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Lecture Overview

U The BGW protocol

* Challenges for evaluating non-linear (multiplication gates)

Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: In this

lecture, we will see the description of BGW MPC protocol where we will now consider we

also have non-linear gates which are also known as multiplication gates in the circuit. And

then, we will see what the challenges which we face when we try to securely evaluate the

multiplication gates in the circuit are.
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So, to quickly recap, this is the BGW approach for shared circuit-evaluation where we assume

that the function which needs to be securely computed is represented by a publicly-known
arithmetic circuit consisting of linear gates and non-linear gates. The shared circuit-evaluation
starts with secret-sharing the respective inputs of the parties. This is done by the parties

themselves.

Each party acts as a dealer and secret-shares its input with the degree of sharing being t. And
the important thing is that the instance of secret-sharing is random; in the sense that, if P, is
the dealer and if it wants to secret-share the value x;, it will be generating random shares for
this value x, and distributing the shares and so on. And then, once all the input values are
secret-shared, each party starts evaluating a copy of the circuit, not on the clear value, but rather

on the shares of the value.

So, in more detail, parties try to maintain what we call as the BGW gate-invariant, where it
will be ensured that, if there is a gate whose inputs are secret-shared randomly with the degree
of sharing being t, then the gate-output is made available to the parties in a secret-shared
fashion, where the degree of sharing is still ¢t and the vector of shares is a random vector of

shares.

And in this whole process, neither the gate-inputs nor the gate-output will be revealed. So, for
instance, consider this input gate. | am saying that once the values x; and x, are secret-shared,
the parties will try to ensure that they have their shares of this intermediate /;. And then, the

parties will ensure that they have the shares of this intermediate value I,.



And then, they will ensure that, given the shares of I; and I,, the parties own their respective
shares of I5. And then, this c is a publicly known constant, so, the parties will ensure that, given
the shares of I5, they obtain their respective shares of y. And finally, once all the values,
intermediate values in the circuit have been made available in a secret-shared fashion, the

parties go and publicly reconstruct the final output value.

| stated earlier that to maintain this gate-invariant, the parties may need to interact. We had
seen that the (n,t) secret-sharing scheme which is used in the BGW protocol is the Shamir
secret-sharing scheme. And since Shamir secret-sharing satisfies the linearity property to
maintain the gate-invariant for linear gates, it does not require any interaction among the
parties. But we will see that, when it comes to the multiplication gates, to maintain the gate-

invariant, the parties need to interact.

So, the focus of this lecture will be to answer this question - can we maintain this BGW gate-
invariant without asking the parties to interact even for the multiplication gates? And we will
see that the answer is no.
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So, before going into that, here is a quick recap of the linearity property of (n, t) secret-sharing
where we had seen that any linear function of secret-shared inputs can be computed by applying
the function on the shares of the input values itself. So, for instance, if you want to compute
s + ¢, where c is publicly-known but s is not known but rather secret-shared; then, by adding

the shares of s with the value c, the parties obtain a secret-sharing of s + c.



In the same way, if s and s’ are 2 unknown values, but secret-shared with the same threshold
t, then, to obtain shares of s + s’, each party just has to go and add its respective share of s and
s'. Similarly, if s is unknown and if ¢ is a publicly-known value, and if each party multiplies
its respective share of s with this public known constant c, then it obtain its respective share of

c-S.

But when it comes to multiplying 2 secret-shared values s and s’, we had seen that if we ask
the parties to just locally multiply their respective shares of s and s’, then the resultant vector
of shares will constitute a secret-sharing ofs - s’, but the degree of sharing will be 2t and not
t; because the resultant vector of shares will now lie on a polynomial of the degree-2t and not
of degree t. Namely, this polynomial A(Z) - B(Z) will be a 2-degree polynomial, where A(Z)
is the polynomial for secret-sharing the value s and B(Z) is the polynomial secret-sharing the
value s'.
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So, now, we will see what the challenges we face when we try to maintain the BGW invariant
for evaluating the multiplication gates. And to demonstrate the challenges, | will consider a
very simple scenario. | will consider a 4-party function where party 1 has the input x;, party 2
has the input x,, party 3 has no input and party 4 has no input, and all the 4 parties are interested
to learn x; - x,, where x; and x, are some field elements.

I will assume that, out of these 4 parties, up to t parties can be passively corrupted by a
computationally-unbounded adversary. The security goal is to ensure that the corrupt parties



should not learn anything additional beyond what they can learn from x; - x, and the inputs of
2 corrupt parties which are under the control of the adversary. So, this is a very simple function

consisting of just 1 multiplication gates.

There is no linear gate; there is just 1 multiplication gate, and you obtain the function output.
So, that is our goal. Now, let us see what goes wrong if we try to blindly follow the BGW MPC
protocol for this circuit, where we start with asking the input holders to secret-share their
respective inputs; and then we multiply the shares of x; and x,; and then we finally go and

publicly reconstruct the vector of shares of x; - x,.

We will see what exactly goes wrong in this protocol. So, we start with the inputs and we asked
P; to act as a dealer and P, to act as a dealer and independently secret-share their respective
inputs x; and x, with random 2-degree polynomials. Here is the table of values. So, x; will be
secret-shared and it will produce 4 shares. The first share will be with the first party, second

share with the second party and so on.

Similarly, P, will act as a dealer and it will pick a 2-degree polynomial, a random 2-degree
polynomial whose constant term is x,, generate 4 shares and distribute the individual shares to
the respective parties. This will complete the input sharing phase. There are no more inputs for
this function. And now, parties start evaluating the circuit. So, they now have the inputs for
this multiplication gate available in a secret-shared fashion.

They take the first gate in this circuit, which is the multiplication gate. Let the parties locally
multiply their respective shares of x; and x,. So, party 1 multiplies x;; with x,;. When | say
multiply, multiply as per the field multiplication operation. And it will produce a field element;
call it y,. Similarly, P, goes and multiplies its respective shares of x; and x,; P; multiplies its

respective shares of x; and x,; and P, multiplies its respective shares of x,, x,.

And let y,, y,, y3, V4 be the resultant vector of shares, where the it* component is with the ;"
party. So, as we have seen earlier, this vector of values y,, v, ys, ¥4, namely, (aq, y1); (a2, V2);
(a3,v3); and (ay, y,); they constitute or they lie on a 2t-degree polynomial, because x; was

shared through a polynomial A whose degree was t. B was secret-shared through a t-degree



polynomial; call it as a B polynomial. The constant term of A was x,. The constant term of B

polynomial was x,.

And now, if you multiply these 2 polynomials, you will get a C polynomial, and its degree will
be 2t. And the C polynomial evaluated at a4, a,, @3, a,, Will be giving you y,, y,, v3, ¥4. SO,
that is why, this vector of shares y,,y,,ys, Vs, it constitutes an (n, 2t) Shamir sharing of y.
And now, let as per the BGW protocol, since there are no more gates after this multiplication
gates, the parties have evaluated all the gates and the function output is available in a secret-

shared fashion; so, let the parties exchange the shares of y among themselves.

That means, y; is given to everyone, y, is given to everyone, y; is given to everyone and y, is
given to everyone. And then they interpolate a 2-degree polynomial namely the C polynomial
and get back the value 1, suppose this is the BGW protocol, which we use here to evaluate this
circuit. Now, there are 2 problems with our protocol.

(Refer Slide Time: 12:47)
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And one problem is associated with the correctness property and the other problem is
associated with the privacy property. So, let us see the problem associated with correctness.
So, consider a case where the number of parties n, satisfies this condition. That means, n < 2t.
Now, if this is the case, then the problem that we are going to face in the proposed protocol is
that, the value of y need not be reconstructed back correctly, because, this vector of

sharesy,, v, V3, Y, they lie on a 2t-degree polynomial.



And to reconstruct a 2t-degree polynomial through Lagrange's interpolation, we need at least
2t + 1 distinct values or 2t + 1 distinct shares on that polynomial, to uniquely reconstruct it
back. But if we are in a setting where n < 2t, then, even if all the shares of y are made public,
we cannot reconstruct back the polynomial C(Z) correctly. And if polynomial C(Z) is not

reconstructed correctly, you cannot reconstruct back y correctly.

And hence, the parties may not obtain the correct output. So, to make my point more clear,
here, we are actually, in this example, in the setting where the number of parties is 4 and your
t = 2; and imagine that we take this specific example where x; = 0, and P; shares x; = 0
through a 2-degree polynomial. So, this is a 2-degree polynomial. You can interpret it as Z2 +
0-Z+0.

And this polynomial will be evaluated at a4, a,, a3, @4, which | am taking to be 1, 2, 3 and 4
respectively. So, this will be your vector of shares for x;. And say x, = 1. It is secret-shared
through this polynomial. So, again, this polynomial, you can interpret it as Z2 + 0 - Z + 11.
So, this is a 2-degree polynomial. This polynomial evaluated at 1, 2, 3, 4 will produce these

vector of shares.

Now, let the parties multiply their respective shares of x; and x,. Remember, all the
computations are performed over Zc, where the additions are addition modulo 5 and
multiplications are multiplication modulo 5. So, this will be your y,, y,, v3, ¥4. And now, if we
interpolate the points y,, y,, v3, ¥4, Of course, along with a4, a,, a3, a4, we will be getting back
this polynomial.

I am not showing the computations in the slide, but you can verify it. If you interpolate the
points (aq,y1); (a3,¥2); (as,y3); and (ay,y.); you will be getting this polynomial. This
polynomial is also a 2-degree polynomial, because | can interpret it as this. And now, this is
the polynomial which parties reconstruct back. Then, the output of the function which parties

will obtain is 1.

But that is not the correct output, because, if x; = 0 and if x, = 1, then y should be 0. But
what parties are reconstructing here? They are reconstructing 1 as the function output. And

why this problem is happening? This problem is happening because the A polynomial was this



Z? + 0; the B polynomial was Z2 + 1; and now, if | consider these 4 values y;, v,, y3, V4, they

lie on the C polynomial.

And C polynomial has degree-4, because it is the product of A polynomial and B polynomial,
each of which is of degree-2; and if you multiply 2 polynomials of degree-2, you will get a
resultant polynomial whose degree is 4. And to reconstruct uniquely and correctly a 4-degree
polynomial, you need 5 distinct points or 5 y values or y shares on that C polynomial, but we

are having only 4 parties in the system.

You do not have the fifth party who can provide you the fifth point on this C polynomial in the
form of its share, and using which you can reconstruct back your y correctly. So, that is a
correctness problem. And you can imagine that this problem is arriving just for 1 single
multiplication gate; but imagine a circuit where you have a computation of the form x; - x, -

... X, @ computation of this form.

So, you started, suppose you follow the same protocol there, where all the inputs are secret-
shared; and then, say you ask the parties to locally multiply their shares of x; and x,; the degree
of sharing becomes 2t. And now, you ask the parties to take this vector of shares and locally
multiply their respective shares from this vector with the shares of x5, then the resultant degree

will become 3t.

And like that, the degree of the resultant output will keep on increasing after every
multiplication. And finally, the degree may become so high that you do not have sufficient
number of parties to provide those many shares during the reconstruction of that final output.
So, that will lead to an error in the correctness property. So, that is the problem number 1 or
challenge number 1.

(Refer Slide Time: 19:14)
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Now, let us see the second problem, second challenge associated with evaluating the
multiplication gates; and this is related to the privacy property; and this is very subtle to
understand. So, imagine for the time being that you are in a setting where n > 2t + 1. That
means, | take, say for instance, the same example, same setting where n = 4, but now, | am

working in a setting where t = 1.

It is given to me that up to 1 party can be semi-honestly corrupted, my passively corrupted by
an unbounded adversary. That means, we now, no longer face that issue of correctness or
problem 1 which we had encountered just now. Why so? Because, now we have just 1
multiplication gate. If x; is secret-shared through a degree-t polynomial A and if B is also
secret-shared through a random degree-t polynomial, then my C polynomial will be of degree-
2t.

And | am assuming that | am in a setting wheren > 2t + 1. That means, if parties make public
their respective shares of y, we have now sufficient number of shares to uniquely get back this
C polynomial and take its constant term as the final output. So, correctness is no longer an

issue, because | am ensuring that we are in the setting where n is greater than equal to 2t + 1.

But now, the problem is that the resultant shares of y which are obtained by locally multiplying
the shares of x; even though the degree of sharing is 2t, the resultant vector of y shares do not
constitute a random vector of shares for the value y lying on a 2t-degree polynomial. What

does that mean? |1 mean here that, if you take this C(Z) polynomial and (a4,y;); (a2, ¥2);



(a3,¥3); and (ay,y,) lying on the C(Z) polynomial; of course the degree of C polynomial is
2t; | can no longer claim that C polynomial could be a random polynomial from the set of all

possible polynomials of degree-2t whose constant term is y.

So, remember, this set P29 denotes the set of all possible 2t-degree polynomial whose
constant term is y. So, my claim is, the C polynomial over which these values (ay,y;);
(a3, ¥2); (a3,v3); and (ay, y,) lie, is not a randomly chosen element from this set, or it is not
a randomly chosen polynomial whose constant term is y and whose degree is 2t. What does it

mean?

When | say that | am picking a random polynomial whose constant term is y and whose degree
is 2t, by that | mean that each of the coefficients of that polynomial except the constant term
is randomly chosen; but the C polynomial that we are obtaining here is not a polynomial whose
each of the coefficients except the constant coefficient or the constant term is randomly chosen
from the field. Why so?

(Refer Slide Time: 23:27)
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This is because, if we consider the C polynomial, it does not constitute an irreducible
polynomial. What is an irreducible polynomial? So, we say a polynomial is reducible;
informally we say a polynomial is reducible if it can be factorised into non-trivial polynomials.
And what does non-trivial polynomials mean here? Basically, they mean polynomials whose

degree is less than the polynomial which we want to factorise.



So, that is a very high level definition of a reducible polynomial. So, in this case, the C
polynomial can be indeed factorised into 2 factors, namely, A polynomial and B polynomial.
And the degree of both the A polynomial as well as B polynomial is strictly less than the degree
of the C polynomial, because the degree of the C polynomial is 2t and the degree of the A

polynomial is t and the degree of the B polynomial is t.

So, that means that this C polynomial definitely is not a randomly chosen polynomial from this
set, because, if it would have been a randomly chosen polynomial, then, with equal probability,
it could be a reducible polynomial of degree-2t, whose constant term would have been y, or
with equal probability, it could have been an irreducible polynomial whose constant term

would have been y, and degree being 2t.

But we know in this case that, if parties just locally multiply their respective shares of x; and
X5, and then publicly reconstruct the C polynomial, this C polynomial is not one of the
polynomials randomly chosen from this set P29 because we know definitely for sure that it
is definitely a reducible polynomial, because the A polynomial and the B polynomial constitute
the factors of this C polynomial. That means, this C polynomial is no longer a random
polynomial.

(Refer Slide Time: 26:11)
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And this itself could be a privacy breach, because learning this C polynomial might end up
leaking something about x; and x,. And the problem that is happening here is, it is not only

that the degree of sharing has increased, it has become 2t, the BGW invariant says that if the



inputs are shared through a random polynomial, then the output should be shared through a

random polynomial.

That is the invariant. And only when this invariant is maintained, we can argue the security;
because, then we can argue that for each intermediate value, adversary just sees t random
shares lying on a random polynomial whose constant term would have been that intermediate
value. But t random shares could be random shares on any polynomial; hence, the adversary

cannot infer anything.

And remember, for the linear gates, if A polynomial is a randomly chosen polynomial whose
degree is t; that means, for the case of linear gate, if A(Z) is the member of a set of polynomials,
it is a random member of the set of all polynomials of degree-t whose constant term is x;. B is
the random member of the set of all possible polynomials of degree-t, whose constant term is

Xy

And then, if parties just locally add their respective shares of A and B, the resultant C
polynomial, namely the A(Z) + B(Z) polynomial, it also constitutes a random member of the
set of all possible polynomials of degree-t whose constant term isx; + x,. Because, if the
coefficients of A are randomly chosen; of course, except the constant term; and if same is the
case for the B polynomial, then, if you take component wise the coefficients and add them, that

will give you the coefficient of Z¢ for this sum polynomial.

And if the coefficients of Z¢ in the A polynomial and the B polynomial were random, you add
2 random coefficients; that will give you a random coefficient for Z¢ in the C polynomial. So,
that is why this sum polynomial is still a random member of this set of all possible polynomials
of degree-t, whose constant term would have beenx; + x,; but that is not happening for the

case of multiplication.

Even though the A and B polynomials respectively are random members from the respective
set of polynomials, | cannot say that this C polynomial is a random member from the set of all
possible polynomials of degree-2t whose constant term is x; - x,; | cannot make this claim.
And that will lead to a security breach, privacy breach.
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So, let me demonstrate that concretely. So, again, | take the setting where n = 4, all
computations performed over this field. Say x; is 1, and is shared through a 1-degree
polynomial. This is the A polynomial 1 + 2Z and these are the vector of shares for x;. The
value x, is 4 shared through the polynomial 4 + 0Z. And this is the vector of shares for x,.

And | consider a scenario where P; is corrupt.

So, that is why all the values in this table which are in bold are the values which will be seen
by the corrupt P5 using which it will try to now analyse and learn something additional about
x; and x,. So, P; is the corrupt party. This will be the view of corrupt P;. It will see the share
of x;; it will see the share of x,; and it will see all the shares of y, because they will be made

public; and she will be seeing the C polynomial.

So, correctness is not an issue here, because degree of C polynomial will be 2. So, you might
be wondering that it is degree-1 here; no; in general, it could be degree-2; because, A
polynomial could have degree-1, B polynomial could have degree-1, if you multiply, you might
have a term of the form Z2 in the C polynomial; but in this case, the coefficient of Z2 is turning

out to be 0, but overall, C polynomial could be of degree-2.

And we have sufficient number of parties to reconstruct back this Z polynomial. So, the
correctness is not an issue in this particular example. Now, what the corrupt P; might do once
the protocol is over? She is learning the final outcome to be 4; so, from her viewpoint, this

could be one possible scenario with which the protocol has been executed. That means, she



might be analysing in her mind that it could be the case that input x; was 1 and input x, was

4, and the values that I have seen actually corresponds to that case.

Or, from her viewpoint, it could be the case that x; = 2 and x, = 2; or this could be the input
scenario or this could be the input scenario. If at all this protocol would have been satisfying
the privacy property, then adversary or the corrupt P; could not pinpoint whether she has seen
the execution with respect to this input scenario or this input scenario or this input scenario or

this input scenario.

And remember, for the case of linear functions, we have seen, we have rigorously proved that
indeed, adding the shares of input values and then publicly reconstruct the function output does
not reveal anything additional about the inputs of the parties other than what can be inferred
from the function output. But in this particular case where the function is the multiplication of
inputs, we will see that, that is not the case. So, the question marks in the table are the unknown
value from the viewpoint of the corrupt P;. So, now, imagine the corrupt P; makes a hypothesis
that, can it be possible that x; was 2?

(Refer Slide Time: 32:50)
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As soon as she fixes x; = 2; and remember the unknown A polynomial was a 1-degree
polynomial. So, now, as soon as she fixes x; = 2, that means, she is fixing the A polynomial
passing through the point (0, 2). And she has seen the share 2 during the protocol. That means,

(3, 2) also is a point on that unknown A polynomial.



And now, once 2 points are fixed, that automatically fixes the A polynomial. So, that fixes the
A polynomial from the viewpoint of corrupt P;. And if this would have been the A polynomial,
then the shares of P,, P, and P, would have taken these values. Now, once P; has fixed x; =2
in her mind, and her final result is 4, that automatically fixes x, being 2. And now, if x, is
fixed to be 2, that means, adversary or the corrupt P; is now considering the case where the B
polynomial should have passed through the points (0, 2) and (3, 4).

Why (3, 4)? Because her share for the unknown B polynomial that she has seen is actually 4.
So, fixing x, = 2 fixes the B polynomial to 2 + 4Z. And if the B polynomial would have been
2 + 4Z, then these unknown shares of P;, P, and P, for x, would have been this. And now it
matches with whatever adversary or the corrupt P; had actually seen during the protocol

execution.

Indeed, if x; was 2 and secret-shared through the polynomial 2 + 0Z, and if x, was 2 and
secret-shared through the 1-degree polynomial 2 + 4Z, this will be the vector of shares for the
respective parties. And after multiplying, they would have obtained this y;, this y, indeed.
They would constitute the corresponding y values and they would have made these y values

public.

And hence, it is quite possible that adversary, the corrupt P; had actually seen an execution
where x; was 2 and x, was 2. That is quite possible. So, this cannot be ruled out. Now,
adversary takes the same set of values which she had seen in the protocol, namely her view.
So, basically, the values in the bold is the view of the corrupt P;. And we are trying to argue
here whether we can say that view 3 is consistent with all possible x;, x, whose product is 4?
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So, we had shown that the view 3; so, this is view 3, the values in bold here; and we had shown
that it is consistent with x; =2 and x, = 2. Of course, it is also consistent with x; =1 and x, =
4, because that precisely is the values with which the protocol has been executed. Now, the
remaining 2 configurations are left from the viewpoint of the current P;.
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So, let us consider the case where P; is fixing x; to be 4 and x, to be 1. And she is asking in
her mind, analysing in her mind, can it be the case that my view has resulted because | have
participated in an execution where x; is 4 and x, is 1? So, as soon as x, is fixed to 4 and x, is
fixed to 1, then based on the argument that we had seen for the previous input configuration, it

fixes the A polynomial to this value and B polynomial to this value.



That means, if x; would have been 4 and if P;'s share would have been 2, then, this would have
been the full vector of x; shares. In the same way, if x, would have been 1 and if P;'s share
would have been 4, then this would have been the full vector of x, shares. If this would have
been the case, then it cannot be possible that P;, after multiplying its shares of x, and x,, would

have obtained y; = 2.

No, that is not possible; because, his share of x; would have been 0, his share of x, would have
been 2, and 0 into 2 should have given 0. And that means, if this configuration or this execution
has been done, then P, should have broadcasted 0 instead of 2 as its share.
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In the same way, P, should have made public 3 as its share of y, instead of 0. And P, should
have made public 0 as its share of y, instead of 1. And this should not have been the C
polynomial. C polynomial should have been the product of the polynomials 4 + Z and 1 + Z,
which is not the case. That means, now, corrupt P; can say that, definitely | have not seen an
execution with respect to x; =4 and x, = 1. So, that is ruled out from her viewpoint.
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And in the same way, we can show here that she can rule out that view 3 is not consistent, even
with x; = 3 and x, = 3; that is not possible. That means, P; can rule out that, definitely these
are not the pair of inputs of P; and P,. And that is a violation of the privacy condition. And
again, | stress, why this issue is happening? This issue is happening because this C polynomial
is not a random polynomial from the set of all possible polynomials of degree-2t whose
constant term is x, - x,; and that is the problem here.
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So, with that | conclude this lecture. And to summarise, in this lecture, we have seen that there
are 2 challenges associated with evaluating the multiplication gates. The first challenge is
associated related to correctness itself. Namely, if we just asked the parties to locally multiply
their respective shares of the inputs of a multiplication gate, then the degree of sharing blows
up, and we will not have sufficient number of parties to reconstruct back that secret-shared

value.

And the second problem is that, even if we have sufficient number of parties to reconstruct
back that secret-shared output whose degree has become twice, the resultant vector of shares
does not lie on a random polynomial of degree-2t. For instance, it is not an irreducible

polynomial; and that might itself be an issue of privacy. Thank you.
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