 

So, in the other distribution which I am considering here, the 1st k entries are also the rows of T, 

so they are uniformly random. 

 

But the last entries, last k entries they are also see random λ bit strings r 1, r 2, r k. By co-relation 

robust hash function I mean that if we consider a probabilistic polynomial time distinguisher who 

is either given a sample of type this where the 1st k entries are random and last k entries they are 

generated by running the hash function with respect to T 1 to T k and a fixed S, where the S is not 

fixed as are uniformly random S, but S is not known of course. 

 

Because if S is also given to the distinguisher then he can figure out whether he is seeing a sample 

of type this or a sample of type this, where all the 2 k entries are uniformly random. So, S is random 

and private and there is a polynomial time distinguisher who is either given a sample where all the 

2 k entries are uniformly random λ bit strings or he is given a sample of type half random and half 

generated by running the hash function but with respect to a random S which is not aware. 

 

Then by correlation robust hash function we mean that from the viewpoint of a probabilistic 

polynomial time distinguisher both these distributions are almost identical. He cannot figure out 

whether he is seeing a sample of type half random followed by other half generated by running the 

hash function or a sample where all the entries are uniformly picked at random. Now the question 

is how do we built this such correlation robust hash function. 

 

So, it turns out that if we assume a random oracle model then again people who have taken the 

course on foundations of cryptography. They know what do we mean by random oracle model? It 

is basically a strong model where we assume very strong properties from a hash function. Basically 



we assume that it is behaving like a uniformly random function and a interaction with the hash 

function is modeled through oracle queries. 

 

And then in that model we prove certain nice properties for the cryptography constructions which 

uses the hash function. So, if we assume random oracle model then we can take any hash function 

in the random oracle model and we can get this notion of co-relation robust hash function. But for 

practical instantiations you can take the so called secure hash functions that we are available with 

say the sha functions and so on. So, assuming such a co-relation robust hash function is available, 

here is how Alice is going to encrypt the messages using the rows of the matrix Q. 
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Suppose, we take the ith pair, in the ith pair, we have the messages with index 0 and index 1. For 

encrypting the message with index 0, she computes a pad by computing the output of the hash 

function on input pair i and Q i. And to encrypt the other message in the ith pair, she again computes 

a pad but now with input pair i and XOR of Q i and S. And that is how she encrypts all the pairs. 

 

And the idea here is that as we said earlier that Alice knows that one of the entries Q i are Q i 

XORed with S is going to be T i, which of them is T i? She does not know, Bob knows the T i, so 

he can unmask the ciphertext with index b i from the ith pair. But he cannot find out the other 

message because of this notion of co-relation robust hash function. So, that means, even if he is 

seeing the encryption of all the messages, where it is the same as which is used to prepare the pad 



unlike the previous mechanism, where it was directly the ith row and a ith row XORed with S 

which were used as pad and the same S was involved in all the encryptions. 

 

We are not directly using Q i and XOR of Q i and S to mask the messages. We are actually running 

the hash function to generate the pads and since the value of faces not known to Bob. Because 

during this magical interaction, which we are assuming to exist, we assumed that Bob does not 

know anything about S. And if he does not know anything about S, then the co-relation robust 

hash function assumption ensures that all the pads which are used by Alice. 

 

So, Alice has used these 2 k pads in some order, in what order? She has used these pats Alice is 

not aware because she is not aware of Bob's choice vector. But she has used the pads T 1 to T k and 

hash outputs of T 1 XORed with S, T 2 XORed with x, T k XORed with S in what order? We do 

not know. Now Bob will be knowing only the T 1 to T k components of this vector of pads but he 

cannot figure out anything about the remaining k components of the pats because of this co-relation 

robust hash function assumption. 

 

And hence he cannot unmask the remaining k messages that are held with Alice and that ensures 

roughly Alice’s security. So, now everything boils down to how exactly we get this magical 

mechanism done and that is what is the whole crux of your transformation number 2. 
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So, now we will focus our attention on this magical mechanism how exactly this matrix T gets 

obliviously transferred to Alice, without Alice learning anything about Bob's choice factor B? And 

Bob not does not learning anything about this uniformly random S which Alice has picked and 

this is done as follows. So, till now no oblivious transfer protocol has been involved. Assuming 

that magical mechanism has been done, the actual transfer of messages from Alice to Bob just 

involves computing pats by running the hash function and XORing the pats with the Alice 

messages and sending to Bob. 

 

So, you might be wondering where exactly oblivious transfer instances are involved, they are 

involved in this magical mechanism. So, as I said earlier, Bob picked this vector of random values, 

T, it has k rows and λ columns. I can interpret the same matrix T in terms of columns as follows. 

I can imagine that, let me call the 1st column of this T matrix as T1, let me call the ith column of 

this T matrix as T i and let me call the λth column as the column Tλ. 

 

So, I am just observing, I am just viewing the matrix T in terms of it is column, I am not computing 

the transpose of the matrix T, remember. I am just viewing the entries in T in terms of it is column, 

I am calling those columns as T1, Ti, Tλ. There will be λ such columns and the length of each 

column will be k. Now Alice and Bob are going to participate in λ number of OT instances. And 

it is the bob who is going to play the role of sender and Alice who is going to play the role of 

receiver.  

 

Now this might be confusing because our actual goal was to let Alice play the role of sender, she 

had k pair of messages and from each pair she wanted to communicate 1 message to Bob and Bob 

was the receiver. But for getting it done, we require this magical mechanism to be executed. And 

for this magical mechanism, it is the Bob who is going to play the role of sender and Alice who is 

going to play the receiver. 

 

Now let us see the inputs of Bob in these OT instances. In the 1st OT instance his messages are 

going to be the 1st column of this T matrix and the 1st column XORed with his choice vector B, 

both of them are k bit long. In the same way if I consider the ith instance, it is the 0th message for 



the ith instance which Bob is feeding is his ith column of the T matrix. And other message is the 

ith column XORed with his choice vector. 

 

And like that, if I consider the last OT instance these will be the inputs. And Alice will participate 

with the individual bits of the S vector as her choice bits. Now, based on the correctness property 

of the oblivious transfer protocol through each of the OT instance Alice is going to recover or 

receive the outputs Q1, Q2, Qi, Qλ. 

 

Now let me arrange them column wise and view the entire matrix of values as the matrix Q and 

my claim is that this magical mechanism has been achieved. That means, by doing this oblivious 

transfer instances Alice now has the Q matrix and a Q matrix indeed satisfies this property. So, let 

us analyze that. 
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Let us analyze whether indeed Alice got what we wanted to get her? So, the matrix which Alice 

got at her end consists of this λ columns, column number Q1, Qi, Qλ. And what can I say about the 

1st column that she has received, Q1? It is either the column T1 or it is the column T1 XORed with 

B depending upon what was the 1st choice bits in Bob’s choice vector B. 

 

So, I can say that Q1 is nothing but T1 XORed with S 1 times B. Sorry for the mistake I said it 

incorrectly, depending upon what is Alice choice bit S 1, she either gets the 1st column of T or the 



1st column of T XORed with Bob's choice vector B, that is the right statement. In the same way, 

if I focus on the last column that Alice received, it is either the last column of Bob's matrix T or 

the same column XORed with B provided the choice bit of Alice was 1. 

 

So, I can say that this relationship holds. So, this relationship I am taking out the XOR outside and 

I can say that the Q matrix which Alice received at her end is same as the T matrix of Bob XORed 

with this matrix. And now, what I am doing is, I am just reinterpreting the columns which Alice 

has received and viewing it in terms of rows. Again, I am not computing the transpose of the matrix 

Q, I am not making the columns as the row and so on. 

 

So, I am just focusing now the entries of the Q matrix in terms of it is row. So, I can say that the 

1st row is Q 1, the ith row is Q i and a kth row is Q k. And in the same way, I am now interpreting 

the Bob's matrix T in it is original form in terms of rows. And now what can I say about the 1st 

column here, S 1 times B? Remember, B is this whole choice vector, so S 1 times the choice vector 

B is going to be component wise S 1 times b 1, S 1 times b 2 and like that S 1 times b k, so that is 

what is S 1 times B. 

 

And like that, the last column here will be S λ times B, that is the relationship between the Q matrix 

and the T matrix. And now you focus on the ith row of the Q matrix which Alice has received. I 

can say that if b i would have been 0, then Q i would be same as T i otherwise it will be T i XORed 

with S. So, say for instance, if I take the say the 1st row of Q matrix, the 1st row of the Q matrix 

is Q 1, it is T 1 XORed with the 1st row here. 

 

By the first row here everywhere we have b 1 times something, so b 1 times S 1, b 1 times S 2, b 1 

times S i, b 1 times S λ. So, if b 1 would have been 0 then this whole 1st row would have become 

0, in which case Q 1 would have been T 1. If b 1 would have been equal to 1, then this 1st row 

would have been same as the vector S. And hence Q 1 would have been T 1 XORed with S and the 

same logic holds for the other rows as well. 

 

And then we can say that this is the property which holds with respect to the ith row and this is 

what precisely we wanted to do. We wanted to somehow transfer either the ith row of T or the ith 



row XORed with Alice vector S, without letting Alice know whether she got the ith row of T or 

the ith row XORed with S and that is what got transferred to Alice. And hence the magical 

mechanism has been achieved. Now of course we have to analyze the security of this magical 

mechanism, how much computation it involves and so on, which we are going to do in the next 

lecture. Thank you. 

 


