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Hello everyone, welcome to this lecture. So, till now our focus was on perfectly secure multi party 

computation or tolerating semi honest corruptions, where we assume that the corrupt parties are 

computationally unbounded. We will shift our focus to another line of research which is done in 

multi party computation, namely multi party computation protocols tolerating computationally 

bounded adversaries. So, in this lecture we will first see the motivation for doing that. 
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So, before we proceed, let us quickly summarize what exactly we have learned regarding perfectly 

secure multi party computation against passive corruptions. As part of a setup we require pair wise 

private channels. That means we require that between every pair of parties there should be a 

mechanism to do secure communication. And the mechanism should be such that even if there is 

a computationally unbounded adversary, it cannot figure out regarding the communication which 

is happening between any pair of honest participants. 

 

In terms of optimal resilience, we have proved that for general multi party computation if we are 

in the threshold setting then were adversary can corrupt up to 𝑡 parties. Then the optimal resilience 

𝑡 should be strictly less than 
𝑛

2
, whereas if we model the corruption via non threshold adversary in 

terms of an adversary structure then the necessary condition is that the set of parties should satisfy 

the 𝒬2 condition. 

 

Namely the union of any 2 potential corrupt subsets from the adversary structure should not cover 

the entire set of parties. And this 𝒬2 condition is a generalization of your 𝑡 <
𝑛

2
 condition. We have 

also seen that if we want to design protocols against computationally unbounded adversaries, then 

for the case of threshold setting we require a finite field because we use polynomials of degree 

𝑡 and those polynomials have to be over a field. 

 



But for the non threshold setting we can design circuits even over a ring. We can design protocols, 

evaluating circuits even over a ring. So, now a natural question is can these restrictions be removed 

assuming a PPT adversary? By PPT adversary we mean probabilistic polynomial time adversary. 

Namely an adversary whose computing power, who’s computing resources is upper bounded by 

some polynomial function in the underlying security parameter. 

 

So the question is that, can we get rid of this setup requirement namely the pair wise private 

channels and can we improve the resilience bound assuming that we want to now tolerate an 

adversary who is computationally bounded? 
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And interestingly, the answer is yes. So, let us focus on cryptographically secure MPC protocols. 

By cryptographically secure, I mean an adversary who can corrupt parties and where the corrupt 

parties running time resources is upper bounded by some polynomial function. The party is not 

allowed to do unbounded computing, unbounded exponential amount of computation and so on. 

So, if you focus on cryptographically secure MPC against passive corruptions, server focus will 

still be on passive corruptions. 

 

We are just weakening computing resources, the computing power of the adversary that is all. But 

the nature of corruption remains the same, namely passive corruption, where the corrupt parties 



will honestly follow the protocol instructions, but will try to infer additional information by 

analyzing the protocol transcripts which they are not supposed to do.  

 

Then in terms of setup requirement, we do not require the presence of pair wise private channels 

among parties. If we assume that there is a mechanism by which the parties can establish 

cryptographic keys, keys for encryption, decryption keys for authentication and so on, then we do 

not require the presence of pair wise dedicated channels or mechanisms for every pair of parties 

to do private communication. 

 

Because using these cryptographic keys they can encrypt messages and communicate publicly. In 

terms of optimal resilience, we will see that we can design MPC protocols against computationally 

bounded adversaries, where in the threshold setting, we can tolerate all but one corruption. Namely 

even if 𝑡 = 𝑛 − 1 that means if you have say 𝑛 = 100 participants and even if 99 participants are 

under the control of the adversary still we can achieve security if we assume computationally 

bounded adversary. 

 

And of course this is the best that you can hope for because if all the 𝑛 parties are corrupt and the 

whole purpose of designing MPC protocol is lost, so that is the best you can hope for. Whereas, 

for the non threshold setting, we can design protocols tolerating an adversary structure where the 

set of parties satisfy only the 𝒬1 condition it need not satisfy the 𝒬2 condition. 

 

And we can design protocols both for the threshold setting as well as in the non threshold setting 

for evaluating circuits which are designed over a ring. That means we can take computations which 

are performed over a ring and those computations can be performed securely using the 

cryptographically secure MPC protocols. 
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And more importantly, since we are considering the resilience 𝑡 < 𝑛 if we consider 𝑛 = 2 and 𝑡 =

1, then we get a special case of secure 2PC, secure 2 party computation which is a very practical 

case of cryptographically secure MPC protocol. Remember, in the information theoretic world 

where we want to achieve perfect security, we can never design a protocol for 2 participants 

tolerating one semi honest corruption; we have proved the impossibility of computing security and 

function. 

 

But we will now see that we can design protocols even to securely compute AND function for the 

2 party case tolerating one semi honest corruption. So, the secure 2PC is a very practical case of 

multi party computation because there are several real world problems which fall under this special 

case of secure 2 party computations. Namely all the problems where you have a scenario where 

you have a client and you have a server and they want to interact and perform some kind of secure 

computation, maintaining the privacy and security of their respective data automatically falls under 

this special case of secure 2PC. So, that is why there are plenty of motivations for studying 

cryptographically secure MPC, we can get better resilience. We do not require a strong setup 

among the parties if they have mechanisms to encrypt and authenticate and that is sufficient. We 

can evaluate circuits, we can perform secure computation for functions which are done over a ring 

and so on. 
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So, now let us see understand the problem definition, the problem setting, we are given a set of 𝑛 

mutually distrusting parties. For demonstration I am taking 𝑛 to be 4. And they are mutually 

distrusting, so that distrust in the system is again model by a centralized adversary who is 

computationally bounded. And it can corrupt a subset of parties in passive fashion or semi honest 

way. 

 

By passive means it can listen entire communication or entire messages to at those parties have 

received that those parties have sent, their input, their local randomness and so on. And again like 

we have done for the case of perfect security, we can have 2 types of corruptions, we can have 

threshold corruption, where the distrust is modeled by an adversary who can control any 𝑡 out of 

the 𝑛 parties. 

 

The exact identity of those 𝑡 parties will not be known but the parameter 𝑡 will be publicly available 

or we can consider a more general form of the adversary where the adversary is characterized by 

an adversary structure. And our goal is to design an MPC protocol according to which the parties 

should interact, exchanged messages and finally obtain the output of the function which is publicly 

known. 

 

And a function is an NRE function. As I said that a subset of the parties can be corrupted by the 

adversary. So, assume we take a threshold adversary and say the adversary corrupts party 3 and 4, 



then that will be the view of the adversary. The view of the adversary means the inputs and output 

of the corrupt parties, their local randomness and whatever messages they have sent and received 

in the protocol which is going to be a random variable. 

 

So, we require following 2 properties to be achieved by the MPC protocol. The first property is 

roughly the correctness property, where the requirement is that at the end of the protocol the parties 

should obtain the correct output except with some small error probability which we call as the 

negligible probability. So, what is a negligible probability? I refer you to the NPTEL course on 

foundations of cryptography where we have defined what we mean by a negligible function of the 

security parameter. 

 

And why are we now allowing a small error probability? Why do we not demand that the parties 

should output the correct output or obtain the correct output without any error? Because we are 

going to now use cryptographic tools and in the cryptographic tools there might be a small error 

probability which overall translates to the error probability in the correctness of the MPC protocol. 

 

This is unlike your perfectly secure MPC protocols where even the correctness was error free. 

There the requirement was that the honest parties should obtain the correct output, absolutely 

without any error. So, this is the correctness requirement. Then, we have the privacy requirement, 

where we demand that adversary should not learn anything additional other than what it can infer 

or what it can deduce from the corrupt parties inputs, their output. 

 

Because whatever can be deduced or inferred from the corrupt parties’ input and the function 

output that we can never prevent from getting leaked because that is the inherent nature of the 

function itself. We require that, apart from that nothing additional should be revealed about the 

honest parties input based on the interaction that the adversary or the corrupt parties have during 

the MPC protocol. But this is a very loose statement; we know how to make it more rigorous, more 

formal. 
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 The privacy condition is basically formalized by saying that whatever view the adversary or the 

corrupt parties generate by participating in the MPC protocol, the adversary can recreate, 

regenerate or simulate the same view even without talking with honest parties. Namely, just based 

on the corrupt parties’, inputs and the function output the adversary can simulate whatever 

conversation he could have with honest parties. 

 

And more formally, we require the existence of a simulator and algorithm, a probabilistic 

algorithm, which when given the inputs of the corrupt parties and a function output, can reproduce 

a view without even talking to the honest parties and without even knowing the inputs of the honest 

parties such that the simulated view has the same probability distribution as the real view of the 

corrupt parties. So, in the case of perfect security, the requirement was that the simulated view 

should be identically distributed as the real view of the adversary. 

 

But now since we are considering a cryptographically secure MPC protocol where the adversary 

is polynomial time bounded, the requirement will be that the simulated view should be 

computationally indistinguishable from the real view of the adversary. Again, what do we mean 

by computationally indistinguishable? That means that there exist no poly time adversary or 

algorithm which can distinguish a sample picked from the real view from a sample picked from 

the simulated view, both are almost identical. 

 



So, if we can show the existence of such a simulator, then that basically establishes that whatever 

this adversary could obtain by interacting with the honest parties, whatever it could learn the 

messages, it could sit back at home and reproduce the same messages. Not the same messages, but 

the messages with have that same probability distribution just by sitting at home and without even 

talking to the honest parties. That is precisely as the simulation strategy. 
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So, as I said earlier that when we design cryptographically secure MPC protocol, we do not need 

any pair wise private channels because the parties have pre shared cryptographic keys. So, assume 

that we have 4 parties and suppose there is a mechanism by which a setup has been done, where 

each party has a pair of encryption key and decryption key. Suppose someone has done this setup 

and this will be like a onetime setup because the same cryptographic setup, and the same set of 

keys can be used for multiple instances of the MPC protocol. 

 

Say the public keys are available in the public domain of the individual parties. Now if this set up 

is available, then whenever in the MPC protocol a party is supposed to send a message to another 

party - say 𝑃1 is supposed to send some message to 𝑃3 then for the case of perfectly secure MPC. 

 

The assumption was that there is a mechanism by which 𝑃1 can send that message in a perfectly 

secure way to 𝑃3. And that assumption was abstracted by saying that, ok, there is a dedicated 



channel between 𝑃1 and 𝑃3 which no one can tamper. But now, since we are in the cryptographic 

setting, encryption and decryption keys have been set up. 

 

We do not need such strong setup assumptions because whatever message 𝑚 𝑃1 is supposed to 

encrypt, 𝑃1 is supposed to send to 𝑃3 as part of the MPC protocol, it can encrypt the share 𝑚 or the 

message 𝑚 using the public key of 𝑃3 and send to 𝑃3. That ensures that even if that encrypted 𝑚 

is being transmitted publicly, the privacy or the security of the encryption scheme will ensure that 

nothing about 𝑚 is revealed. And when 𝑃3 receives the encrypted 𝑚 since it has the decryption 

key; it can perform the decryption and recover back the MPC messages which 𝑃1 is supposed to 

send to 𝑃3. 

 

So, in this demonstration I have assumed a public key encryption mechanism but it could also be 

a private key encryption mechanism. So, instead of assuming that each party has it is own public 

key, encryption key and decryption key. We can assume that every pair of party has a dedicated 

symmetric key an AES keys say for instance. And whatever messages are supposed to be 

communicated between those 2 parties, say between 𝑃𝑖 and 𝑃𝑗, whatever messages are supposed 

to be communicated. 

 

They all can be encrypted say using the key 𝑘𝑖𝑗 which is a symmetric key already established as 

part of a setup between 𝑃𝑖 and 𝑃𝑗. So, this setup of pre shared cryptography keys is definitely a 

very, very weak setup. Weak setup in the sense to do such a setup we do not require expensive 

computation or expensive resources. But to ensure that parties have a mechanism to do perfectly 

secure communication, we need to spend more resources. 

 

Moreover we also want to ensure that the MPC messages between the parties are exchanged in an 

authenticated way. That means whenever 𝑃3 receives a message from 𝑃1, how does it believe that 

indeed it is coming from 𝑃1? Why cannot it be the case that 𝑃4 has injected those messages on the 

behalf of 𝑃1 and forwarded to 𝑃3? That is an authentication problem. So, again assuming that we 

have pre shared cryptographic keys, if you want to achieve authentication also, while 

communicating the MPC messages, we can use message authentication codes or signature 

schemes. 



(Refer Slide Time: 20:38) 

 

So, now how do we go about designing cryptographically secure MPC protocols? The approach 

will remain the same; we will try to design generic MPC protocols. And when we do generic MPC 

protocols we have to assume that your underlying function which the parties securely want to 

compute is abstracted by a circuit. So, that circuit could be over a ring, over a finite field, over any 

algebraic structure. 

 

So, let us try to understand the approach of shared circuit evaluation in the context of cryptographic 

setting. And for explanation purpose, I consider a threshold adversary, namely I will assume that 

𝑡 < 𝑛, where the value of 𝑡 is publicly known and any subset of 𝑡 parties could get corrupt during 

the circuit evaluation. Now, recall the case of circuit evaluation and with perfect security. 

 

There the goal was that during the circuit evaluation each value at the time of circuit evaluation 

right from input value all the way to the output value should be kind of hidden away. That if any 

subset of 𝑡 parties try to combine their view, then they learned nothing about the exact values of 

the computation during the circuit evaluation. So, the principle remains the same. The circuit 

evaluation even in the cryptographically secure MPC protocol has to be done in such a way that 

each value during the computation should be hidden in such a way that if the set of subset of 𝑡 

parties which are corrupt, try to combine their view of their respective circuit evaluation then they 

learn nothing about the underlying values. Now, there are 3 approaches to maintain this principle 



of shared circuit evaluation in the cryptographic setting. So, let us discuss those 3 approaches and 

we will touch upon these 3 approaches in the rest of the course. 

 

So, the first approach is what you are already familiar with namely the secret sharing approach, 

where it will be ensured that each value during the shared circuit evaluation is secret shared with 

threshold 𝑡. The advantage of this approach is that in terms of computation, it is very efficient 

because to compute the shares, we do not need to perform heavy cryptographic operations and the 

share size will be very, very small. 

 

So, in terms of communication also we do not have to do too much of communication. But in terms 

of interactions, it will require a number of rounds of interaction proportional to the multiplicative 

depth of your circuit 𝐷𝑀. And that is why the cryptographically secure MPC protocols based on 

secret sharing approach is suitable for low bandwidth networks, what do I mean by low bandwidth 

networks? 

 

Networks where a parties cannot afford to communicate too much with each other, because the 

bandwidth among the parties is very less. So, if you are trying to design an MPC protocol for such 

a setting then definitely the secret sharing approach is recommended. Because when the parties 

interact, they do not send too large messages, they send very small messages and that will suit the 

low bandwidth networks. 

 

But since the number of interactions is proportional to the multiplicative depth of the circuit, that 

means every time we encounter a new multiplication layer in the circuit, the parties have to interact. 

So, this secret sharing approach is not recommended if the latency in the network is high. That 

means if it takes enormous amount of time, for the messages to reach from one end to another end 

or you assume that you have 2 parties who are kind of geographically very, very isolated and 

network between those 2 parties as a very high latency. 

 

Then definitely every time they would like to interact whenever they encounter a multiplication 

gate it MPC protocol will take enormous amount of time. So, you have a trade off here, if you 

want to save on bandwidth, go for a secret sharing approach but the price that you have to pay is 



that you have to interact a lot. Then there is another nice beautiful approach for this shared circuit 

evaluation maintaining this philosophy that during the shared circuit evaluation, each value 

remains hidden in such a way. 

 

So, by the way I have used the term hidden, I have not used a term shared because sharing the 

values is one way of ensuring that the value is hidden. But there could be other ways of hiding the 

value, namely encryption and so on. So, this Garbled circuit approach, it also ensures that each 

value during the circuit evaluation remains hidden in such a way that the view of the subset of 𝑡 

corrupt parties does not reveal any information about the exact values during the circuit evaluation. 

 

However, compared to the secret sharing approach it has both pros as well as cons. So, the 

downside is, it requires heavy computation and communication to be performed while evaluating 

the circuit. Because it performs huge cryptographic operations and enormous amount of 

communication happens when the parties interact. But the most striking feature of this approach 

is that it requires constant number of rounds. 

 

It does not matter what some multiplicative depth of your circuit, it could be million, it could be 

billion, it requires only a fixed round of interaction among the parties. That is the most striking 

feature of this Garbled circuit approach. And now you can immediately come to the following 

conclusion, that since it requires only a fixed set rounds of interaction, that means the parties need 

to interact only fixed number of times irrespective of how big, how deep is their circuit which they 

are trying to securely evaluate. 

 

Then definitely this approach, this Garbled circuit approach is recommended for the high latency 

network. Namely, where the parties are geographically very, very isolated and it takes enormous 

amount of time for the messages to go from one end to another end. And definitely we will prefer 

a protocol for such a setting where the parties are not supposed to interact too much and definitely 

a Garbled circuit approach is the right approach. 

 

But then you have to ensure that the bandwidth among the parties is sufficiently good. So, that is 

why you have tradeoff between the secret sharing approach and the Garbled circuit approach. 



There is a third approach based on public key encryption, specifically the threshold public key 

encryption. So, what is a threshold public key encryption scheme? It is like the usual public key 

encryption scheme where the encryption key of a party will be available in the public domain, 

anyone can pick that public key and encrypt the message and send it to the party. 

 

But now instead of having one decryption key, so encryption key will be available in the public 

domain. But we have say 𝑛 parties in the system, the decryption key, let me call it 𝑠𝑘 will not be 

available with any single entity, but rather each entity will have a piece of share for the secret key 

or the decryption key. Now the property of these pieces are the shares for the decryption keys such 

that if you are given an encryption of the message 𝑚. 

 

Anyone can encrypt, because encryption key will be available in the public domain and say 𝑐 is a 

ciphertext which needs to be decrypted. The threshold encryption scheme will ensure that no single 

party can decrypt 𝑐. It is only when 𝑡 + 1 or more number of parties individually decrypt the 

ciphertext c using their respective shares of the decryption key and then they combine the partial 

decryptions they can recover back the plain text. 

 

So, what I am saying here is, that if  𝑃1 alone tries to decrypt 𝑐 using his piece of information 𝑠𝑘1, 

it will obtain a share of the decryption call it 𝑐1. And like that 𝑐𝑖 we have our share of the 

decryption, call it 𝑐𝑖 and 𝑃𝑛 will have a share of the decryption call it 𝑐𝑛. Now, if only 𝑡 + 1 or 

more number of this partial decryptions come together or made available, then only we can recover 

back the message 𝑚. 

 

But if only 𝑡 or less number of partial decryptions are available, we cannot decrypt back the 

ciphertext 𝑐 to get the message 𝑚, so that is what is the threshold public encryption scheme. So, 

again coming back to the circuit evaluation principle for the cryptographically secure MPC 

protocol, we can ensure that the parties evaluate the circuit jointly where each value during the 

computation remains encrypted as per a threshold encryption scheme. 

 

And if we try to evaluate circuit using this approach, then since it is an instantiation of a public 

key encryption scheme, the parties have to perform heavy operations, heavy means 



computationally heavy operations. And depending upon what kind of encryption scheme we are 

using, if we are using just ordinary plain homomorphic encryption scheme, then every time the 

parties encounter a layer of multiplication, the parties have to interact. 

 

That is why the number of rounds of interaction will be proportional to the multiplicative depth of 

the circuit, if we are using a regular homomorphic encryption scheme. But interestingly, if we have 

a fully homomorphic encryption scheme or threshold fully homomorphic encryption scheme then 

parties do not need to interact for every multiplication layer, they have to interact only for a fixed 

number of rounds. Now what is a fully homomorphic encryption scheme? 

 

It is a form of public key encryption scheme which allows you to perform operations on the 

ciphertext which gives you an equivalent result of the same operation or some operation over the 

underlying plaintext. So, what do I mean by that? So, imagine that you have encrypted a message 

𝑚1, you means say one of the parties has encrypted the message 𝑚1 and 𝑐1 is the ciphertext. And 

this encryption is done using a fully homomorphic encryption scheme. 

 

And say 𝑐2 is an encryption using the same public key for another message say done by another 

party 𝑚2. Now when I say it is a fully homomorphic encryption scheme, what it means is the 

following. Say we want to add 𝑚1 and 𝑚2 without knowing 𝑚1 and 𝑚2 or without decrypting 𝑚1 

and 𝑚2. Then there is some operation which the parties can perform over the ciphertext or the 

encryptions of 𝑚1 and 𝑚2, say denoted by this special symbol, this operation will be publicly 

known. 

 

So, if the parties do perform this operation over the ciphertext 𝑐1 and 𝑐2, then that will give them 

some ciphertext, they call it 𝑐3. And the 𝑐3 will be an encryption of 𝑚1 + 𝑚2. Whereas say the 

parties want to multiply the plaintext 𝑚1 and 𝑚2 without decrypting 𝑐1 and 𝑐2. Then there will be 

some operation publicly available which the parties can perform on the encryptions of 𝑚1 and 𝑚2. 

 

And that will produce a ciphertext say call it 𝑐4, which will be an encryption of 𝑚1 ⋅ 𝑚2, so that is 

why it is called fully homomorphic encryption. That means without even knowing the underlying 

messages, underlying plain text, you can perform some operations on the ciphertext which will 



give you the same result as if addition of the 2 plaintext have been encrypted or the product of 2 

plaintext have been encrypted and so on and now if you know how to do addition and 

multiplication homomorphically. 

 

You can now imagine that, if you take any computation, that computation can be split in terms of 

a sequence of plus and multiplication. And once all the inputs of the function are encrypted using 

a fully homomorphic encryption scheme. Then after that the parties do not need to interact at all, 

they can just locally keep on performing the homomorphic operation on the encrypted data. And 

then they will obtain the result of the computation in an encrypted fashion. 

 

And if we are using a threshold fully homomorphic encryption scheme, once the result of the 

computation is available in an encrypted fashion, the parties can partially decrypt them. When they 

interact and 𝑡 + 1 or more number of partial decryptions are made available, parties can obtain the 

function output. So, depending upon whether we are using homomorphic encryption scheme or a 

fully homomorphic encryption scheme, either we require constant number of rounds or number of 

rounds which is proportional to the multiplicative depth of the circuit. 

 

But in general this approach is computationally expensive because we are performing heavy public 

key operations. So, with that I end this lecture, just to summarize we started discussing in today's 

lecture regarding cryptographically secure MPC. We discussed what the motivation for 

cryptographically secure MPC is and what the various approaches for performing the shared circuit 

evaluation are. Thank you. 


