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Hello everyone. Welcome to this lecture.  
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So, in this lecture we will see an MPC protocol tolerating non threshold adversaries where it will 

be ensured that the Q2 condition is satisfied that means you will be given an adversary structure 

with respect to which the set of parties satisfies the Q2 condition.  
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So, we will assume that we are given a function f over some algebraic structure and algebraic 

structure in this case it is sufficient even if it is a ring. So, unlike the protocols in the threshold 

setting where you require the underlying function to be a function over a field we do not require 

the circuit to be or the function to be over a field. It is sufficient even if the function is over a ring. 

 

That means in terms of algebraic structures also designing MPC protocols against non threshold 

adversaries provides you better flexibility in terms of the adversary structure here and following 

the blueprint of shared secured evaluation which we have seen in the threshold setting we assume 

that the function which the parties want to securely compute is abstracted by a publically known 

circuit over this ring which will have your input gates. 

 

And then you will have non-linear gates, you will have multiplication by public constant and then 

you have the final output. Again without loss of generality we will assume that each party has a 

single ring element as the input for the function, there is a single function output to be publically 

learned by everyone and a function is the deterministic function. Again all this are without loss of 

generality. 

 

And the idea behind the MPC protocol since it is a generic MPC protocol is actually to do the 

shared circuit evaluation. Namely, we will start with the input gates and we will ensure that all the 



respective inputs of the parties they are secret shared randomly then the results of the intermediate 

computation namely the values I1, I2, I3 they would not be available and clear. 

 

And somehow it will be ensured that starting with secured shared gate inputs the parties obtain 

secret shared gate outputs where the gate outputs are secret shared randomly and once we have the 

function output available in a secret shared fashion the parties go and publically reconstruct. So, 

the same blueprint what we have followed for the threshold setting intuitively the privacy of the 

entire computation is ensured because each value in the computation right from the input stage all 

the way to the output stage or output gate are available in a secret shared fashion. 

 

And they will be secret shared in such a way that even if adversary controls a subset of parties 

from the adversary structure the shares learned by the corrupt parties will be independent of the 

actual shared value, but now we have to use secret sharing schemes against the non threshold 

adversary because we are now modeling the corruption capability of the adversary by an adversary 

structure which is publically given.  

 

So, we can use any secret sharing scheme which is linear, but we will follow the linear secret 

sharing scheme due to Ito et al.  
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So, let us quickly recap the secret sharing of Ito et al and the idea they are was the following. You 

do the secret sharing in such a way that or you split your secret into so many pieces and distribute 

the pieces in such a way that it is ensured that for every potential subset from the adversary 

structure there is at least one piece which is random from the view point of that subset of parties 

and that subset of parties is missing that piece. 

 

That means that piece could be any element from your underlying algebraic structure which will 

ensure that any subset of parties from the adversary structure fails to find out what exactly is the 

underlying value which is secret shared. So, how this is ensured again for demonstration assume 

that this is the adversary structure given to you and what we do here is this adversary structure 

does not satisfy the Q2 condition that is fine because I am now just demonstrating the secret sharing 

scheme by Ito. 

 

The secret sharing scheme of Ito requires the Q1 condition to be satisfied so just for the sake of 

recap I am demonstrating with this particular adversary structure, but when we will be designing 

the MPC protocol we will be instantiating the secret sharing scheme of Ito et al assuming that the 

adversary structure satisfies the Q2 condition. So, what exactly is the way to do the secret sharing 

here? 

 

We list down the subsets in our adversary structure and remember the adversary structure is 

monotone namely it is the collection of maximal forbidden subsets that means any subsets of those 

subsets any proper subset of those subsets are also by default elements of the adversary structure, 

but they are not explicitly listed down and now with respect to this forbidden set, maximal 

forbidden sets we can find out the corresponding complementary sets. 

 

So, g1 is equal to the set of parties minus the first potential forbidden set and in general gi is equal 

to the set of parties and from that I subtract the ith potential forbidden set and so on. Now, the 

dealer who want to secret shares its value it will know the details of the forbidden sets, it will know 

the details of the complementary sets so it will know how many complementary sets are there.  

 



In this example there are three complimentary sets, but if assume there are k such complementary 

sets if your adversary structure has k subsets. So, what the dealer does is the following. It generates 

three random shares of the secret such that the sum of those three pieces is the secret s that ensures 

the randomization in the secret sharing that means every time dealer wants to secret share the same 

input s. 

 

It will be picking s1, s2, s3 independently it would not be picking the same s1, s2, s3 again and again 

and now once it has picked s1, s2, s3 the piece s1 is given to all the members of group g1 over the 

secured channel, the piece s2 is given to all the members of the group g2 over the secret channels 

and the piece s3 is given to all the members in the group g3. 

 

Now, what will be the overall share for each party? The overall share for each party will be all the 

pieces that party obtains based on how many groups it is present in. So, for instance, this first party 

P1 it is present only in the group g2 so that is why its overall share is only the piece s2. The second 

party 2 is a member of only g3 so that is why its share has only one element. 

 

The third party is a member of only the group g 1 that is why its share is only one element from 

the ring and the fourth party is present in two groups g1 and g2 that is why its overall share is s4. 

The privacy property it is easy to see here or argue here if you take any subset from the adversary 

structure that means if it is say the set T1 or T2 or T3 which gets under the control of the adversary. 

 

Then corresponding to that subset there is some piece si so if the subset Ti gets corrupt by the 

adversary then corresponding to that there is a missing piece si and then since the missing piece si 

is a random element it could be any element from the ring and hence it could be the case that any 

value from the underlying ring has been secret shared by the dealer that is intuitively the privacy 

argument. 

 

Now for correctness if you want to reconstruct back the secret what we can do is the following. 

There are several ways to do that in the context of MPC protocol imagine there is a value s which 

has been secret shared in this form namely the members in g1 has the piece s1, the members in the 



group g2 has the piece s2 and the members in g3 has the piece s3 and there is a requirement that the 

secret has to be publically reconstructed. 

 

If it is supposed to be publically reconstructed then we need s1, s2 and s3 and then we can add them 

and get back the secret s. How we can get s1? Well we can ask any member from g1 not both the 

members because g1 might have more than one member. So, we can ask any member from g1 ask 

in the sense it can be designated as part of the protocol itself that okay if g1 has these members.  

 

Say, for instance, focus on the least indexed party and that least indexed party is supposed to make 

s1 public that could be the protocol code. Similarly, the least indexed party in g2 is supposed to 

make s2 public, the least indexed party in g3 is suppose to make s3 public and so on. If this is the 

protocol code then s1, s2, s3 will be made public and then once they are made public these pieces 

can be added and the secret s can be reconstructed back. 

 

So, that could be the reconstruction protocol. So, this very nice secret sharing scheme just based 

on set theoretic properties satisfies both the privacy condition as well as the correctness condition.  
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So, now we will see some nice properties of secret sharing scheme due to Ito et al. So, let us first 

introduce the definition here. I will say that a value s from the ring is additively shared with respect 

to the given adversary structure gamma if the following holds. Assume that your adversary 



structure gamma has subsets B1, B2 up to Bk I will say that the value s is additively shared with 

respect to gamma. 

 

If there exist k pieces s1 to sk from the ring such that their summation is equal to s and all the parties 

in the group gi where the group gi is defined to be the difference of the ith potential that subset 

from the set of parties. So, all the parties in the group gi should hold the value si. If this arrangement 

has been done I will say that a value s is additively shared with respect to your adversary structure.  

 

It is like saying the following for the threshold setting we continuously use the term that a value is 

Shamir secret shared by that we meant that there is some t degree polynomial whose constant term 

is that secret and every party Pi has the value of that polynomial at 𝛼i. If that arrangement has been 

done then we use the term that the value is Shamir secret shared. I am just trying to use similar 

term. 

 

But now since we are going to use the secret sharing scheme of Ito et al our nomenclature for 

secret sharing or the semantic of the secret sharing will be different. Our semantic of the additive 

secret sharing is the value is called secret shared if every member in gi has a piece si and if we sum 

all the pieces s1 to sk namely from the group g1 take the piece s1, from the group g2 take the piece 

s2 from the gk take the piece sk. The summation of those key pieces should be equal to s.  

 

If that distribution of information has been done then we will say that value s is additively secret 

shared. Now it turns out that this scheme of Ito et al satisfies the linearity property and if it satisfies 

the linearity property then it turns out that parties can non interactively compute shares of linear 

functions of a secret shared inputs or secret shared values. So, let me demonstrate that assume this 

is the adversary structure. 

 

And in this adversary structure you are given three subsets, three potential subsets they are 

maximal forbidden subsets and with respect to each subsets I have computed the corresponding 

group g1, g2, g3. So, imagine a value s is secret shared as per additive secret sharing with respect 

to this adversary structure that means for s you have three pieces s1, s2, s3 all the members in g1 

has s1, all the members in g2 has s2, all the members in g3 has s3. 



 

And similarly you have another value s’ which is additively shared that means you have three 

pieces s1’, s2’, s3’ all the members in g1 have s1’, all the members in g2 have s2’ and all the members 

in g3 have s3’ and say c, d are public constants from the ring R it is known to everyone. Now, if 

the parties non interactively compute the following. 

 

That means each member in g1 computes this value, each member in g2 computes this value, each 

member in g3 computes this value and they can compute this value non interactively, it does not 

require any interaction then altogether this vector of three values now can be treated as the shares 

for the value c times s plus d times s’ as per additive secret sharing that is what I mean by the 

linearity property here. 

 

It does not require any interaction among the members of g1, g2 or among the members of g1, g3 

and so on to compute a secret sharing of c times s plus d times s’. It can be done completely in the 

non-interactive way. However, again the bottleneck is the non linearity property here. We face 

similar issue for the case of Shamir secret share as well. Shamir secret sharing it allows to compute 

linear functions of secret shared inputs. 

 

That means if the inputs are secret shared then every party can compute their respective shares of 

the output as well by applying the linear function on the shares of the input, but when it comes to 

the non-linear gates we saw that we have to solve the degree reduction problem and so on. In the 

same way for the case of Ito et al the scheme by Ito et al the schemes satisfies the linearity property 

nice linearity property, but it does not have the non linearity property. 

 

So, for instance, if s is secret shared and s’ is secret shared then s times s’ can be written like this 

and if I expand s times s’ then that expansion will have several summands here, in this example it 

has 9 summands. Now, if at all we want s times s’ to be available in a additive secret shared fashion 

we would require the members of g1 to hold something.  

 

We would require the members of g2 to hold something and we would require the members of g3 

to hold something such that collectively if we add them we should get back the value s times s’. 



The members in g1 they can compute this value fine because they have both s1 as well as s1’. The 

members in g2 could compute s2 times s2’, the members in g3 could compute s3 times s3’, but what 

about the other terms?  

 

We cannot say that add these three things and it gives you s times s’ that is not the case you have 

other cross terms like s1 times s2’ s1 times s3’ and so on. We cannot ask the members in g1 that 

okay you give s1 to the members in g2 and we cannot ask the members in g2 that okay give s2 and 

s2’ to the members of g1 because that will end up breaching the privacy of AND as s’.  

 

When we want to perform computation on s and s’ our goal is to compute shares of s times s’ 

without actually revealing anything additional about s and s’ respectively that means we are now 

having difficultly to compute non-linear functions of secret shared inputs. Namely, we will now 

see how to compute shared evaluation or how to perform shared evaluation of multiplication gates 

assuming that the set of parties satisfies the Q2 condition.  

 

We have seen already that we had the non linearity property and just by performing operations on 

the shares of s and s’ the group members g1, g2, g3 cannot afford to have their respective shares of 

s times s’ we have to do something more that means it will require interaction among the parties.  
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So, imagine you are given an adversary structure and the set of parties and it is ensured that the set 

of party satisfies the Q2 condition remember that is a necessary condition and with respect to the 

ith potential that subset we have the group gi. So, let us first see what exactly is our goal here. Our 

goal is the following you have inputs a and b which are additively shared as per the definition that 

we have given in the previous slide. 

 

And we want that at the end of this shared multiplication gate evaluation for the value a, b there 

should be three pieces, three random pieces that is important c1, c2, c3 such that the summation of 

c1, c2 and c3 should give you ab that is first condition. All the members in g1 should have c1, all the 

members in g2 should have c2 all the members in g3 should have c3 that is the second condition. 

 

And the third condition is no additional information about the inputs a and b should be revealed in 

this process. Namely, similar requirements that we had for the degree reduction problem, in the 

degree reduction problem remember your a was shared through a t degree polynomial, b was secret 

shared through a t degree polynomial and our goal was to compute the shares of a times b lying on 

a random t degree polynomial. 

 

And in the process not revealing anything additional about the input say a and b that was our 

requirement from the solution of the degree reduction problem. Now we are generalizing that 

requirement in the context of additive secret sharing of Ito et al and the idea here is the following. 

We know that since a is secret shared and b is secret shared as per additive secret sharing then I 

can rewrite a times b as summation of several summands. 

 

Namely, the summands ai times bj where i ranges from 1 to k and j ranges from 1 to k. Namely, 

we have k number of potential bad subsets and a was divided in k pieces, b was divided into k 

pieces. So, if a is secret shared like this, b is secret shared like this and our goal is to compute c 

which is a times b then that is equivalent to saying that we want to sum up all these pieces, we 

want to sum up all these pieces and we multiply.  

 

So, if we expand then basically we get this formula that means ab is a linear function of this k 

square summands why k square because i ranges from 1 to k, j ranges from 1 to k. In this example 



we have 9 summands starting from a1 b1 all the way to a3 b3. So, the thing is ab can be written as 

summation of this k square summands and summation is basically a linear function. 

 

And we know how to compute linear function in a secret shared fashion if the inputs of the linear 

function are secret shared that means if we ensure that each of this inputs, each of this summands 

a1 b1, a2 b2 ai bj. If each of these summands ai bj is secret shared by some party we will see who is 

going to do that and if all this k shares summands are available in secret shared fashion then 

basically computing shares of ab is equivalent to adding shares of each of this summands. 

 

So, additive sharing of ab can be computed as a linear function of additive sharing of this k square 

summands, but now the question is who is going to additively shared ai times bj, ai might be 

available with some group bj might be available with some group. Is there a possibility that there 

is some common party who has both the piece ai as well as the piece bj because if there is a party 

who process both ai as well as bj then it will know the value ai times bj which is one of the 

summands in this big sum formula.  

 

And that particular party can secret share ai times bj by acting as a dealer. So, if we can ensure that 

for each of this k square summands there is some party who has the capability to compute that 

summand in clear and then secret share it then our problem is solved. So, let us see whether for 

each of the summand ai times bj there is some party who can compute ai times bj without interacting 

with anyone.  

 

And if it can then it can just compute ai times bj and secret share it. So, for that let me introduce 

this notation Sij and remember we are doing this task for each summand ai times bj where i ranges 

from 1 to k and j ranges from 1 to k. We are not just doing for one summand ai times bj. So, we 

are actually analyzing the possibility that for this k square summands there is some party who can 

compute it. 

 

So, let S i, j be the set of all parties who can compute ai times bj namely Si, j is the set of parties 

who have both ai as well as bj as per the secret sharing of a and b. Namely, it is the intersection of 

the ith group gi and the jth group gj. My claim is that if the set of parties P satisfies the Q2 condition 



then this set Si j is non empty there is definitely one party at least one party who has both ai as well 

as bj. 

 

And again this comes from simple set theoretic properties. What is the intersection of group gi and 

group gj basically that is the intersection of these two sets and then if I expand it further this is the 

difference of union of ith bad set and the jth bad set from the set of parties. Now, if this set if this 

difference is phi empty then that is the violation of the Q2 condition that means we now have two 

bad sets Ti and Tj. 

 

In your adversary structure gamma whose union covers the entire set of parties P if the difference 

would have been 0 or empty not 0 if the difference would have been empty set, but since we are 

assuming that the set of parties P satisfies the Q2 condition that means this intersection of gi and gj 

which is equivalent to the difference of union of the bad sets i and j from the set of parties is 

definitely non empty. 

 

There is at least one party in the set Si, j and this is true for any i and any j in the range 1 to k. So, 

now we know that for each of the summands that means you take a1 b1 there is at least one party 

who has both a1 as well as b1 so that party can just secret share a1 times b1. If I take a1 times b2 

there is definitely one party which has both a1 as well as b2 so it can compute a1 times b2 and secret 

share it and so on. 

 

But now the problem is this set Si, j need not be a single ton set there might be several members in 

Si, j it depends upon your exact adversary structure and the corresponding groups. So, now what 

we can do is to ensure that the piece ai bj is not secret shared multiple times because remember we 

just need to ensure that the summand ai times bj is secret shared once that is all. 

 

We do not want a1 b1 to be secret shared multiple times and keep on adding all those shares of a1 

b1 because that would not give ab. So, to ensure that for each summand ai times bj just a single 

party secret shares ai times bj we designate the least indexed party say P l in that set to additively 

share times ai times bj by acting as a dealer and executing an instance of Ito et al secret sharing 

scheme.  



 

Of course if Si, j is a single ton set then there is no question of bringing the least indexed party 

would not come, but if Si, j has more than one party then definitely we have to ask only one of the 

parties to secret share ai times bj and basically we are following the rule that we will assign the 

least indexed party and identity of the least indexed party will be publically known because the 

description of Si, j will be publically known.  

 

Remember the set of parties adversely structure the groups everything are publically known. Also 

the claim is that at least one Si, j will be there consisting of only honest parties that means during 

the execution of the MPC protocol it could be either the set B1 or the set B2 or the set Bk which 

can be under the control of the adversary. The corresponding group gi will be completely honest.  

 

And if I focus on the set Si, i and it will consist of only honest parties and if it consist of only honest 

parties then the corresponding summand which is assigned to that corresponding subset Si, j will 

be unknown from the view point of the adversary. So, that means if a or b the inputs of the 

multiplication gate are private to begin with then the corresponding additive sharing of ai times bj 

which the least indexed party in the set Si, j will be performing or will be doing will be random and 

view point from adversary’s view point. 

 

And Si, j will be consisting just honest parties because we know that at least one such Si, j is always 

there. So, I am focusing on that Si, j which consist of only honest parties my claim is that the parties 

in the Si, j are suppose to take care of this summand ai times bj. The least indexed party from this 

Si, j consisting of only honest parties will secret share ai times bj, but since ai as well as bj are 

random from the view point of the adversary. 

 

Ai times bj will be random from the view point of the adversary and hence the least indexed honest 

party from this set Si, j who will be secret sharing ai times bj will be random from the view point of 

the adversary and that will ensure that the overall ab which is finally obtained at the end of the 

shared multiplication gate evaluation is randomly shared from the view point of the adversary.  
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So, let us see a demonstration here for the shared evaluation of the multiplication gate here. So, I 

am taking this adversary structure and the set of parties consist of four parties it is easy to see that 

this set of parties satisfies the Q2 condition because you take the union of any two bad subsets from 

the adversary structure it does not cover the entire set of four parties and imagine a and b are 

already is secret shared as per the additive secret sharing.  

 

So, the first thing is remember we have k square summands we have to identify that who is 

supposed to take care of the summand ai times bj. Here we have 9 summands starting from a1 b1 

and going all the way to a3 b3. So, I have written down for each summand ai times bj I have written 

down the subset of parties who have the capability to compute the term ai times bj in clear. 

 

So, for instance, S11 will consist of all the member in group g1 because they have both a1 as well 

as b1. If I focus on the set S12 basically I am focusing on the set of parties who have the capability 

to compute a1 times b2. Now who can compute a1 times b2? So, P1 alone cannot compute a1 times 

b2 because P1 this first party it does not have a1 and it has only b2, but it does not have a1. 

 

So, that is why it is not a member of this set S12, but if this take this party and it has both a1 as well 

as b2 and it is the only party who has both a1 and b2 that is why it is listed in S12 and so on. Similarly, 

S13 will have only one member because there is only one party she is the only party who has both 

a1 as well as b3 and so on. So like that I have listed down here the various subsets here. 



 

And now from S11 we can assign the least indexed party namely P3 to take care of a11 because both 

P4 as well as P3 could have secret shared a1 times b1, but we do not want a1 times b1 to be secret 

shared twice so that is why we are asking only one of the parties to secret share a1 times b1 which 

is the least indexed party S12 is anyhow single term, S13 is anyhow single term.  

 

Now, again if I come to S22 both P1 as well as P3 has the ability to secret share a2 times b2, but we 

are going to assign P1 this task because it is the least indexed party and so on. So, now here is how 

the multiplication gate will be evaluated. So, we will start with P1 because it is the least index not 

P1 we will start with P3 which is the least indexed party in S11 and it will act as a dealer compute 

three random pieces for a1 b1. 

 

Those three random pieces I am denoting by this notation such that it sums up to a1 times b1 and 

this first piece this third party will give to all the members in g1 the second piece this dealer so it 

is acting as the dealer here. So, as a dealer it will give this second piece to all the members in g2 

and as a dealer it will give this third piece to all the members in g3. In parallel for the second 

summand a1 times b2 this party acts as a dealer. 

 

Create three random pieces for a1 times b2 and secret shares it and like that every designated party 

from each of the group Si, j in the same round remember all this secret sharing instances they 

happen in parallel, it is not that first a1 times b1 has to be secret shared and then the next summand 

has to be secret shared and then the next summand has to be secret shared no there is no dependency 

whatsoever.  

 

So, that is why each designated party from the set Si j will act as a dealer and run a random instance 

of Ito et al secret sharing scheme to secret share the summand ai times bj. Now, once all the k 

square summands have been secret shared the members in g1 can do the following. They can just 

add up all their shares that they have received in all the sharing instances here call that piece as c1. 

 

In the same way the members in g2 can add up all the pieces that they have got in the various secret 

sharing instances in this multiplication gate evaluation process and call the resultant piece as c2 



and let all the members in g3 at their respective pieces that they have got in the various secret 

sharing instances during the multiplication gate evaluation let me call the resultant piece as c3. 

 

And it now is easy to see that if you take c1, c2, c3 then together it constitutes a vector of secret 

sharing for the value c. Now why the privacy of a and b will be preserved and why the value c is 

randomly shared here. Imagine during the protocol the set T 1 gets corrupt either set T 1 gets 

corrupt it might have already a2 b2 a3 b3 it might already have, but it would not have the pieces a1 

b1.  

 

So, it would not have the piece a1 it would not have the piece b1 they are random from the view 

point. Now if a1 b1 is random and a1 b1 is secret shared by a random instance of Ito secret sharing 

then this first instance here is a random instance here that means this is a vector of three random 

pieces which sum up to a1 times b1 and now if this vector is added with the other vectors which 

may or may not be random. 

 

But anyhow they are random, but we know definitely this vector is random and that random vector 

added with all the other remaining vectors will finally produce a vector of values which is also 

random. So, that ensures c is secret shared through a random vector of shares and now since a1 

times b1 was not known to the adversary it could be any a1 times b1 that means if even if the other 

pieces they are known to the adversary somehow. 

 

This a times b1 could be any value and hence this c could be any value that is intuitively the privacy 

argument. We can formalize it by saying that whatever information adversary is obtaining while 

the secret sharing of this summand ai times bj is happening that can be simulated if ai times bj was 

shared by an honest dealer. So, I am not going into the full privacy proof. 

 

I hope that you are getting the intuition here that why the privacy of a, b and finally c is preserved 

here. So, that is a way you can perform the shared evaluation of multiplication gates. So, this will 

require one round of communication because all this summands ai times bj has to be secret shared 

and there will be k square instances of secret sharing involved not threshold secret sharing 

remember.  



 

All these instances of secret sharing are the instances of Ito et al scheme. Now this k in general so 

k in general could be exponentially large and that will ensure that the overall communication 

complexity of your protocol is also exponentially large, but we cannot do anything regarding that 

because the nature of Ito et al secret sharing is that its share size is proportional to k namely the 

number of subsets in your adversary structure.  

 

And the number of subsets in the adversary structured could be exponentially large itself. In fact 

recall when we discuss non threshold adversary structure in the context of secret sharing. One of 

the main open problems that is left there whether we can design a secret sharing scheme against 

any given non-threshold adversary structure where the share size is polynomial in number of 

parties.  
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So, these are the references used for today’s lecture the multi MPC protocol that I discussed is 

taken from this paper. This is a very simple paper to understand and read and there is another line 

of work for designing MPC protocols against non-threshold adversary’s which are not based on 

the additive secret sharing scheme of Ito et al that we had seen in today’s lecture, but rather they 

are based on notion of secret sharing based on monotone span program which are also called as 

MSP. 

 



But they are slightly advanced to understand and because of interest of time I am not going to 

discuss the MSP based MPC constructions in this lecture, but if you are interested then you can 

refer to this paper. Thank you.  

 


