
Secure Computation - Part I 

Prof. Ashish Choudhury 

Department of Computer Science 

International Institute of Information Technology, Bangalore 

 

Module - 1 

Lecture - 3 

Various Dimensions to Study Secure MPC 

 

(Refer Slide Time: 00:33) 

 

Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: We have 

seen on a very high level, what is the secure multi-party computation or MPC problem. We 

had seen some real-world examples of secure multi-party computation. It turns out that the 

MPC problem can be studied in varieties of domains. It is enormously large. And in this lecture, 

we will see the landscape, namely the Vishwaroop or the various dimensions of secure MPC.  

 

So, people who are not familiar with this picture, in the Battle of Kurukshet, Lord Krishna 

showed his enormous landscape or various dimensions, which we call as Vishwaroop. In the 

same way, the goal of this lecture is basically to show you the various dimensions in which we 

can study the secure MPC problem.  

(Refer Slide Time: 01:32) 



 

So, just to recall, this is the blueprint of secure multi-party computation. We have set of 

mutually distrusting parties with some private data. And there is some publicly known function 

𝑓. And the goal is to design a mechanism which allows the parties to obtain the result of this 

function 𝑓 on the inputs 𝑥1, … , 𝑥𝑛, and in the process learn nothing about other party's data 

other than what a party can itself infer from its own input and the function output.  

(Refer Slide Time: 02:15) 

 

So, the first dimension is based on what are the various forms of abstraction that you can follow 

to represent the function to be securely computed. So, what do I mean by that? It turns out that 

we have 2 classes of MPC protocols. Class 1 constitutes of MPC protocols tailor made for 

some specific application. Say for instance, your application is E-auction, where the function 

is to compute the max of 𝑛 bids.  

 



So, I might design an MPC protocol which just helps me to solve that problem. That protocol 

may not help you to find out or solve the problem of privacy-preserving machine-learning. So, 

these protocol, which are tailor made for some specific application, are called class 1 MPC 

protocols.. You give me the application and I design the protocol only for that specific 

computation. Class 2 is the class of MPC protocols for any abstract function.  

 

That means, it is not tailor made only for secure auction; it is not tailor made only for 

millionaires problem; it is not tailor made only for machine learning application and so on. It 

is for any function 𝑓 that you give me. That means that the MPC protocol will work irrespective 

of what exactly is your function 𝑓. But, from the description, it might look like that the class 2 

function, the class 2 MPC protocols are more generic.  

 

So, basically they are generic, because that can be deployed for any specific instantiation of 

your function 𝑓. But when I am designing a generic MPC protocol, I have to follow some 

representation for the function 𝑓. Because, if I do not know any details about the function 𝑓, 

how can I design a protocol? And how can I design an algorithm to securely compute that 

function?  

 

So, I have to do some abstraction or I have to represent my function 𝑓, underlying function 𝑓 

in an abstract fashion, and that is what I mean by function abstraction. So, there are 2 popular 

forms of function abstraction which are used in class 2 MPC protocols or any generic MPC 

protocol. The first form of function abstraction is Boolean circuit representation, where we 

assume that the function 𝑓 which the parties want to securely compute is represented by some 

Boolean circuit.  

 

And the description of the Boolean circuit will be publicly known to all the 𝑛 parties. And it is 

a well-known fact that you take any computation, any function 𝑓; it can be always represented 

by some Boolean circuit consisting of AND gates, OR gates, NOT gates, various other kinds 

of gates. So, for instance, this is an example of a Boolean circuit over 4 input bids 𝑥1, 𝑥2𝑥2 and 

𝑥4. And the function that is represented by this circuit is the following:  

 

So, this is your AND gate. So, you want to compute 𝑥1 and 𝑥2. This is an OR gate, you want 

to do 𝑥3 or 𝑥4. And then finally, you want to compute XOR. So, this could be an example of 



an abstract function. So, in a Boolean circuit abstraction, we assume that the function 𝑓 which 

the parties want to securely compute is represented by some Boolean circuit consisting of 

Boolean gates, and the details or the topology of that circuit is publicly known to all the 𝑛 

parties.  

 

Whereas, the second abstraction used in class 2 MPC protocols is that of arithmetic circuit 

representation, where we assume that the function 𝑓 which the parties want to securely compute 

is represented as some circuit over some algebraic structure which could be either a ring or a 

field. So, we will see soon what exactly a ring, a field is. So, the point here is that, in this 

abstraction, we assume that whatever computation the parties want to perform, it is represented 

by some publicly known circuit.  

 

And the circuit consists of addition gates and multiplication gates over the ring or a field. And 

all the operations here are performed over the ring or the field. Now, we have various generic 

MPC protocols designed for Boolean circuit. We have MPC protocols designed for arithmetic 

circuit. And depending upon our convenience, upon our requirement, various efficiency issues, 

and other aspects, we can decide whether to opt for an MPC protocol to securely compute a 

Boolean circuit or whether to go for an MPC protocol to securely compute or securely evaluate 

an arithmetic circuit.  

 

So, that is the first dimension for studying MPC protocols. So, you have MPC protocols for 

Boolean circuit functions; you have MPC protocols for arithmetic circuit functions.  

(Refer Slide Time: 09:22) 

 



Let us see the second dimension, depending upon what kind of underlying network the parties 

have. So, in this dimension, we can either have synchronous communication model or 

asynchronous communication model. Let us first try to understand the synchronous 

communication model. In the synchronous communication model, the parties are synchronized 

by a global clock.  

 

And this means that the parties will be talking to each other in the MPC protocol, and the 

protocol will operate as a sequence of rounds. What do we mean by rounds? In each round, as 

part of the MPC protocol, a party will perform some computation, based on what input it has. 

And then it will send the messages that it has computed to the other parties. And what the other 

parties have computed in that specific round will be received by the parties.  

 

That will finish one round. And then they will perform this cycle for the next round. In the next 

round, whatever messages I have received from the other parties at the end of the previous 

round, I will process them as per the MPC protocol instructions, compute the next set of 

messages I have to send to the other parties, and I will send them. That will finish the second 

round. And then the third round will start.  

 

So, if my protocol is an 𝑟 round protocol where 𝑟 could be 1, 2, 3; in each round, each party 

will perform this operation. And there will be a fixed delay for the messages. That means, in 

each round, a party will know that, okay, the other parties are expected to send some messages; 

those messages should arrive to me by the end of this clock cycle. Because, we are assuming 

that we are in a synchronous communication model and the clocks of all the 𝑛 parties, they are 

synchronised.  

 

So, if the delay is, say 1 hour; that means, each round operates for 1 hour; then I know that 

each party is supposed to send its messages to me within 1 hour. And then, by the end of the 1 

hour, the next round will start. Whatever I have to send to the other parties, I will compute and 

send it. And the other parties are also supposed to do the same and send their messages which 

should come to me by the end of the 1 hour.  

 

That means, the message delay will be publicly known. And since the message delay is publicly 

known, that means, if the message delay, say for instance, is 1 hour, and within 1 hour, an 



expected message which I am expecting from one of the parties as part of the protocol does not 

come to me, then I can conclude that, okay, that sending party is a corrupt party.  

 

And then, as part of the MPC protocol, I can decide how to deal with that corrupt party for the 

rest of the protocol instructions. So, an implication of the synchronous communication model 

is that, if a sending party does not send its expected messages, then the receiving party can 

conclude that the sender is corrupt. However, even though synchronous communication model 

is very simple abstraction, your real-world networks like the internet do not behave like a 

synchronous communication model.  

 

Because, if one of the parties is in one end of the globe, and the other party is in the other end 

of the globe, and they are connected over the internet, then we cannot come up with the exact 

value of delta. It might be the case that the network is very slow, and we do not know how long 

it takes for a message from party 1 to receive to the party 2. The network might be very slow, 

sometimes the network might be very fast, and so, we cannot come up with a precise bound for 

delta.  

(Refer Slide Time: 13:52) 

 

To model this fact, we consider another form of communication model which we call as 

asynchronous communication model. And in the asynchronous communication model, there is 

absolutely no global clock. The parties are not at all synchronised by any kind of clock. That 

is why you cannot define the notion of a round. Because, since the message delays are not 

known, and if I am a receiving party, and if I am expecting a message from one of the parties 



as part of the MPC protocol, and if that message is not coming to me, I do not know how long 

I have to wait for the message.  

 

It is like saying the following: Only when I receive a phone call from one of the parties in the 

MPC protocol and receive that message over the telephonic conversation, I can proceed to my 

next step in the protocol. But I do not know when the phone will come, when the call will 

come. It could be 1 day; it could be 1 hour. And I cannot come to a conclusion that, okay, since 

I have waited enormously long and the call has not come, the sending party or the party who 

was supposed to make that call is a corrupt party.  

 

I cannot do that, because it might be the case that the next instance itself, the next moment 

itself call comes, as soon as I decide that, okay, that party is a corrupt party. So, the major 

challenge in an asynchronous communication model is that, from the viewpoint of a receiving 

party, the receiving party cannot make a distinction between a slow party or a slow sender and 

a corrupt sender.  

 

Namely, from the viewpoint of this receiver, if it is expecting for a message 𝑚 and if the 

message is not coming or has not yet come, then this receiver cannot distinguish apart whether 

the sender was corrupt and purposely has not sent a message or the sender was honest, it has 

sent the message, but the message got arbitrarily delayed. So, from the viewpoint of the 

receiver, both these situations can occur, unlike a synchronous communication model.  

 

Because, in the synchronous communication model, the receiver will know that, okay, I have 

to wait only for time delta. And if within the time delta the message does not come, definitely 

the sender is corrupt. Because, in a synchronous communication model, each expected message 

is supposed to be delivered within this delta time frame. So, if we are considering an 𝑛 party 

MPC protocol or 𝑛 party protocol for any distributed computing task in an asynchronous 

communication model, then no receiving party can afford to receive communication from all 

the 𝑛 parties.  

 

Because, there might be some corrupt parties among these 𝑛 parties, who may not send their 

expected messages. And if this receiving party is waiting for all the parties to send their 

messages, then it might lead to an endless waiting. And the protocol may not terminate at the 



first place. So, to avoid this scenario, what we do is the following, in the asynchronous 

communication model:  

 

If we assume that 𝑡 is the maximum number of corrupt parties in the system, then in an 

asynchronous protocol, a receiving party can afford to receive communication from at most 

𝑛 − 𝑡 parties. It cannot afford to receive communication from the remaining 𝑡 parties as well. 

Because, the remaining 𝑡 parties might be corrupt parties, because 𝑡 is assumed to be the upper 

bound on the number of bad parties.  

 

And bad parties may decide not to send their messages. So, in asynchronous protocol, as soon 

as a party receives communication from 𝑛 − 𝑡 parties, that step is done, and it has to go to the 

next step. That means, at each step, communication from 𝑡 parties have to be ignored. But the 

problem here is that, it is not the case that the 𝑡 parties from whom this receiving party have 

ignored the communication are always the bad parties.  

 

It could be the case that those 𝑡 parties whose communication or messages are ignored are 

actually slow parties. That means, they have sent the messages, but they got stuck in the 

network, and that is why it got delayed. But this receiving party, it does not know that, okay, 

those sending parties are honest or corrupt, and whether those messages are going to come or 

not. It has simply decided that I am going to ignore those 𝑡 messages and I have to proceed to 

the next step of the protocol.  

 

So, that is why, this phenomena will always be encountered in an asynchronous protocol. And 

that is why, compared to the synchronous protocols, asynchronous protocols are more complex, 

but at the same time, they are more practical. Because, at the end of the day, when you are 

going to implement your MPC protocol, it has to be implemented over a real network. And 

real-world networks like the internet are asynchronous in nature.  

(Refer Slide Time: 19:41) 



 

Now, let us see that I mentioned number 3, according to which we can categorize our MPC 

protocols. And this dimension is based on the corruption capability. So, remember, I am 

continuously saying that we have a set of mutually distrusting parties. They do not trust each 

other. So that people always work together. And among the 𝑛 parties, we have 2 categories of 

parties. One category of parties who are “good”.  

 

They are just interested to get the result of the computation, nothing else. And there is another 

category of parties, which you could consider as a “bad” set of parties, which would like to 

cause harm to the good parties, either in terms of learning their inputs or causing them to obtain 

the incorrect result of the computation and so on. So, to model the bad people in the system or 

bad people among the 𝑛 parties, we assume that there is a centralized abstract entity called 

adversary who “controls” a “certain” number of parties among those 𝑛 parties, in varieties of 

ways.  

 

So, that is why I have written controls and certain in quote-unquote. Depending upon how 

many parties the said adversary can control, we have either a threshold adversary model or a 

non-threshold adversary model. So, in the threshold model, which is the more popular 

adversary model, we design MPC protocols assuming that during the protocol execution, at 

most 𝑡 parties could be corrupt.  

 

By corrupt means, they can fall under the control of the adversary, and of course, that 𝑡 has to 

be lesser than 𝑛. Because, if all the 𝑛 parties are corrupt, then how or why at the first place you 



are interested to preserve the privacy of the individual data. So, we assume that in the threshold 

model, any set of 𝑡 parties out of the 𝑛 parties could get corrupt during the protocol execution.  

  

However, which 𝑡 parties are going to be corrupt during the protocol execution, we may not be 

knowing that. And in fact, at the end of the protocol execution also, we may not learn that. So, 

our goal is to design a mechanism which should ensure the parties to securely do the 

computation even if up to 𝑡 parties get corrupt during the protocol execution, and it could be 

any set of 𝑡 parties out of the 𝑛 parties.  

 

So, for instance, if I say 𝑡 = 2, then, during the protocol execution, it could be any set of 𝑡 

parties which could be corrupt, which could fall under the control of the adversary when the 

protocol gets executed. That is a threshold adversary model. A more generalized form of the 

adversary is the non-threshold model where we do not bound the corruption capacity by a 

number.  

 

Rather, here we do the following: We see that the adversary's behavior, namely, its corruption 

behavior is specified by mentioning or listing down the subsets of potentially corrupt parties. 

And during the protocol execution, any one of those sets which I have listed down, could get 

corrupt by the adversary. So, again, let us take the example where we have 4 parties 𝑃1, 𝑃2, 𝑃3 

and 𝑃4. And I can specify a list like this - {{𝑃1, 𝑃2, 𝑃3}, {𝑃2, 𝑃4}, {𝑃1, 𝑃3}}. 

 

I can say that, okay, design a MPC protocol which should work; work in the sense, which 

should remain secure; even if this set of 3 parties gets corrupt, or this set of 2 parties gets 

corrupt, or this set of 2 parties gets corrupt. That means, your goal will be now to basically 

handle either this collection; handle in the sense, to take care of the fact that even if this set 

fails; fails means get corrupt and fall under the control of the adversary; still your protocol 

should work.  

 

Or it should work even if this subset falls or if this subset falls. Now, why this is more generic? 

It is more generic because, in this list, I am not specifying, I am not putting any restriction on 

the size or the cardinality of this individual subsets. So, no restriction on the size of the subsets. 

Different subsets could be of different size. This is unlike your threshold communication 



model, where in the threshold communication model, it is only subsets of size 𝑡 which could 

get corrupt and fall under the control of the adversary.  

It cannot be that; it could be a subset of 𝑡 = 2 or subset of 𝑡 = 3. Once you fix the parameter 

𝑡, only those number of parties could get corrupt. But in the non-threshold model, it could be 

different subsets of different size which could fall under the control of the adversary. So, in 

some sense, you can imagine that threshold adversary model is a special form of non-threshold 

model, where the size of each subset of potentially corrupt parties is upper bounded by 𝑡.  

 

So, these are the 2 ways in which we can specify the corruption capacity of the adversary. And 

we have MPC protocols for threshold model; we have MPC protocols for non-threshold model.  

(Refer Slide Time: 25:58) 

 

Dimension 4 is based on the corruption power of the adversary. So, remember adversary is at 

the end of the day, some algorithm run by some computer. Now, the adversary could be 

computationally unbounded. That means, we do not put any restriction on the resources, 

specifically the computing resources of the adversary. It is allowed to do any kind of 

computation.  

 

It can do brute force; it can perform exponential computation; we do not put any restriction 

whatsoever on the computing speed or the computing power of the corrupt guys. Whereas, we 

have another category of adversaries where we say that adversary is polynomially bounded. 

That means, the corrupt parties are only allowed to perform limited amount of computation. 

Now, there are both pros and cons of MPC protocols, tolerating an unbounded adversary and 

a bounded adversary.  



If you want to design MPC protocols tolerating an unbounded adversary, then we need to have 

very strong setup among the parties. So, we will see later, what I mean by a strong setup. 

Loosely speaking, we require that the parties should be able to communicate to the other parties 

in a secure way even in the presence of computationally unbounded adversaries. Whereas, if 

we want to design protocols tolerating computationally bounded adversaries, then we do not 

require such strong setup; even a weaker setup is sufficient to tolerate this kind of corruption.  

 

However, the protocols which are designed to tolerate computationally unbounded adversaries, 

they are very simple and very fast in terms of the computations or steps which are there in the 

protocol. That means, those computation, those steps can be very easily performed by the 

parties, and it will take very less time compared to the protocols tolerating computationally 

bounded adversaries, where the computation steps are computationally very expensive.  

 

Also, the protocols, MPC protocols tolerating computationally unbounded adversaries provide 

you everlasting security. Why it will provide you everlasting security? Because, those protocols 

give you security guarantees, even if the adversary is computationally unbounded. That means, 

even if, say, quantum computers become reality, the security offered by the protocols will be 

preserved, compared to the protocols which gives you security only against polynomially 

bounded adversaries.  

 

Because, in this latter class of MPC protocols, the security will be achieved as long as some 

standard cryptographic assumptions hold. But as soon as those cryptographic assumptions are 

broken, the security guarantees provided by those MPC protocols are also broken. So, that is 

why this latter class of MPC protocol does not provide you everlasting security. So, that is your 

dimension number 4.  

(Refer Slide Time: 29:41) 



 

Dimension number 5 classifies MPC protocols depending upon the corruption characteristic of 

the adversary. So, remember, adversary can control certain number of parties. What do I mean 

by control? Depending upon the control mechanism, we have passive corruption, which is also 

sometimes called as semi-honest corruption or eavesdropping corruption. So, here, the goal is 

the following:  

 

The adversary basically is a passive eavesdropper and it can only eavesdrop the corrupt parties. 

What do I mean by that? So, in an MPC protocol, the parties will exchange messages, and at 

the end of these message exchanges, they will obtain the result of the computation. Now, the 

parties which are not under the control of the adversaries, they would not be analyzing what 

messages they are receiving.  

 

Analyzing in the sense, they will analyze it as per the MPC protocol, they will obtain the result 

of the computation, and that is all, the task is done for them. But an eavesdropper might do the 

following: Once the result of the computation is achieved, it now might try to analyze those 

messages. That is not done as part of the MPC protocol. It might deploy its own resources to 

analyze those messages and try to learn something about the inputs of the other parties or the 

honest parties.  

 

By honest parties, I mean the parties which are not under the control of the adversary. So, in 

the eavesdropping model or in the passive corruption model, we assume that the bad guys who 

are under a control of the adversary honestly follow the protocol instructions. That means, what 

are the steps specified for them as per the MPC protocol, those steps will be executed as it is.  



 

But also, on top of that, the adversary might try to analyze the messages received by those 

parties and try to learn something additional about the inputs of the other parties. So, it is like 

saying the following: You have 𝑛 computers and the computers are running the MPC code, 

and a virus has been injected in some of the machines. And all those viruses are monitored by 

a single adversary.  

 

And through those viruses, whatever messages those specific computers which are under the 

control of the virus are received, those messages will be transferred to the adversary, and 

adversary might be analyzing those messages. But that virus would not prevent the corrupt 

machines to deviate arbitrarily. The instructions run, the program run by those machines, they 

will run as they should.  

 

So, that is what we mean by passive or semi-honest corruption. A more powerful adversary 

model is the crash model or the fail-stop model, where the adversary, apart from 

eavesdropping, also has the capability to crash the corrupt parties. And once a party crashes 

during the protocol execution, it stops functioning from that point onward. So, it is like saying 

the following:  

 

The adversary, it has 2 options; either it can let the corrupt parties finish the protocol execution 

as allowed in the passive adversary model. But on top of that, the adversary also has the 

flexibility that any of the machines which are under the control of the adversary stop 

functioning. And once it stops functioning, it will not come alive again till the end of the 

protocol. So, that is a crash model, fail-stop model.  

 

And the most powerful corruption characteristic is called as the Byzantine corruption, also 

known as active corruption or malicious corruption. And here, the corrupt parties, the parties 

which are under the control of the adversary, can start behaving in any arbitrary fashion. That 

means, it is up to the adversary. If it wants, it can let the corrupt machines honestly follow the 

protocol instructions; that means, it can let them behave as if they are behaving in a semi-

honest fashion; or it can crash them at any time; or it can instruct them to start sending wrong 

messages.  



That means, the complete control is now given to the adversary. It can dictate the behavior of 

the corrupt machines in whatever way the adversary would like to. So, that is a malicious 

corruption or active corruption, also known as Byzantine corruption.  

(Refer Slide Time: 34:40) 

 

The sixth dimension classifies your MPC protocols depending upon the time of corruption. 

And in this category, we have 2 classes of MPC protocols. We have protocols tolerating a static 

adversary, where the nature of the adversary is that it has to decide the set of corrupt parties at 

the onset of the protocol. That means, even before the protocol execution starts, the adversary 

has to decide that, okay, these are the machines, these are the parties whom I am going to 

control.  

 

Whereas, a more powerful adversary model is the adaptive corruption model, where adversary 

has the flexibility to corrupt parties on the fly, during the runtime of the protocol. So, for 

instance, if I am considering threshold adversary with adaptive nature of corruption and say 

𝑡 = 3 and say there are 5 parties who are participating in the protocol, then it might be the case 

that, to begin with, adversary has decided not to corrupt any parties.  

 

Now, say my protocol is a protocol which operates for 100 rounds, there are 100 rounds of 

communication, assuming that I am designing a protocol in the synchronous model. Now, an 

adaptive adversary can do the following: It can decide that, okay, at the end of second round, I 

am going to corrupt 𝑃1. That will reduce 𝑡 from 3 to 2. Now, depending upon whatever 

messages 𝑃1 has received, adversary may decide that, okay, now I am going to corrupt 𝑃4.  

 



That will make 𝑡 from 2 to 1. That means, now, adversary will have control over the messages 

sent and received by both 𝑃1 and 𝑃4. And now, adversary might analyse and decide that, okay, 

I am now going to corrupt P 3. So, that is a form of adaptive corruption. An adaptive adversary 

could also do the following: It can behave like a static adversary as well. It can say, okay, I am 

going to corrupt 𝑃1, 𝑃3, 𝑃4 at the onset of the protocol itself.  

 

The point is that, we are now giving the adversary more flexibility to attack your MPC protocol. 

And clearly, your adaptive corruption model is more powerful than your static corruption 

model.  

(Refer Slide Time: 37:31) 

 

So, here is the summary of the various dimensions in which we can study the MPC problem. 

Depending upon what form of function abstraction we use, we can have MPC protocols either 

for securely computing Boolean circuits or for securely computing arithmetic circuits. So, we 

have 2 class of MPC protocols here. Depending upon the network type, you can either have 

MPC protocols in the synchronous communication model or MPC protocols in the 

asynchronous communication model.  

 

Depending upon whether the corruption capacity is threshold or non-threshold, you have 2 

categories of MPC protocols. Depending upon whether the computing resources of the 

adversary is bounded or unbounded, you have 2 categories of MPC protocols. Depending upon 

whether the corruption characteristic of the adversary is passive or fail-stop or Byzantine, you 

have 3 categories of MPC protocols.  

 



And finally, depending upon at what time the adversary strikes, you have 2 categories of MPC 

protocols. And each of these dimensions are independent of each other. So, that is why, if you 

take the Cartesian product of various possibilities under various dimensions, that will roughly 

give you the total number of ways in which you can study your MPC protocols. You have 2 

into 2, 4, 8; 8 to 16, 48, 96 different dimensions in which you can study the MPC problem.  

 

So, for instance, I might design a protocol for securely computing Boolean circuits; that means, 

I have taken from this dimension 1, Boolean circuits. For the asynchronous communication 

model; that means, from dimension 2, I take asynchronous model. Tolerating a computationally 

unbounded adversary; that means, from dimension 4, I have taken unbounded adversary who 

is static and it can control the corrupt parties as per a list of potential subset of parties which is 

given, namely non-threshold model. And where the corruption characteristic is crash; so, that 

means, what I am saying here is, if you take under each dimension 1 possibility and take them 

together, that gives you 1 possible dimension in which you can design MPC protocol or 1 type 

of MPC protocol. And as I said, there are 96 possibilities.  

 

In the same way, you can design MPC protocol for securely evaluating arithmetic circuits, but 

your network is now synchronous and your adversary could be computationally bounded, 

adaptive in nature, who can control up to 𝑡 parties, but in a semi-honest way. And as I said that 

this list is exhaustive. And it turns out that, for each dimension, the MPC protocol that you 

design is different.  

 

It is not the case that a protocol that you designed in 1 dimension will always work in the other 

dimension. Of course, if you have a weaker dimension compared to a stronger dimension, then 

the protocol in the stronger dimension will work for the weaker dimension as well. But the 

other way around may not be possible. But you might design an efficient protocol tailor made 

for the weaker dimension compared to the protocol designed for the stronger dimension.  

 

So, it is not always that, okay, you design a protocol for the strongest possible adversary model 

and use it for all the weaker possible adversary model. That is actually a bad design principle. 

Depending upon what specific dimension I am considering, I would be interested to design a 

protocol which is the best possible protocol for that specific dimension. And, as you can see 

that there are so many dimensions possible.  

 



It is not at all possible to cover all these dimensions in just a single course. And by the way, I 

have just considered 6 possible ways to categorize your MPC protocols. There are of course 

more sophisticated and advanced ways to categorize your MPC protocols, which are not listed 

down in this presentation. So, in this course, we will cover all the dimensions, but with respect 

to a static adversary and where our adversary could be either of type passive or fail-stop.  

 

We will not be considering active adversary model and adaptive corruption in this course, 

because that is very advanced. And it turns out that even for studying various MPC protocols, 

state of the art for static corruption and type passive and fail-stop, a 12 week course content 

will be very short, very less. So, that is why, my intention earlier was to cover all the dimension 

in a single course.  

 

But when I started designing this course, I realized that the techniques are so sophisticated, so 

advanced, that I would not be doing a proper justice if I cover all the dimensions in a single 

course. And that is why, in this specific course, we will stick only to the passive and crash 

model. We will cover Boolean circuit, arithmetic circuit, synchronous, asynchronous, 

threshold, non-threshold model.  

 

We will see both computationally bounded adversaries, unbounded adversaries. But we will 

not be considering active corruption and adaptive mode. Those protocols techniques will be 

covered in the second part of this course. With that, I end my lecture for today. Thank you. 


	Secure Computation - Part I
	Prof. Ashish Choudhury
	Department of Computer Science
	International Institute of Information Technology, Bangalore
	Module - 1
	Lecture - 3
	Various Dimensions to Study Secure MPC

