
Secure Computation: Part 1
Prof. Ashish Choudhury

Department of Computer Science
Indian Institute of Science – Bengaluru

Lecture – 32

Perfectly Secure 3PC Continued

Hello everyone. Welcome to this lecture.

(Refer Slide Time: 00:31)

So, in this lecture we will continue our discussion on the efficient perfectly secure 3PC

computation 3 party computation with one corruption and the focus of this lecture will be how to

do the shared evaluation of multiplication gate in the pre processing model and then we see that

how to generate that pre processing data.

(Refer Slide Time: 00:57)

So, just to quickly recap in the last lecture we saw that if we are in a scenario where the inputs of

a multiplication gate RSS format and we want the multiplication gate output also to be available

in RSS secret shared fashion and in the process do not want to reveal any information about x and

y and along with that we also want to minimize the communication. So, the protocol that we

proposed in the last lecture was the following.

We ask each party to basically compute summation of three of the summands in this expansion of

x and y. So, P 1 can find out the summation of three of the summands call it Z 1 P 2 computes

summation of three of the summands call it Z 2 and P 3 computes the summation of three of the

summands call it Z 3 and we thought that okay now we know the summation of Z 1, Z 2, Z 3 is x

times y why not let the parties just communicate the missing piece to other party to ensure that x

times y is secret shared in a replicated secret shared fashion.

But in the last lecture we saw that this leaks information about the inputs of the multiplication gate.

So, for instance if P 2 is corrupt then we can no longer say that its view is independent of x and y

because now it is learning an information about y 1 and x 1 and the rectification for this problem is

that somehow we have to ensure that each P i should randomize z i before sending it to the neighbor.

So, P 1 should randomize z 1 and change it to some other value before sending it to P 3 so that if P3

is corrupt it does not learn anything additional about x or y. In parallely P 3 when sending Z 3

should change it, should add some randomness and make it some other value such that a corrupt P

2 does not learn anything and similarly when P 2 is sending to P 1 it should randomize Z 2 so that a

potentially corrupt P 1 does not learn anything about xy and such that in this whole process we do

not require any other communication.

(Refer Slide Time: 03:29)

Well, let us see how that magic can happen and for that we will assume that the parties have some

pre processing data. So, in the last lecture we already saw that if you want to secret share some

value the dealer need some pre processing data to be generated in a pre processing phase and now

for the multiplication gate also we will see that if some pre processing data is available.

Then the parties can very simply evaluate the multiplication gate in the RSS shared format and it

turns out that the pre processing data that we require for the multiplication gate is precisely similar

what we require for making the actual sharing protocol faster. Namely we require random zero

sharing that means if there is a multiplication gate which needs to be secret shared whose inputs

are x and y.

We will assume that in the pre processing phase a random zero sharing has been already generated,

how it will be done we will see it later, but we will assume that one such random zero sharing has

been already generated that means if in your actual circuit you have million of multiplication gates

then in the pre processing gate the random zero sharing should have been generated million number

of times.

So, we will see how exactly that pre processing happens, but for the moment assume that such a

pre processing data is available. Now what the parties can do is the following. We already have

identified three terms here Z 1, Z 2, Z 3 we know that x times y is the summation of Z1, Z2 and Z3

we already know this. Now what can I say about the summation of Z 1, Z 2, Z 3 and 𝛼1, 𝛼2, 𝛼3 well

that will be same as x dot y.

Because 𝛼1, 𝛼2, 𝛼3 has the property that as a sum it produces the value 0. Now in this new

summation the term Z 1 + 𝛼1 can be computed by P 1 Z 2 + 𝛼2 can be computed by P 2 and Z 3 + 𝛼3

can be computed by P 3 and now Z 1 + 𝛼1 is now a random piece of information for anyone who

gets it because 𝛼1 would not be known to that party.

And that precisely what I meant by randomization. So, what P 1 will do is P 1 will now add 𝛼1 to

the earlier Z 1 and let me still call Z 1. Similarly, P 3 will add 𝛼3 to her earlier 𝛼 Z 3 and call the

resultant value as Z 3 only and similarly the Z 2 is now changed to this value and now whatever we

proposed earlier let P 1 communicate Z 1 to P 3, P 3 communicate Z 3 to P 2 and P 2 communicate

Z 2 to P 1 let it happen.

And now it is easy to see that the new Z 1, new Z 2 and the new Z 3 they sum up to x times y only

and indeed P 1 has these two pieces, P 2 has these two pieces and P 3 has the first and the third

piece. So, x dot y is available in a replicated secret shared fashion. Now, let us try to understanding

that whether the privacy of x dot y x and y is preserved now in this new process.

Again let us take the same scenario say P 2 is corrupt earlier it was receiving Z 2 without this 𝛼2

and that is why this problem was occurring. It was receiving Z 3 without this 𝛼3 and that is why it

was learning something about y 1 and x 1, but now in the new thing if 𝛼3 is also summed up and

given to him. So, it is like P 2 is seeing an OTP encryption of this value where the pad is 𝛼3.

And 𝛼3 is not known to P 2 because even though P 2 knows what is 𝛼2 it does not know what is 𝛼1,

it does not know what is 𝛼3. These are unknowns for him. Even though it knows that they sum up

to 0. So, it could be any 𝛼3 which has been used by P 3 such that corresponding to that 𝛼3 there

would have been an 𝛼1 which along with the 𝛼2 which is held by P 2 would have produced the

value 0 that means view 2 is now completely independent of x and y and hence it can be easily

simulated by any simulator.

So, that ensures the privacy of x and y in this new process and now you see that this method is so

efficient when you want to evaluate the multiplication gate each party just needs to send one ring

element and that too only to one party. This is unlike your GRR degree reduction or Beaver's

circuit randomization method where for evaluating each multiplication gates two values needs to

be publically reconstructed namely the masking of the gate inputs of the multiplication gates have

to be publically reconstructed.

And then you apply the Beaver's linear function to get the multiplication gate output in the secret

shared fashion. Here, we do not need to publically reconstruct any value just do a local

randomization of your summation of summands and sent it to one of your neighbors that is all. It

is such a simple protocol and that is why it is very, very efficient method. Now as it is the case for

any pre processing based protocol if you want any security not just any perfect security for the

purpose of security for every multiplication gate an independent and randomly chosen additive

sharing of 0 has to be used from the pre processing phase.

So, if you have L number of multiplication gate you need to have L number of independent random

1, 3 additive secret sharing of 0, y 1, 3 secret sharing of 0 because even though the value 0 is

known to be shared by the parties or the corrupt parties the bad party will have either 𝛼1 or 𝛼2 or

𝛼3 namely one of the 𝛼 values. It would not be knowing the remaining two 𝛼 values.

So, to reconstruct the full vector of 𝛼 values we need the collaboration of 2 parties so that is why

1, 3 additive sharing of 0. So, that is a way we can perform the shared evaluation of multiplication

gates assuming we have a pre processing data. So, now the question is how exactly we generate

the pre processing data. By the way before proceeding further the process of this shared evaluation

of multiplication gate where each party adds an 𝛼components to the summation of its summands

it can be compared with the GRR degree reduction method where the parties once they obtain 2t

sharing of x dot y or non random 2t sharing of x dot y converts it into a random 2t sharing of x dot

y.

And how they convert it into a random 2t sharing of x dot y? We ask each party to just add a share

of 0 where the vector of zero shares lie shares lie on a random 2t degree polynomial. So, we have

done the same thing here x dot y is the summation of old Z 1, Z 2, Z 3 now we just add 𝛼1, 𝛼2, 𝛼3

here component wise the shared value remains the same because 𝛼1, 𝛼2, 𝛼3 adds up to 0.

So, you can compare the idea that we have used here with that degree reduction method used in

the GRR degree reduction.

(Refer Slide Time: 11:58)

So, now we have to focus on the pre processing phase. Our goal is to generate many number of

additive sharing of 0 independent of each other. So, imagine it is basically we need to generate

shared values like this. So, we have L shared values here. So, let us focus on the ith vector here.

So, what is the property of the ith vector? The property of the ith vector here is that they are random

elements from the ring such that they sum up to 0.

And we have to generate this data structure this system of values in such a way that if one of the

parties is corrupt then it only learns about its only own 𝛼value or any share of the 0. It does not

learn anything additional about the shares of the 0 that held by the remaining 2 parties. Of course,

it will know that along with his own share the summation of the shares of the remaining 2 parties

will sum up to 0 that much information is allowed to (()) (13:12).

Other than that during the generation of this system of values no additional information should be

revealed. So, for instance, if P 1 is corrupt it will have access its view will consist of all the first

components here in all the vectors, but from its viewpoint remaining two components of each two

vectors could be any two values which along with his own components sum up to 0.

So, that is a privacy requirement while generating this system of values. So, now let us see how

we can generate one such vector of values the same process can be done, can be executed in parallel

L number of times if you want to generate L number of such random sharing of 0. So, again each

party picks three random values locally let me call them as β values.

So, P 1 picks β 1, P 2 picks β 2 and P 3 picks β 3. You can imagine that they are doing this process

L times because finally their goal is to generate L number of values randomly. Now, what I can

say about this summation β 1 – β 2 + β 2 – β 3 + β 3 – β 1 all of them when summed up gives you

the value 0 and we basically want to generate a secret sharing of 0 and that is what is the protocol

based on this idea.

The protocol is based on this idea so now what P 2 does is whatever value it has generated it sends

to P 1 whatever value P 1 has generated it sends to P 3 and whatever value P 3 has generated it sends

to P 2. So, again the same circular order of communication is followed. So, remember in all the

protocols that we have seen for this 3PC computation based on replicated secret sharing we

maintained this very nice invariant that wherever the communication is required a party has to

send message only to one of its neighbor.

It could be either the right neighbor or the left neighbor. So, depending upon in what order means

it could be based on clockwise ordering or anti-clockwise ordering. I am following the anti-

clockwise ordering, but it is up to you. The parties can decide what ordering to follow and that

they will communicate according to that ordering. So, now once the parties exchange these values

we can set the 𝛼 values to be the following.

P 1 can set his 𝛼 component to whatever β value it has picked and whatever β value it has received

difference of those two values. P 3 will set his 𝛼 component to be whatever β component he has

randomly picked and whatever β component he has received the difference of those two values

and same for P 2 and now it is easy to see that 𝛼1, 𝛼2, 𝛼3 sums up to 0 and again let us see whether

the privacy properties that we required is satisfied or not.

So, imagine if this P 1 is corrupt and whatever I am discussing here holds for the case when any of

the remaining 2 parties gets corrupt that means if P 2 gets corrupt and then also the same argument

holds and so on. So, if P 1 gets corrupt then of course it will know 𝛼1 and of course it will know

since it knows β 1 and it is receiving β 2 it knows two of the β values, but it would not be knowing

the third β value because that is picked by the third party and third party is not under the adversary’s

control.

So, that means if adversary is corrupt adversary in this case is P 1 then the only thing which it

learns is the following that the summation of the remaining two 𝛼 components is actually minus

of his own 𝛼 component, but that much information is anyhow allowed to be revealed from each

of the vectors of 𝛼 values which we want to generate. Apart from that no other additional

information is revealed in this process of generating 𝛼1, 𝛼2 and 𝛼3.

And that is why the view of the adversary will be independent of the inputs of the honest parties

and that shows that a pre processing here is so simple we do not have to do any degree reduction

nothing of that sort and this is unlike your Beaver's circuit randomization method where to generate

the multiplication triples we have to run more complex protocols based on randomness extraction,

degree reduction polynomials extrapolation, interpolation and so on.

Here we do not need to do anything parties just pick up random values and just send those random

values to one of those neighbors, respective neighbors and that is all. So, that means if you want

to generate the pre processing data L number of times it will require only one round because I have

generated here only one random additive sharing of 0, but to generate L number of random additive

sharing of 0 the same process can be executed L number of times.

That means P 1 has to pick L number of β values and send to P 3 in parallel P 3 has to pick L

number of β values randomly and send it to P 2 and so on. So, it will be only one round of

communication and the total number of communication will be (()) (19:13) ring elements.

(Refer Slide Time: 19:21)

So, now you have all the building blocks to get the full MPC protocol for the 3 party setting. I am

not going to into the full details of the 3 party protocol because now you know how to secret share

the inputs, you know how to reconstruct secret shared output, you know how to do the pre

processing, you know how to do the evaluation of the linear gates and you know how to do the

evaluation of the multiplication gates.

By stitching all these components together we now know how to perform the shared circuit

evaluation. So, I am not giving the full protocol for the shared circuit evaluation its privacy proof

all those things are now easy to come up with because we have seen component wise the privacy

of each protocol is preserved. So, what I want do here is I want to summarize the multiplication

process here.

So, this is the way we do the multiplication so if there is one multiplication gate then the pre

processing phase a setup has to be generated namely a random sharing of 0 with threshold one and

assuming that setup is there than in the gate evaluation when the actual inputs of the multiplication

gates are available in a replicated secret shared fashion then the parties can just locally first

compute the summands that they are supposed to compute and randomize it and send it to the

designated neighbor.

So, that means in the pre processing phase we require 3 ring elements to be communicated and

actually at the time of gate evaluation again 3 ring elements have to be communicated. Now the

question is can we further improve this communication and that will be the focus of our next

lecture.

(Refer Slide Time: 21:14)

So, today’s lecture is again based on the same paper which we have followed in the last lecture.

Thank you.

