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Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: In this 

lecture, we will see the description of BGW MPC protocol where we will now consider we 

also have non-linear gates which are also known as multiplication gates in the circuit. And 

then, we will see what the challenges which we face when we try to securely evaluate the 

multiplication gates in the circuit are. 
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So, to quickly recap, this is the BGW approach for shared circuit-evaluation where we assume 

that the function which needs to be securely computed is represented by a publicly-known 

arithmetic circuit consisting of linear gates and non-linear gates. The shared circuit-evaluation 

starts with secret-sharing the respective inputs of the parties. This is done by the parties 

themselves.  

 

Each party acts as a dealer and secret-shares its input with the degree of sharing being 𝑡. And 

the important thing is that the instance of secret-sharing is random; in the sense that, if 𝑃1 is 

the dealer and if it wants to secret-share the value 𝑥1, it will be generating random shares for 

this value 𝑥1 and distributing the shares and so on. And then, once all the input values are 

secret-shared, each party starts evaluating a copy of the circuit, not on the clear value, but rather 

on the shares of the value.  

 

So, in more detail, parties try to maintain what we call as the BGW gate-invariant, where it 

will be ensured that, if there is a gate whose inputs are secret-shared randomly with the degree 

of sharing being 𝑡, then the gate-output is made available to the parties in a secret-shared 

fashion, where the degree of sharing is still 𝑡 and the vector of shares is a random vector of 

shares.  

 

And in this whole process, neither the gate-inputs nor the gate-output will be revealed. So, for 

instance, consider this input gate. I am saying that once the values 𝑥1 and 𝑥2 are secret-shared, 

the parties will try to ensure that they have their shares of this intermediate 𝐼1. And then, the 

parties will ensure that they have the shares of this intermediate value 𝐼2.  



 

And then, they will ensure that, given the shares of 𝐼1 and 𝐼2, the parties own their respective 

shares of 𝐼3. And then, this 𝑐 is a publicly known constant, so, the parties will ensure that, given 

the shares of 𝐼3, they obtain their respective shares of 𝑦. And finally, once all the values, 

intermediate values in the circuit have been made available in a secret-shared fashion, the 

parties go and publicly reconstruct the final output value.  

 

I stated earlier that to maintain this gate-invariant, the parties may need to interact. We had 

seen that the (𝑛, 𝑡) secret-sharing scheme which is used in the BGW protocol is the Shamir 

secret-sharing scheme. And since Shamir secret-sharing satisfies the linearity property to 

maintain the gate-invariant for linear gates, it does not require any interaction among the 

parties. But we will see that, when it comes to the multiplication gates, to maintain the gate-

invariant, the parties need to interact.  

 

So, the focus of this lecture will be to answer this question - can we maintain this BGW gate-

invariant without asking the parties to interact even for the multiplication gates? And we will 

see that the answer is no.  
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So, before going into that, here is a quick recap of the linearity property of (𝑛, 𝑡) secret-sharing 

where we had seen that any linear function of secret-shared inputs can be computed by applying 

the function on the shares of the input values itself. So, for instance, if you want to compute 

𝑠 + 𝑐, where 𝑐 is publicly-known but s is not known but rather secret-shared; then, by adding 

the shares of 𝑠 with the value 𝑐, the parties obtain a secret-sharing of 𝑠 + 𝑐.  



 

In the same way, if 𝑠 and 𝑠′ are 2 unknown values, but secret-shared with the same threshold 

𝑡, then, to obtain shares of 𝑠 + 𝑠′, each party just has to go and add its respective share of 𝑠 and 

𝑠′. Similarly, if 𝑠 is unknown and if 𝑐 is a publicly-known value, and if each party multiplies 

its respective share of 𝑠 with this public known constant 𝑐, then it obtain its respective share of 

𝑐 ⋅ 𝑠.  

 

But when it comes to multiplying 2 secret-shared values 𝑠 and 𝑠′, we had seen that if we ask 

the parties to just locally multiply their respective shares of 𝑠 and s’, then the resultant vector 

of shares will constitute a secret-sharing of𝑠 ⋅ 𝑠′, but the degree of sharing will be 2𝑡 and not 

𝑡; because the resultant vector of shares will now lie on a polynomial of the degree-2𝑡 and not 

of degree 𝑡. Namely, this polynomial 𝐴(𝑍) ⋅ 𝐵(𝑍) will be a 2-degree polynomial, where 𝐴(𝑍) 

is the polynomial for secret-sharing the value 𝑠 and 𝐵(𝑍) is the polynomial secret-sharing the 

value 𝑠′.  

(Refer Slide Time: 06:49) 

 

So, now, we will see what the challenges we face when we try to maintain the BGW invariant 

for evaluating the multiplication gates. And to demonstrate the challenges, I will consider a 

very simple scenario. I will consider a 4-party function where party 1 has the input 𝑥1, party 2 

has the input 𝑥2, party 3 has no input and party 4 has no input, and all the 4 parties are interested 

to learn 𝑥1 ⋅ 𝑥2, where 𝑥1 and 𝑥2 are some field elements.  

I will assume that, out of these 4 parties, up to 𝑡 parties can be passively corrupted by a 

computationally-unbounded adversary. The security goal is to ensure that the corrupt parties 



should not learn anything additional beyond what they can learn from 𝑥1 ⋅ 𝑥2 and the inputs of 

2 corrupt parties which are under the control of the adversary. So, this is a very simple function 

consisting of just 1 multiplication gates.  

 

There is no linear gate; there is just 1 multiplication gate, and you obtain the function output. 

So, that is our goal. Now, let us see what goes wrong if we try to blindly follow the BGW MPC 

protocol for this circuit, where we start with asking the input holders to secret-share their 

respective inputs; and then we multiply the shares of 𝑥1 and 𝑥2; and then we finally go and 

publicly reconstruct the vector of shares of 𝑥1 ⋅ 𝑥2.  

 

We will see what exactly goes wrong in this protocol. So, we start with the inputs and we asked 

𝑃1 to act as a dealer and 𝑃2 to act as a dealer and independently secret-share their respective 

inputs 𝑥1 and 𝑥2 with random 2-degree polynomials. Here is the table of values. So, 𝑥1 will be 

secret-shared and it will produce 4 shares. The first share will be with the first party, second 

share with the second party and so on.  

 

Similarly, 𝑃2 will act as a dealer and it will pick a 2-degree polynomial, a random 2-degree 

polynomial whose constant term is 𝑥2, generate 4 shares and distribute the individual shares to 

the respective parties. This will complete the input sharing phase. There are no more inputs for 

this function. And now, parties start evaluating the circuit. So, they now have the inputs for 

this multiplication gate available in a secret-shared fashion.  

 

They take the first gate in this circuit, which is the multiplication gate. Let the parties locally 

multiply their respective shares of 𝑥1 and 𝑥2. So, party 1 multiplies 𝑥11 with 𝑥21. When I say 

multiply, multiply as per the field multiplication operation. And it will produce a field element; 

call it 𝑦1. Similarly, 𝑃2 goes and multiplies its respective shares of 𝑥1 and 𝑥2; 𝑃3 multiplies its 

respective shares of 𝑥1 and 𝑥2; and 𝑃4 multiplies its respective shares of 𝑥1, 𝑥2.  

 

And let 𝑦1, 𝑦2, 𝑦3, 𝑦4 be the resultant vector of shares, where the 𝑖𝑡ℎ component is with the 𝑖𝑡ℎ 

party. So, as we have seen earlier, this vector of values 𝑦1, 𝑦2, 𝑦3, 𝑦4, namely, (𝛼1, 𝑦1); (𝛼2, 𝑦2); 

(𝛼3, 𝑦3); and (𝛼4, 𝑦4); they constitute or they lie on a 2𝑡-degree polynomial, because 𝑥1 was 

shared through a polynomial 𝐴 whose degree was 𝑡. 𝐵 was secret-shared through a 𝑡-degree 



polynomial; call it as a 𝐵 polynomial. The constant term of 𝐴 was 𝑥1. The constant term of 𝐵 

polynomial was 𝑥2.  

 

And now, if you multiply these 2 polynomials, you will get a 𝐶 polynomial, and its degree will 

be 2𝑡. And the 𝐶 polynomial evaluated at 𝛼1, 𝛼2, 𝛼3, 𝛼4, will be giving you 𝑦1, 𝑦2, 𝑦3, 𝑦4. So, 

that is why, this vector of shares  𝑦1, 𝑦2, 𝑦3, 𝑦4, it constitutes an (𝑛, 2𝑡) Shamir sharing of 𝑦. 

And now, let as per the BGW protocol, since there are no more gates after this multiplication 

gates, the parties have evaluated all the gates and the function output is available in a secret-

shared fashion; so, let the parties exchange the shares of 𝑦 among themselves.  

 

That means, 𝑦1 is given to everyone, 𝑦2 is given to everyone, 𝑦3 is given to everyone and 𝑦4 is 

given to everyone. And then they interpolate a 2-degree polynomial namely the 𝐶 polynomial 

and get back the value 1, suppose this is the BGW protocol, which we use here to evaluate this 

circuit. Now, there are 2 problems with our protocol.  
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And one problem is associated with the correctness property and the other problem is 

associated with the privacy property. So, let us see the problem associated with correctness. 

So, consider a case where the number of parties 𝑛, satisfies this condition. That means, 𝑛 ≤ 2𝑡. 

Now, if this is the case, then the problem that we are going to face in the proposed protocol is 

that, the value of 𝑦 need not be reconstructed back correctly, because, this vector of 

shares𝑦1, 𝑦2, 𝑦3, 𝑦4, they lie on a 2𝑡-degree polynomial.  

 



And to reconstruct a 2𝑡-degree polynomial through Lagrange's interpolation, we need at least 

2𝑡 + 1 distinct values or 2𝑡 + 1 distinct shares on that polynomial, to uniquely reconstruct it 

back. But if we are in a setting where 𝑛 ≤ 2𝑡, then, even if all the shares of 𝑦 are made public, 

we cannot reconstruct back the polynomial 𝐶(𝑍) correctly. And if polynomial 𝐶(𝑍) is not 

reconstructed correctly, you cannot reconstruct back 𝑦 correctly.  

 

And hence, the parties may not obtain the correct output. So, to make my point more clear, 

here, we are actually, in this example, in the setting where the number of parties is 4 and your 

𝑡 = 2; and imagine that we take this specific example where 𝑥1 = 0, and 𝑃1 shares 𝑥1 = 0 

through a 2-degree polynomial. So, this is a 2-degree polynomial. You can interpret it as 𝑍2 +

0 ⋅ 𝑍 + 0.  

 

And this polynomial will be evaluated at 𝛼1, 𝛼2, 𝛼3, 𝛼4, which I am taking to be 1, 2, 3 and 4 

respectively. So, this will be your vector of shares for 𝑥1. And say 𝑥2 = 1. It is secret-shared 

through this polynomial. So, again, this polynomial, you can interpret it as 𝑍2 + 0 ⋅ 𝑍 + 11. 

So, this is a 2-degree polynomial. This polynomial evaluated at 1, 2, 3, 4 will produce these 

vector of shares.  

 

Now, let the parties multiply their respective shares of 𝑥1 and 𝑥2. Remember, all the 

computations are performed over ℤ5, where the additions are addition modulo 5 and 

multiplications are multiplication modulo 5. So, this will be your 𝑦1, 𝑦2, 𝑦3, 𝑦4. And now, if we 

interpolate the points 𝑦1, 𝑦2, 𝑦3, 𝑦4, of course, along with 𝛼1, 𝛼2, 𝛼3, 𝛼4, we will be getting back 

this polynomial.  

 

I am not showing the computations in the slide, but you can verify it. If you interpolate the 

points (𝛼1, 𝑦1); (𝛼2, 𝑦2); (𝛼3, 𝑦3); and (𝛼4, 𝑦4); you will be getting this polynomial. This 

polynomial is also a 2-degree polynomial, because I can interpret it as this. And now, this is 

the polynomial which parties reconstruct back. Then, the output of the function which parties 

will obtain is 1.  

 

But that is not the correct output, because, if 𝑥1 = 0 and if 𝑥2 = 1, then 𝑦 should be 0. But 

what parties are reconstructing here? They are reconstructing 1 as the function output. And 

why this problem is happening? This problem is happening because the 𝐴 polynomial was this 



𝑍2 + 0; the B polynomial was 𝑍2 + 1; and now, if I consider these 4 values 𝑦1, 𝑦2, 𝑦3, 𝑦4, they 

lie on the 𝐶 polynomial.  

 

And 𝐶 polynomial has degree-4, because it is the product of 𝐴 polynomial and 𝐵 polynomial, 

each of which is of degree-2; and if you multiply 2 polynomials of degree-2, you will get a 

resultant polynomial whose degree is 4. And to reconstruct uniquely and correctly a 4-degree 

polynomial, you need 5 distinct points or 5 𝑦 values or 𝑦 shares on that 𝐶 polynomial, but we 

are having only 4 parties in the system.  

 

You do not have the fifth party who can provide you the fifth point on this 𝐶 polynomial in the 

form of its share, and using which you can reconstruct back your 𝑦 correctly. So, that is a 

correctness problem. And you can imagine that this problem is arriving just for 1 single 

multiplication gate; but imagine a circuit where you have a computation of the form 𝑥1 ⋅ 𝑥2 ⋅

… ⋅ 𝑥𝑛, a computation of this form.  

 

So, you started, suppose you follow the same protocol there, where all the inputs are secret-

shared; and then, say you ask the parties to locally multiply their shares of 𝑥1 and 𝑥2; the degree 

of sharing becomes 2𝑡. And now, you ask the parties to take this vector of shares and locally 

multiply their respective shares from this vector with the shares of 𝑥3, then the resultant degree 

will become 3𝑡.  

 

And like that, the degree of the resultant output will keep on increasing after every 

multiplication. And finally, the degree may become so high that you do not have sufficient 

number of parties to provide those many shares during the reconstruction of that final output. 

So, that will lead to an error in the correctness property. So, that is the problem number 1 or 

challenge number 1.  
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Now, let us see the second problem, second challenge associated with evaluating the 

multiplication gates; and this is related to the privacy property; and this is very subtle to 

understand. So, imagine for the time being that you are in a setting where 𝑛 ≥ 2𝑡 + 1. That 

means, I take, say for instance, the same example, same setting where 𝑛 = 4, but now, I am 

working in a setting where 𝑡 = 1.  

 

It is given to me that up to 1 party can be semi-honestly corrupted, my passively corrupted by 

an unbounded adversary. That means, we now, no longer face that issue of correctness or 

problem 1 which we had encountered just now. Why so? Because, now we have just 1 

multiplication gate. If 𝑥1 is secret-shared through a degree-𝑡 polynomial 𝐴 and if 𝐵 is also 

secret-shared through a random degree-𝑡 polynomial, then my 𝐶 polynomial will be of degree-

2𝑡.  

 

And I am assuming that I am in a setting where𝑛 ≥ 2𝑡 + 1. That means, if parties make public 

their respective shares of 𝑦, we have now sufficient number of shares to uniquely get back this 

𝐶 polynomial and take its constant term as the final output. So, correctness is no longer an 

issue, because I am ensuring that we are in the setting where n is greater than equal to 2𝑡 + 1.  

 

But now, the problem is that the resultant shares of 𝑦 which are obtained by locally multiplying 

the shares of 𝑥; even though the degree of sharing is 2𝑡, the resultant vector of 𝑦 shares do not 

constitute a random vector of shares for the value 𝑦 lying on a 2𝑡-degree polynomial. What 

does that mean? I mean here that, if you take this 𝐶(𝑍) polynomial and (𝛼1, 𝑦1); (𝛼2, 𝑦2); 



(𝛼3, 𝑦3); and (𝛼4, 𝑦4) lying on the 𝐶(𝑍) polynomial; of course the degree of 𝐶 polynomial is 

2𝑡; I can no longer claim that 𝐶 polynomial could be a random polynomial from the set of all 

possible polynomials of degree-2𝑡 whose constant term is 𝑦.  

 

So, remember, this set 𝒫(𝑦,2𝑡) denotes the set of all possible 2𝑡-degree polynomial whose 

constant term is 𝑦. So, my claim is, the 𝐶 polynomial over which these values (𝛼1, 𝑦1); 

(𝛼2, 𝑦2); (𝛼3, 𝑦3); and (𝛼4, 𝑦4) lie, is not a randomly chosen element from this set, or it is not 

a randomly chosen polynomial whose constant term is 𝑦 and whose degree is 2𝑡. What does it 

mean?  

 

When I say that I am picking a random polynomial whose constant term is 𝑦 and whose degree 

is 2𝑡, by that I mean that each of the coefficients of that polynomial except the constant term 

is randomly chosen; but the 𝐶 polynomial that we are obtaining here is not a polynomial whose 

each of the coefficients except the constant coefficient or the constant term is randomly chosen 

from the field. Why so?  

(Refer Slide Time: 23:27) 

 

This is because, if we consider the 𝐶 polynomial, it does not constitute an irreducible 

polynomial. What is an irreducible polynomial? So, we say a polynomial is reducible; 

informally we say a polynomial is reducible if it can be factorised into non-trivial polynomials. 

And what does non-trivial polynomials mean here? Basically, they mean polynomials whose 

degree is less than the polynomial which we want to factorise.  

 



So, that is a very high level definition of a reducible polynomial. So, in this case, the 𝐶 

polynomial can be indeed factorised into 2 factors, namely, 𝐴 polynomial and 𝐵 polynomial. 

And the degree of both the 𝐴 polynomial as well as 𝐵 polynomial is strictly less than the degree 

of the 𝐶 polynomial, because the degree of the 𝐶 polynomial is 2𝑡 and the degree of the 𝐴 

polynomial is 𝑡 and the degree of the 𝐵 polynomial is 𝑡.  

 

So, that means that this 𝐶 polynomial definitely is not a randomly chosen polynomial from this 

set, because, if it would have been a randomly chosen polynomial, then, with equal probability, 

it could be a reducible polynomial of degree-2𝑡, whose constant term would have been 𝑦, or 

with equal probability, it could have been an irreducible polynomial whose constant term 

would have been 𝑦, and degree being 2𝑡.  

 

But we know in this case that, if parties just locally multiply their respective shares of 𝑥1 and 

𝑥2, and then publicly reconstruct the 𝐶 polynomial, this 𝐶 polynomial is not one of the 

polynomials randomly chosen from this set 𝒫(𝑦,2𝑡); because we know definitely for sure that it 

is definitely a reducible polynomial, because the 𝐴 polynomial and the 𝐵 polynomial constitute 

the factors of this 𝐶 polynomial. That means, this 𝐶 polynomial is no longer a random 

polynomial.  
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And this itself could be a privacy breach, because learning this 𝐶 polynomial might end up 

leaking something about 𝑥1 and 𝑥2. And the problem that is happening here is, it is not only 

that the degree of sharing has increased, it has become 2𝑡, the BGW invariant says that if the 



inputs are shared through a random polynomial, then the output should be shared through a 

random polynomial.  

 

That is the invariant. And only when this invariant is maintained, we can argue the security; 

because, then we can argue that for each intermediate value, adversary just sees 𝑡 random 

shares lying on a random polynomial whose constant term would have been that intermediate 

value. But 𝑡 random shares could be random shares on any polynomial; hence, the adversary 

cannot infer anything.  

 

And remember, for the linear gates, if 𝐴 polynomial is a randomly chosen polynomial whose 

degree is 𝑡; that means, for the case of linear gate, if 𝐴(𝑍) is the member of a set of polynomials, 

it is a random member of the set of all polynomials of degree-𝑡 whose constant term is 𝑥1. 𝐵 is 

the random member of the set of all possible polynomials of degree-𝑡, whose constant term is 

𝑥2.  

 

And then, if parties just locally add their respective shares of 𝐴 and 𝐵, the resultant 𝐶 

polynomial, namely the 𝐴(𝑍) + 𝐵(𝑍) polynomial, it also constitutes a random member of the 

set of all possible polynomials of degree-𝑡 whose constant term is𝑥1 + 𝑥2. Because, if the 

coefficients of 𝐴 are randomly chosen; of course, except the constant term; and if same is the 

case for the 𝐵 polynomial, then, if you take component wise the coefficients and add them, that 

will give you the coefficient of 𝑍𝑖 for this sum polynomial.  

 

And if the coefficients of 𝑍𝑖  in the 𝐴 polynomial and the 𝐵 polynomial were random, you add 

2 random coefficients; that will give you a random coefficient for 𝑍𝑖 in the 𝐶 polynomial. So, 

that is why this sum polynomial is still a random member of this set of all possible polynomials 

of degree-𝑡, whose constant term would have been𝑥1 + 𝑥2; but that is not happening for the 

case of multiplication.  

 

Even though the 𝐴 and 𝐵 polynomials respectively are random members from the respective 

set of polynomials, I cannot say that this 𝐶 polynomial is a random member from the set of all 

possible polynomials of degree-2𝑡 whose constant term is 𝑥1 ⋅ 𝑥2; I cannot make this claim. 

And that will lead to a security breach, privacy breach. 
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So, let me demonstrate that concretely. So, again, I take the setting where 𝑛 = 4, all 

computations performed over this field. Say 𝑥1 is 1, and is shared through a 1-degree 

polynomial. This is the 𝐴 polynomial 1 + 2𝑍 and these are the vector of shares for 𝑥1. The 

value 𝑥2 is 4 shared through the polynomial 4 + 0𝑍. And this is the vector of shares for 𝑥2. 

And I consider a scenario where 𝑃3 is corrupt.  

 

So, that is why all the values in this table which are in bold are the values which will be seen 

by the corrupt 𝑃3 using which it will try to now analyse and learn something additional about 

𝑥1 and 𝑥2. So, 𝑃3 is the corrupt party. This will be the view of corrupt 𝑃3. It will see the share 

of 𝑥1; it will see the share of 𝑥2; and it will see all the shares of 𝑦, because they will be made 

public; and she will be seeing the 𝐶 polynomial.  

 

So, correctness is not an issue here, because degree of 𝐶 polynomial will be 2. So, you might 

be wondering that it is degree-1 here; no; in general, it could be degree-2; because, 𝐴 

polynomial could have degree-1, 𝐵 polynomial could have degree-1, if you multiply, you might 

have a term of the form 𝑍2 in the 𝐶 polynomial; but in this case, the coefficient of 𝑍2 is turning 

out to be 0, but overall, 𝐶 polynomial could be of degree-2.  

 

And we have sufficient number of parties to reconstruct back this 𝑍 polynomial. So, the 

correctness is not an issue in this particular example. Now, what the corrupt 𝑃3 might do once 

the protocol is over? She is learning the final outcome to be 4; so, from her viewpoint, this 

could be one possible scenario with which the protocol has been executed. That means, she 



might be analysing in her mind that it could be the case that input 𝑥1 was 1 and input 𝑥2 was 

4, and the values that I have seen actually corresponds to that case.  

 

Or, from her viewpoint, it could be the case that 𝑥1 = 2 and 𝑥2 = 2; or this could be the input 

scenario or this could be the input scenario. If at all this protocol would have been satisfying 

the privacy property, then adversary or the corrupt 𝑃3 could not pinpoint whether she has seen 

the execution with respect to this input scenario or this input scenario or this input scenario or 

this input scenario.  

 

And remember, for the case of linear functions, we have seen, we have rigorously proved that 

indeed, adding the shares of input values and then publicly reconstruct the function output does 

not reveal anything additional about the inputs of the parties other than what can be inferred 

from the function output. But in this particular case where the function is the multiplication of 

inputs, we will see that, that is not the case. So, the question marks in the table are the unknown 

value from the viewpoint of the corrupt 𝑃3. So, now, imagine the corrupt 𝑃3 makes a hypothesis 

that, can it be possible that 𝑥1 was 2? 
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As soon as she fixes 𝑥1 = 2; and remember the unknown 𝐴 polynomial was a 1-degree 

polynomial. So, now, as soon as she fixes 𝑥1 = 2, that means, she is fixing the 𝐴 polynomial 

passing through the point (0, 2). And she has seen the share 2 during the protocol. That means, 

(3, 2) also is a point on that unknown 𝐴 polynomial.  

 



And now, once 2 points are fixed, that automatically fixes the 𝐴 polynomial. So, that fixes the 

𝐴 polynomial from the viewpoint of corrupt 𝑃3. And if this would have been the 𝐴 polynomial, 

then the shares of 𝑃1, 𝑃2 and 𝑃4 would have taken these values. Now, once 𝑃3 has fixed 𝑥1 = 2 

in her mind, and her final result is 4, that automatically fixes 𝑥2 being 2. And now, if 𝑥2 is 

fixed to be 2, that means, adversary or the corrupt 𝑃3 is now considering the case where the 𝐵 

polynomial should have passed through the points (0, 2) and (3, 4).  

 

Why (3, 4)? Because her share for the unknown 𝐵 polynomial that she has seen is actually 4. 

So, fixing 𝑥2 = 2 fixes the 𝐵 polynomial to 2 + 4𝑍. And if the 𝐵 polynomial would have been 

2 + 4𝑍, then these unknown shares of 𝑃1, 𝑃2 and 𝑃4 for 𝑥2 would have been this. And now it 

matches with whatever adversary or the corrupt 𝑃3 had actually seen during the protocol 

execution.  

 

Indeed, if 𝑥1 was 2 and secret-shared through the polynomial 2 + 0𝑍, and if 𝑥2 was 2 and 

secret-shared through the 1-degree polynomial 2 + 4𝑍, this will be the vector of shares for the 

respective parties. And after multiplying, they would have obtained this 𝑦1, this 𝑦2 indeed. 

They would constitute the corresponding 𝑦 values and they would have made these 𝑦 values 

public.  

 

And hence, it is quite possible that adversary, the corrupt 𝑃3 had actually seen an execution 

where 𝑥1 was 2 and 𝑥2 was 2. That is quite possible. So, this cannot be ruled out. Now, 

adversary takes the same set of values which she had seen in the protocol, namely her view. 

So, basically, the values in the bold is the view of the corrupt 𝑃3. And we are trying to argue 

here whether we can say that view 3 is consistent with all possible 𝑥1, 𝑥2 whose product is 4?  
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So, we had shown that the view 3; so, this is view 3, the values in bold here; and we had shown 

that it is consistent with 𝑥1 = 2 and 𝑥2 = 2. Of course, it is also consistent with 𝑥1 = 1 and 𝑥2 = 

4, because that precisely is the values with which the protocol has been executed. Now, the 

remaining 2 configurations are left from the viewpoint of the current 𝑃3.  
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So, let us consider the case where 𝑃3 is fixing 𝑥1 to be 4 and 𝑥2 to be 1. And she is asking in 

her mind, analysing in her mind, can it be the case that my view has resulted because I have 

participated in an execution where 𝑥1 is 4 and 𝑥2 is 1? So, as soon as 𝑥1 is fixed to 4 and 𝑥2 is 

fixed to 1, then based on the argument that we had seen for the previous input configuration, it 

fixes the 𝐴 polynomial to this value and 𝐵 polynomial to this value.  

 



That means, if 𝑥1 would have been 4 and if 𝑃3's share would have been 2, then, this would have 

been the full vector of 𝑥1 shares. In the same way, if 𝑥2 would have been 1 and if 𝑃3's share 

would have been 4, then this would have been the full vector of 𝑥2 shares. If this would have 

been the case, then it cannot be possible that 𝑃1, after multiplying its shares of 𝑥1 and 𝑥2, would 

have obtained 𝑦1 = 2.  

 

No, that is not possible; because, his share of 𝑥1 would have been 0, his share of 𝑥2 would have 

been 2, and 0 into 2 should have given 0. And that means, if this configuration or this execution 

has been done, then 𝑃1 should have broadcasted 0 instead of 2 as its share. 

(Refer Slide Time: 37:57) 

 

In the same way, 𝑃2 should have made public 3 as its share of 𝑦, instead of 0. And 𝑃4 should 

have made public 0 as its share of 𝑦, instead of 1. And this should not have been the 𝐶 

polynomial. 𝐶 polynomial should have been the product of the polynomials 4 + 𝑍 and 1 + 𝑍, 

which is not the case. That means, now, corrupt 𝑃3 can say that, definitely I have not seen an 

execution with respect to 𝑥1 = 4 and 𝑥2 = 1. So, that is ruled out from her viewpoint.  
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And in the same way, we can show here that she can rule out that view 3 is not consistent, even 

with 𝑥1 = 3 and 𝑥2 = 3; that is not possible. That means, 𝑃3 can rule out that, definitely these 

are not the pair of inputs of 𝑃1 and 𝑃2. And that is a violation of the privacy condition. And 

again, I stress, why this issue is happening? This issue is happening because this 𝐶 polynomial 

is not a random polynomial from the set of all possible polynomials of degree-2𝑡 whose 

constant term is 𝑥1 ⋅ 𝑥2; and that is the problem here.  
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So, with that I conclude this lecture. And to summarise, in this lecture, we have seen that there 

are 2 challenges associated with evaluating the multiplication gates. The first challenge is 

associated related to correctness itself. Namely, if we just asked the parties to locally multiply 

their respective shares of the inputs of a multiplication gate, then the degree of sharing blows 

up, and we will not have sufficient number of parties to reconstruct back that secret-shared 

value.  

 

And the second problem is that, even if we have sufficient number of parties to reconstruct 

back that secret-shared output whose degree has become twice, the resultant vector of shares 

does not lie on a random polynomial of degree-2𝑡. For instance, it is not an irreducible 

polynomial; and that might itself be an issue of privacy. Thank you. 
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