
Secure Computation: Part I

Prof. Ashish Choudhury

Department of Computer Science Engineering

Indian Institute of Technology-Bengaluru

Lecture-35

Towards Cryptographically-secure MPC

(Refer Slide Time: 00:32)

Hello everyone, welcome to this lecture. So, till now our focus was on perfectly secure multi party

computation or tolerating semi honest corruptions, where we assume that the corrupt parties are

computationally unbounded. We will shift our focus to another line of research which is done in

multi party computation, namely multi party computation protocols tolerating computationally

bounded adversaries. So, in this lecture we will first see the motivation for doing that.

(Refer Slide Time: 01:09)

So, before we proceed, let us quickly summarize what exactly we have learned regarding perfectly

secure multi party computation against passive corruptions. As part of a setup we require pair wise

private channels. That means we require that between every pair of parties there should be a

mechanism to do secure communication. And the mechanism should be such that even if there is

a computationally unbounded adversary, it cannot figure out regarding the communication which

is happening between any pair of honest participants.

In terms of optimal resilience, we have proved that for general multi party computation if we are

in the threshold setting then were adversary can corrupt up to 𝑡 parties. Then the optimal resilience

𝑡 should be strictly less than
𝑛

2
, whereas if we model the corruption via non threshold adversary in

terms of an adversary structure then the necessary condition is that the set of parties should satisfy

the 𝒬2 condition.

Namely the union of any 2 potential corrupt subsets from the adversary structure should not cover

the entire set of parties. And this 𝒬2 condition is a generalization of your 𝑡 <
𝑛

2
 condition. We have

also seen that if we want to design protocols against computationally unbounded adversaries, then

for the case of threshold setting we require a finite field because we use polynomials of degree

𝑡 and those polynomials have to be over a field.

But for the non threshold setting we can design circuits even over a ring. We can design protocols,

evaluating circuits even over a ring. So, now a natural question is can these restrictions be removed

assuming a PPT adversary? By PPT adversary we mean probabilistic polynomial time adversary.

Namely an adversary whose computing power, who’s computing resources is upper bounded by

some polynomial function in the underlying security parameter.

So the question is that, can we get rid of this setup requirement namely the pair wise private

channels and can we improve the resilience bound assuming that we want to now tolerate an

adversary who is computationally bounded?

(Refer Slide Time: 04:08)

And interestingly, the answer is yes. So, let us focus on cryptographically secure MPC protocols.

By cryptographically secure, I mean an adversary who can corrupt parties and where the corrupt

parties running time resources is upper bounded by some polynomial function. The party is not

allowed to do unbounded computing, unbounded exponential amount of computation and so on.

So, if you focus on cryptographically secure MPC against passive corruptions, server focus will

still be on passive corruptions.

We are just weakening computing resources, the computing power of the adversary that is all. But

the nature of corruption remains the same, namely passive corruption, where the corrupt parties

will honestly follow the protocol instructions, but will try to infer additional information by

analyzing the protocol transcripts which they are not supposed to do.

Then in terms of setup requirement, we do not require the presence of pair wise private channels

among parties. If we assume that there is a mechanism by which the parties can establish

cryptographic keys, keys for encryption, decryption keys for authentication and so on, then we do

not require the presence of pair wise dedicated channels or mechanisms for every pair of parties

to do private communication.

Because using these cryptographic keys they can encrypt messages and communicate publicly. In

terms of optimal resilience, we will see that we can design MPC protocols against computationally

bounded adversaries, where in the threshold setting, we can tolerate all but one corruption. Namely

even if 𝑡 = 𝑛 − 1 that means if you have say 𝑛 = 100 participants and even if 99 participants are

under the control of the adversary still we can achieve security if we assume computationally

bounded adversary.

And of course this is the best that you can hope for because if all the 𝑛 parties are corrupt and the

whole purpose of designing MPC protocol is lost, so that is the best you can hope for. Whereas,

for the non threshold setting, we can design protocols tolerating an adversary structure where the

set of parties satisfy only the 𝒬1 condition it need not satisfy the 𝒬2 condition.

And we can design protocols both for the threshold setting as well as in the non threshold setting

for evaluating circuits which are designed over a ring. That means we can take computations which

are performed over a ring and those computations can be performed securely using the

cryptographically secure MPC protocols.

(Refer Slide Time: 07:12)

And more importantly, since we are considering the resilience 𝑡 < 𝑛 if we consider 𝑛 = 2 and 𝑡 =

1, then we get a special case of secure 2PC, secure 2 party computation which is a very practical

case of cryptographically secure MPC protocol. Remember, in the information theoretic world

where we want to achieve perfect security, we can never design a protocol for 2 participants

tolerating one semi honest corruption; we have proved the impossibility of computing security and

function.

But we will now see that we can design protocols even to securely compute AND function for the

2 party case tolerating one semi honest corruption. So, the secure 2PC is a very practical case of

multi party computation because there are several real world problems which fall under this special

case of secure 2 party computations. Namely all the problems where you have a scenario where

you have a client and you have a server and they want to interact and perform some kind of secure

computation, maintaining the privacy and security of their respective data automatically falls under

this special case of secure 2PC. So, that is why there are plenty of motivations for studying

cryptographically secure MPC, we can get better resilience. We do not require a strong setup

among the parties if they have mechanisms to encrypt and authenticate and that is sufficient. We

can evaluate circuits, we can perform secure computation for functions which are done over a ring

and so on.

(Refer Slide Time: 09:08)

So, now let us see understand the problem definition, the problem setting, we are given a set of 𝑛

mutually distrusting parties. For demonstration I am taking 𝑛 to be 4. And they are mutually

distrusting, so that distrust in the system is again model by a centralized adversary who is

computationally bounded. And it can corrupt a subset of parties in passive fashion or semi honest

way.

By passive means it can listen entire communication or entire messages to at those parties have

received that those parties have sent, their input, their local randomness and so on. And again like

we have done for the case of perfect security, we can have 2 types of corruptions, we can have

threshold corruption, where the distrust is modeled by an adversary who can control any 𝑡 out of

the 𝑛 parties.

The exact identity of those 𝑡 parties will not be known but the parameter 𝑡 will be publicly available

or we can consider a more general form of the adversary where the adversary is characterized by

an adversary structure. And our goal is to design an MPC protocol according to which the parties

should interact, exchanged messages and finally obtain the output of the function which is publicly

known.

And a function is an NRE function. As I said that a subset of the parties can be corrupted by the

adversary. So, assume we take a threshold adversary and say the adversary corrupts party 3 and 4,

then that will be the view of the adversary. The view of the adversary means the inputs and output

of the corrupt parties, their local randomness and whatever messages they have sent and received

in the protocol which is going to be a random variable.

So, we require following 2 properties to be achieved by the MPC protocol. The first property is

roughly the correctness property, where the requirement is that at the end of the protocol the parties

should obtain the correct output except with some small error probability which we call as the

negligible probability. So, what is a negligible probability? I refer you to the NPTEL course on

foundations of cryptography where we have defined what we mean by a negligible function of the

security parameter.

And why are we now allowing a small error probability? Why do we not demand that the parties

should output the correct output or obtain the correct output without any error? Because we are

going to now use cryptographic tools and in the cryptographic tools there might be a small error

probability which overall translates to the error probability in the correctness of the MPC protocol.

This is unlike your perfectly secure MPC protocols where even the correctness was error free.

There the requirement was that the honest parties should obtain the correct output, absolutely

without any error. So, this is the correctness requirement. Then, we have the privacy requirement,

where we demand that adversary should not learn anything additional other than what it can infer

or what it can deduce from the corrupt parties inputs, their output.

Because whatever can be deduced or inferred from the corrupt parties’ input and the function

output that we can never prevent from getting leaked because that is the inherent nature of the

function itself. We require that, apart from that nothing additional should be revealed about the

honest parties input based on the interaction that the adversary or the corrupt parties have during

the MPC protocol. But this is a very loose statement; we know how to make it more rigorous, more

formal.

(Refer Slide Time: 13:19)

 The privacy condition is basically formalized by saying that whatever view the adversary or the

corrupt parties generate by participating in the MPC protocol, the adversary can recreate,

regenerate or simulate the same view even without talking with honest parties. Namely, just based

on the corrupt parties’, inputs and the function output the adversary can simulate whatever

conversation he could have with honest parties.

And more formally, we require the existence of a simulator and algorithm, a probabilistic

algorithm, which when given the inputs of the corrupt parties and a function output, can reproduce

a view without even talking to the honest parties and without even knowing the inputs of the honest

parties such that the simulated view has the same probability distribution as the real view of the

corrupt parties. So, in the case of perfect security, the requirement was that the simulated view

should be identically distributed as the real view of the adversary.

But now since we are considering a cryptographically secure MPC protocol where the adversary

is polynomial time bounded, the requirement will be that the simulated view should be

computationally indistinguishable from the real view of the adversary. Again, what do we mean

by computationally indistinguishable? That means that there exist no poly time adversary or

algorithm which can distinguish a sample picked from the real view from a sample picked from

the simulated view, both are almost identical.

So, if we can show the existence of such a simulator, then that basically establishes that whatever

this adversary could obtain by interacting with the honest parties, whatever it could learn the

messages, it could sit back at home and reproduce the same messages. Not the same messages, but

the messages with have that same probability distribution just by sitting at home and without even

talking to the honest parties. That is precisely as the simulation strategy.

(Refer Slide Time: 15:49)

So, as I said earlier that when we design cryptographically secure MPC protocol, we do not need

any pair wise private channels because the parties have pre shared cryptographic keys. So, assume

that we have 4 parties and suppose there is a mechanism by which a setup has been done, where

each party has a pair of encryption key and decryption key. Suppose someone has done this setup

and this will be like a onetime setup because the same cryptographic setup, and the same set of

keys can be used for multiple instances of the MPC protocol.

Say the public keys are available in the public domain of the individual parties. Now if this set up

is available, then whenever in the MPC protocol a party is supposed to send a message to another

party - say 𝑃1 is supposed to send some message to 𝑃3 then for the case of perfectly secure MPC.

The assumption was that there is a mechanism by which 𝑃1 can send that message in a perfectly

secure way to 𝑃3. And that assumption was abstracted by saying that, ok, there is a dedicated

channel between 𝑃1 and 𝑃3 which no one can tamper. But now, since we are in the cryptographic

setting, encryption and decryption keys have been set up.

We do not need such strong setup assumptions because whatever message 𝑚 𝑃1 is supposed to

encrypt, 𝑃1 is supposed to send to 𝑃3 as part of the MPC protocol, it can encrypt the share 𝑚 or the

message 𝑚 using the public key of 𝑃3 and send to 𝑃3. That ensures that even if that encrypted 𝑚

is being transmitted publicly, the privacy or the security of the encryption scheme will ensure that

nothing about 𝑚 is revealed. And when 𝑃3 receives the encrypted 𝑚 since it has the decryption

key; it can perform the decryption and recover back the MPC messages which 𝑃1 is supposed to

send to 𝑃3.

So, in this demonstration I have assumed a public key encryption mechanism but it could also be

a private key encryption mechanism. So, instead of assuming that each party has it is own public

key, encryption key and decryption key. We can assume that every pair of party has a dedicated

symmetric key an AES keys say for instance. And whatever messages are supposed to be

communicated between those 2 parties, say between 𝑃𝑖 and 𝑃𝑗, whatever messages are supposed

to be communicated.

They all can be encrypted say using the key 𝑘𝑖𝑗 which is a symmetric key already established as

part of a setup between 𝑃𝑖 and 𝑃𝑗. So, this setup of pre shared cryptography keys is definitely a

very, very weak setup. Weak setup in the sense to do such a setup we do not require expensive

computation or expensive resources. But to ensure that parties have a mechanism to do perfectly

secure communication, we need to spend more resources.

Moreover we also want to ensure that the MPC messages between the parties are exchanged in an

authenticated way. That means whenever 𝑃3 receives a message from 𝑃1, how does it believe that

indeed it is coming from 𝑃1? Why cannot it be the case that 𝑃4 has injected those messages on the

behalf of 𝑃1 and forwarded to 𝑃3? That is an authentication problem. So, again assuming that we

have pre shared cryptographic keys, if you want to achieve authentication also, while

communicating the MPC messages, we can use message authentication codes or signature

schemes.

(Refer Slide Time: 20:38)

So, now how do we go about designing cryptographically secure MPC protocols? The approach

will remain the same; we will try to design generic MPC protocols. And when we do generic MPC

protocols we have to assume that your underlying function which the parties securely want to

compute is abstracted by a circuit. So, that circuit could be over a ring, over a finite field, over any

algebraic structure.

So, let us try to understand the approach of shared circuit evaluation in the context of cryptographic

setting. And for explanation purpose, I consider a threshold adversary, namely I will assume that

𝑡 < 𝑛, where the value of 𝑡 is publicly known and any subset of 𝑡 parties could get corrupt during

the circuit evaluation. Now, recall the case of circuit evaluation and with perfect security.

There the goal was that during the circuit evaluation each value at the time of circuit evaluation

right from input value all the way to the output value should be kind of hidden away. That if any

subset of 𝑡 parties try to combine their view, then they learned nothing about the exact values of

the computation during the circuit evaluation. So, the principle remains the same. The circuit

evaluation even in the cryptographically secure MPC protocol has to be done in such a way that

each value during the computation should be hidden in such a way that if the set of subset of 𝑡

parties which are corrupt, try to combine their view of their respective circuit evaluation then they

learn nothing about the underlying values. Now, there are 3 approaches to maintain this principle

of shared circuit evaluation in the cryptographic setting. So, let us discuss those 3 approaches and

we will touch upon these 3 approaches in the rest of the course.

So, the first approach is what you are already familiar with namely the secret sharing approach,

where it will be ensured that each value during the shared circuit evaluation is secret shared with

threshold 𝑡. The advantage of this approach is that in terms of computation, it is very efficient

because to compute the shares, we do not need to perform heavy cryptographic operations and the

share size will be very, very small.

So, in terms of communication also we do not have to do too much of communication. But in terms

of interactions, it will require a number of rounds of interaction proportional to the multiplicative

depth of your circuit 𝐷𝑀. And that is why the cryptographically secure MPC protocols based on

secret sharing approach is suitable for low bandwidth networks, what do I mean by low bandwidth

networks?

Networks where a parties cannot afford to communicate too much with each other, because the

bandwidth among the parties is very less. So, if you are trying to design an MPC protocol for such

a setting then definitely the secret sharing approach is recommended. Because when the parties

interact, they do not send too large messages, they send very small messages and that will suit the

low bandwidth networks.

But since the number of interactions is proportional to the multiplicative depth of the circuit, that

means every time we encounter a new multiplication layer in the circuit, the parties have to interact.

So, this secret sharing approach is not recommended if the latency in the network is high. That

means if it takes enormous amount of time, for the messages to reach from one end to another end

or you assume that you have 2 parties who are kind of geographically very, very isolated and

network between those 2 parties as a very high latency.

Then definitely every time they would like to interact whenever they encounter a multiplication

gate it MPC protocol will take enormous amount of time. So, you have a trade off here, if you

want to save on bandwidth, go for a secret sharing approach but the price that you have to pay is

that you have to interact a lot. Then there is another nice beautiful approach for this shared circuit

evaluation maintaining this philosophy that during the shared circuit evaluation, each value

remains hidden in such a way.

So, by the way I have used the term hidden, I have not used a term shared because sharing the

values is one way of ensuring that the value is hidden. But there could be other ways of hiding the

value, namely encryption and so on. So, this Garbled circuit approach, it also ensures that each

value during the circuit evaluation remains hidden in such a way that the view of the subset of 𝑡

corrupt parties does not reveal any information about the exact values during the circuit evaluation.

However, compared to the secret sharing approach it has both pros as well as cons. So, the

downside is, it requires heavy computation and communication to be performed while evaluating

the circuit. Because it performs huge cryptographic operations and enormous amount of

communication happens when the parties interact. But the most striking feature of this approach

is that it requires constant number of rounds.

It does not matter what some multiplicative depth of your circuit, it could be million, it could be

billion, it requires only a fixed round of interaction among the parties. That is the most striking

feature of this Garbled circuit approach. And now you can immediately come to the following

conclusion, that since it requires only a fixed set rounds of interaction, that means the parties need

to interact only fixed number of times irrespective of how big, how deep is their circuit which they

are trying to securely evaluate.

Then definitely this approach, this Garbled circuit approach is recommended for the high latency

network. Namely, where the parties are geographically very, very isolated and it takes enormous

amount of time for the messages to go from one end to another end. And definitely we will prefer

a protocol for such a setting where the parties are not supposed to interact too much and definitely

a Garbled circuit approach is the right approach.

But then you have to ensure that the bandwidth among the parties is sufficiently good. So, that is

why you have tradeoff between the secret sharing approach and the Garbled circuit approach.

There is a third approach based on public key encryption, specifically the threshold public key

encryption. So, what is a threshold public key encryption scheme? It is like the usual public key

encryption scheme where the encryption key of a party will be available in the public domain,

anyone can pick that public key and encrypt the message and send it to the party.

But now instead of having one decryption key, so encryption key will be available in the public

domain. But we have say 𝑛 parties in the system, the decryption key, let me call it 𝑠𝑘 will not be

available with any single entity, but rather each entity will have a piece of share for the secret key

or the decryption key. Now the property of these pieces are the shares for the decryption keys such

that if you are given an encryption of the message 𝑚.

Anyone can encrypt, because encryption key will be available in the public domain and say 𝑐 is a

ciphertext which needs to be decrypted. The threshold encryption scheme will ensure that no single

party can decrypt 𝑐. It is only when 𝑡 + 1 or more number of parties individually decrypt the

ciphertext c using their respective shares of the decryption key and then they combine the partial

decryptions they can recover back the plain text.

So, what I am saying here is, that if 𝑃1 alone tries to decrypt 𝑐 using his piece of information 𝑠𝑘1,

it will obtain a share of the decryption call it 𝑐1. And like that 𝑐𝑖 we have our share of the

decryption, call it 𝑐𝑖 and 𝑃𝑛 will have a share of the decryption call it 𝑐𝑛. Now, if only 𝑡 + 1 or

more number of this partial decryptions come together or made available, then only we can recover

back the message 𝑚.

But if only 𝑡 or less number of partial decryptions are available, we cannot decrypt back the

ciphertext 𝑐 to get the message 𝑚, so that is what is the threshold public encryption scheme. So,

again coming back to the circuit evaluation principle for the cryptographically secure MPC

protocol, we can ensure that the parties evaluate the circuit jointly where each value during the

computation remains encrypted as per a threshold encryption scheme.

And if we try to evaluate circuit using this approach, then since it is an instantiation of a public

key encryption scheme, the parties have to perform heavy operations, heavy means

computationally heavy operations. And depending upon what kind of encryption scheme we are

using, if we are using just ordinary plain homomorphic encryption scheme, then every time the

parties encounter a layer of multiplication, the parties have to interact.

That is why the number of rounds of interaction will be proportional to the multiplicative depth of

the circuit, if we are using a regular homomorphic encryption scheme. But interestingly, if we have

a fully homomorphic encryption scheme or threshold fully homomorphic encryption scheme then

parties do not need to interact for every multiplication layer, they have to interact only for a fixed

number of rounds. Now what is a fully homomorphic encryption scheme?

It is a form of public key encryption scheme which allows you to perform operations on the

ciphertext which gives you an equivalent result of the same operation or some operation over the

underlying plaintext. So, what do I mean by that? So, imagine that you have encrypted a message

𝑚1, you means say one of the parties has encrypted the message 𝑚1 and 𝑐1 is the ciphertext. And

this encryption is done using a fully homomorphic encryption scheme.

And say 𝑐2 is an encryption using the same public key for another message say done by another

party 𝑚2. Now when I say it is a fully homomorphic encryption scheme, what it means is the

following. Say we want to add 𝑚1 and 𝑚2 without knowing 𝑚1 and 𝑚2 or without decrypting 𝑚1

and 𝑚2. Then there is some operation which the parties can perform over the ciphertext or the

encryptions of 𝑚1 and 𝑚2, say denoted by this special symbol, this operation will be publicly

known.

So, if the parties do perform this operation over the ciphertext 𝑐1 and 𝑐2, then that will give them

some ciphertext, they call it 𝑐3. And the 𝑐3 will be an encryption of 𝑚1 + 𝑚2. Whereas say the

parties want to multiply the plaintext 𝑚1 and 𝑚2 without decrypting 𝑐1 and 𝑐2. Then there will be

some operation publicly available which the parties can perform on the encryptions of 𝑚1 and 𝑚2.

And that will produce a ciphertext say call it 𝑐4, which will be an encryption of 𝑚1 ⋅ 𝑚2, so that is

why it is called fully homomorphic encryption. That means without even knowing the underlying

messages, underlying plain text, you can perform some operations on the ciphertext which will

give you the same result as if addition of the 2 plaintext have been encrypted or the product of 2

plaintext have been encrypted and so on and now if you know how to do addition and

multiplication homomorphically.

You can now imagine that, if you take any computation, that computation can be split in terms of

a sequence of plus and multiplication. And once all the inputs of the function are encrypted using

a fully homomorphic encryption scheme. Then after that the parties do not need to interact at all,

they can just locally keep on performing the homomorphic operation on the encrypted data. And

then they will obtain the result of the computation in an encrypted fashion.

And if we are using a threshold fully homomorphic encryption scheme, once the result of the

computation is available in an encrypted fashion, the parties can partially decrypt them. When they

interact and 𝑡 + 1 or more number of partial decryptions are made available, parties can obtain the

function output. So, depending upon whether we are using homomorphic encryption scheme or a

fully homomorphic encryption scheme, either we require constant number of rounds or number of

rounds which is proportional to the multiplicative depth of the circuit.

But in general this approach is computationally expensive because we are performing heavy public

key operations. So, with that I end this lecture, just to summarize we started discussing in today's

lecture regarding cryptographically secure MPC. We discussed what the motivation for

cryptographically secure MPC is and what the various approaches for performing the shared circuit

evaluation are. Thank you.

