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Hello everyone. Welcome to this lecture. So, in this lecture, we will continue our discussion 

on the BGW MPC protocol for securely computing linear functions, and we will perform its 

security analysis. 

(Refer Slide Time: 00:41) 

 

(Refer Slide Time: 00:42) 

 



So, before going into the security analysis formally, let us try to understand the security through 

an example itself, because that will help us to understand the intuition regarding why the 

protocol is secure. And I am considering here the toy example, where my number of parties is 

4 and the threshold is 2. That means, any 2 out of the 4 parties can be passively corrupt. And I 

am performing all the computations over this field.  

 

And my plus and dot operations are +5 and ⋅5 respectively. And I am taking the case where 

my constant 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are all 1. Namely, I am taking simply the sum function, and I am 

setting my evaluation points to 1, 2, 3 and 4 respectively. Well, anyhow, these are the only 

non-zero evaluation points available for this specific field. But in general, if I take a finite field, 

it could be any non-zero elements which are distinct, and they can be chosen as your evaluation 

points.  

 

And I am taking an execution scenario where the inputs are 2, 1, 1 and 0. Namely, the final 

sum will be 4. So, that means, finally the parties will learn the sum 𝑦 = 4; and depending upon 

which 2 parties are corrupt, they will learn anyhow, what could be the overall sum of the 

remaining 2 parties. That much information is allowed to be learnt from the inputs and output 

of the correct parties; but we have to see that, apart from that, whatever messages the parties 

exchange in this BGW MPC protocol, that does not help those 2 bad parties to learn anything 

additional.  

 

So, for instance, if I say the first 2 parties are under the control of adversary, they will anyhow 

learn that the inputs of the remaining 2 parties, together it is 2; because the final sum is 4. But 

whether it is 1, 1 or whether it is 0, 2 or whether it is 2, 0, that much information should not be 

revealed, because that is not allowed to be learnt to these corrupt parties as per the security 

definition. That is what we have to ensure.  
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So, to start with, 𝑃1 will secret-share its input. So, suppose this is its sharing polynomial; as I 

said, this will be considered as a 2-degree polynomial. So, all the sharing polynomials have to 

be degree-2. So, this is a 2-degree polynomial, even though the coefficients of 𝑍 and 𝑍2 are 0; 

but overall, it will be considered as a 2-degree polynomial. And the shares that 𝑃1 will compute 

with respect to this sharing polynomial will be 2, 2, 2 and 2, which will be communicated over 

the private channels to the respective parties; and that will be the individual shares of the input 

of the first party.  
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Now, suppose the second party decides to secret-share its input 1 through this sharing 

polynomial; call this sharing polynomial is 𝐵 polynomial. Again, it could be any 𝐵 polynomial 

whose constant term is 1; and the remaining 2 coefficients can be randomly chosen from ℤ5. 

And now, with respect to this sharing polynomial, this 𝐵 polynomial evaluated that is 



,𝛼1, 𝛼2, 𝛼3, 𝛼4 will produce the shares 2, 0, 0, 2. And the shares will be communicated over the 

private channel. So, that will give the individual parties their respective shares of 𝑥2.  
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Suppose, the third party decides to secret-share its input through this polynomial; so, I have 

not written down 0 ⋅ 𝑍2; so, it is a polynomial of degree-2. And with respect to this 𝐶 

polynomial, the shares computed by 𝑃3 will be 3, 0, 2, 4, which it will securely communicate. 

And that will give the parties their respective shares for the input 𝑥3.  
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And say, for the fourth party, it decides to secret-share its input through this random 𝐷 

polynomial; compute the shares and distribute to the respective parties. That is the input stage. 

And after that, what the parties have to do? They have to just add their respective shares of 



𝑥1, 𝑥2, 𝑥3 and 𝑥4. That means, 𝑃1 has to add these 4 shares, and then add as per addition modulo 

5. So, 3 + 2 is 5; 5 + 2 is 7; and then, 7 modulo 5 will be 2. 
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That will be party 𝑃1's share for the final output 𝑦. Similarly, 𝑃2 has to go and add it is all shares 

of 𝑥1, 𝑥2, 𝑥3, 𝑥4. So, 4 + 2 is 6; and 6 modulo 5 will be 1. So, by the way, in the animation, you 

compute your final share of 𝑦 and communicate that to everyone. 
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So, 𝑦1 will be communicated to everyone.  
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Similarly, the share of 𝑦 for 𝑃2 will be 1, because 4 + 2 will be 6; 6 modulo 5 is 1. And then, it 

will communicate to everyone. But remember, in the actual protocol, this is not done like this. 

Every party obtains its respective share of 𝑦 and simultaneously communicates to everyone; 

but for the animation, I am showing it in a sequential way, remember.  
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Now, 𝑃3 will do the following: If it adds its shares of𝑥1, 𝑥2, 𝑥3, 𝑥4, that will be 6; 6 modulo of 

5 will be 1. That is share of 𝑦 it will communicate to everyone.  
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And then, 𝑃4 finally goes and add its shares of 𝑥1, 𝑥2, 𝑥3 and 𝑥4. That will be 12; 12 modulo 5 

will be 2. And now, it will communicate that to everyone.  
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So, now, everyone will have the full vector of shares of𝑦1, 𝑦2, 𝑦3, 𝑦4. And now, they have to 

interpolate these and get back the value of 𝑦. So, interpolate in the sense, they have to now 

interpolate (𝛼1, 𝑦1); (𝛼2, 𝑦2); (𝛼3, 𝑦3); and (𝛼4, 𝑦4); they have to interpolate. And now, if they 

interpolate these values, they obtain this 𝐸 polynomial. And the constant term of this 𝐸 

polynomial will be taken as the final output.  

 

That is the execution of BGW protocol, assuming 𝑥1 = 2, 𝑥2 = 1, 𝑥3 = 1, 𝑥4 = 0. I stress, 

again if the BGW protocol is executed by the parties with the same set of inputs 𝑥1, 𝑥2, 𝑥3, 𝑥4, 



then it need not be the case that they pick the same 𝐴 polynomials, 𝐵 polynomials, 𝐶 

polynomials and 𝐷 polynomials for sharing, and get the same 𝐸 polynomial. 

(Refer Slide Time: 08:29) 

 

It could be any random 𝐴 polynomial, any random 𝐵 polynomial, any random 𝐶 polynomial, 

any random 𝐷 polynomial, of course, with their respective constant terms being 2 and 1 and 1 

and 0. And finally, they will obtain; an 𝐸 polynomial which could be another random 

polynomial of degree-2 except that its constant term will be 4; because, there is an internal 

randomness used as part of the BGW MPC protocol, even though your function 𝑦 is a 

deterministic output of 𝑥1, 𝑥2, 𝑥3, 𝑥4.  
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So, now, we will try to understand the privacy through this example, which will help us to 

understand the intuition. We take the case where, say the first and the fourth party, they are 



corrupt. And basically, I have constructed here a table, where basically I have written down all 

the variables and the values that they have taken during the concrete execution. And along the 

first row, the values that are there, basically they are the shares of the value 𝑥1 that the 

respective parties, 𝑃1, 𝑃2, 𝑃3 and 𝑃4 would have seen.  

 

Along the second row, I have denoted the shares. So, basically, the first row values, they are 

the values on 𝐴(𝑍) polynomial, which party 𝑃1 has taken and during the execution. The second 

row basically are the shares computed as per the 𝐵 polynomial. The third row denotes the 𝐶 

polynomial; the fourth row denotes the 𝐷 polynomial; and the last row denotes the 𝐸 

polynomial which parties finally obtain by interpolating the shares 𝑦1, 𝑦2, 𝑦3, 𝑦4.  

 

And in the table, you see that certain values are highlighted, they are bold. So, for instance, the 

first row is completely bold, because I am considering the case where 𝑃1 and 𝑃4, I am assuming 

to be corrupt. So, that means, in this table, the values 𝑃1 and 𝑃4 see in the protocol is their view, 

and that is highlighted in the bold. So, since 𝑃1 is under the control of adversary, it will 

completely know the polynomial 𝐴(𝑍).  

 

And hence, it will know that what are the shares 𝑃1 has distributed. That is why, the values 

along the first row, they are highlighted in bold. But 𝑃2 is not under the control of the adversary, 

so, that is why, the value of 𝑥2 is not highlighted in bold. But for 𝑥2, there are 2 shares which 

adversary learns, namely, the share which is given to party 1 and a share which is given to party 

4.  

 

So, that is why, this value and this value in the second row, they are highlighted in bold. 

Similarly, 𝑥3 is not known to the adversary. But for 𝑥3, 𝑃1 and 𝑃4, they give their respective 

shares to the adversary. So, that is why, the first value here, first share here and the fourth share, 

they are highlighted in bold. And 𝑥4 is now completely known to adversary. And the 𝐷(𝑍) 

polynomial is completely known to the adversary, because, adversary I am assuming is 

controlling party 𝑃4.  

 

So, that is why, it will know the complete fourth row. And now, the last row, all the values are 

public, because 𝑦1 is made public, 𝑦2 is made public, 𝑦3 is made public, 𝑦4 is made public. 

And since the polynomial 𝐸(𝑍) is interpolated in public, the value 𝑦 is known. So, that means, 



from the viewpoint of the adversary, the values which are not highlighted in bold are the 

unknown values.  
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So, let me put them in question mark, from the viewpoint of 𝑃1 and 𝑃4. Whereas, all other 

values which are not with question mark, they are actually known to the adversary, where I am 

assuming, I stress, I assuming that 𝑃1 and 𝑃4 are corrupt. If it would have been another set of 2 

corrupt parties, then the question marks will be changed here. That means, that question marks 

will be in some other entries and so on.  

 

So, now, what adversary will try to do here, assuming 𝑃1 and 𝑃4 are bad? They will take this 

table; and of course they know that 𝑥1 is 2, 𝑥4 is 0 and the final sum is 4. They will try to figure 

out what could be these 2 question marks, because that is a private information. So, now, 

adversary might try to analyse and ask many questions in its mind. It may ask in its mind, is it 

the case that the values that I have seen in the protocol are actually corresponding to the case 

where 𝑃2's input was 0 and 𝑃3's input was 2?  

 

That is one possibility for the adversary. Or, adversary could ask in its mind that, is this table 

of information some of which is known, some of which is not known could occur for the case 

where 𝑥2 is 2 and 𝑥3 is 0. Or, is it the case that 𝑥2 was 1 and 𝑥3 was 1? That means, these are 

the various possibilities from adversary's point of view, based on this information that he has 

seen.  

 



Now, it at all our BGW MPC protocol is private; private in the sense, if it ensures the privacy 

property, then, even if adversary does this analysis, and even if its computing power is 

unbounded, he should not be able to figure out whether actually these values which he has seen 

here are with respect to the input configuration being 0, 2, or input configuration with respect 

to 2, 0, or with respect to input configuration 1, 1.  

 

If that is the case, then basically, we end up showing that adversary's view here is consistent 

with every candidate 𝑥2, 𝑥3 which along with 𝑥1 being 2 and 𝑥4 being 0, sum up to the value 

4. And we will show that actually this is indeed the case. So, let us see.  
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Now, the adversary is thinking in its mind that, can it be the case that these question marks 

here, this 𝑥2 being a question mark and 𝑥3 being a question mark, is actually 0 and 2 

respectively? But, you see, he is not changing the shares that he has seen, namely, the first 

share of the question mark here, first share of 𝑥2 and the fourth share of 𝑥2, because, they are 

actually fixed.  

 

That is what adversary has seen here. It is just asking in his mind that, can it be the case that 

𝑥2 was 0, its first share was 2 and the fourth share was 2? Well, that is quite possible if 𝑃2 

would have selected this polynomial for secret-sharing, namely 𝐵(𝑍) = 2𝑍2. But adversary 

does not know what is the value of the 𝐵 polynomial which 𝑃2 would have selected for secret-

sharing his unknown 𝑥2. For that unknown 𝑥2, he has just got 2 shares.  

 



Those 2 shares could be with respect to any 𝐵 polynomial whose constant term could be any 

𝑥2 ; that is what is the privacy property of secret-sharing. So, that means, if 𝑥2 is fixed to 0, 

that, along with the first share being 2 and the fourth share being 2, automatically fixes the 𝐵 

polynomial which 𝑃2 would have picked; because, they are now total 3 points, and 3 points 

uniquely determine a 2-degree polynomial.  
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In the same way, adversary does not know what is this question mark in place of 𝑥3′s value. 

He only knows that, okay, there was some 2-degree polynomial with some unknown constant, 

but that polynomial evaluated at 𝛼1 should have produced 3, and evaluated at 𝛼4 should have 

produced 4. What could be that unknown polynomial? Well, that unknown polynomial could 

also be this 𝐶 polynomial whose constant term would have been 2. 
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And now, you see, this table matches the configuration of information which adversary has 

actually seen while participating in the process. That means, it is quite possible that the 

information which adversary has seen during the execution of the BGW MPC protocol is 

matching as per this configuration as well. That means, it could be the case that 𝑥2 was 0, 𝑥3 

was 0, the 𝐵 polynomial was this, 𝐶 polynomial was this, and it is consistent with whatever 

adversary has seen in the actual protocol.  

 

That is quite possible; adversary cannot rule it out. Or, it could be the case that these unknown 

question marks here, corresponds to 𝑥2 being 2 and 𝑥3 being 0, and the remaining things fixed 

as per the values that adversary has seen.  
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It is quite possible that this configuration also would have produced the same information 

which adversary has seen while participating in the protocol. It is quite possible here; you can 

see here. It could be the case that 𝐵(𝑍) was shared through the polynomial 2 + 0 ⋅ 𝑍 + 0 ⋅ 𝑍2, 

whose first share would have been 2 and fourth share would have been 2. And 𝑥3 was 0 and 

secret-shared through 0 + 2 ⋅ 𝑍 + 𝑍2, producing the first share being 3 and the fourth share 

being 4.  

 

And then, 𝑃1 announces 2 as its share of 𝑦, and 𝑃2 announces 1 as its share of 𝑦, and 𝑃3 

announces 1 as its share of 𝑦, and 𝑃4 announces 2 as its share of 𝑦; and all together, they 

interpolate back and give the value 4. That is also quite possible.  
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And in the same way, it is quite possible that the unknown 𝑥2, 𝑥3 could be 1, 1 as well, shared 

through this respective 𝐵 and 𝐶 polynomial, and matching with everything that adversary has 

actually seen while participating in the protocol. So, what I have demonstrated in this example 

is the following: That even though adversary has seen the values which are highlighted in bold 

in this table of information; so, this is the entire view of adversary. 
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This is, call it as 𝑣𝑖𝑒𝑤1,4; that is the view of adversary, because these are the values messages 

which it has communicated, which it received during the protocol execution. What I have 

shown through the example here is the following: That this view which adversary has seen 

could be possible for the input configuration 𝑥2 = 0, 𝑥3 = 2; or it could occur with 𝑥2 =

1, 𝑥3 = 1; or it could also occur with 𝑥2 = 2, 𝑥3 = 0, with equal probability.  

 



Adversary cannot say that this was the case or this was the case or this was the case; no. And 

hence, the information which adversary has learnt here does not helps him to learn anything 

additional about 𝑥2 and 𝑥3; I stress, additional. Of course, it learns that 𝑥2 + 𝑥3 = 2. It learns 

that information, fine. This is revealed; but this is allowed to be revealed; because, again and 

again I stress, we want to ensure that adversary should not learn anything additional beyond 

what it can learn from its own input and function output.  

 

So, that means, this example at least demonstrates that adversary does not learn any information 

during the BGW MPC protocol for evaluating linear functions. That means, we have shown 

that adversary's view is consistent with every candidate 𝑥2, 𝑥3 from the field, which along with 

𝑥1 = 2 and 𝑥4 = 0, sums up to 4.  
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So, now, we have to argue that why it is happening. Is it only for this specific example, because 

we have performed all the computations over ℤ5? No. The answer is, it is indeed going to 

happen irrespective of what are the values of 𝑥1, 𝑥2, 𝑥3, 𝑥4. And we are now going to give a 

formal security proof; but for that, we have to first analyse or we have to first give the formal 

privacy definition.  

 

When do we say that a generic MPC protocol has the privacy property? So, any MPC protocol 

for computing any kind of function; it could be linear function, it could have multiplication 

gates, it could be any kind of function, will be abstracted as follows: So, in the protocol, every 

party will have its own input and there will be internal random coins. These are internal random 



coins which the party might be using to decide what values it has to exchange or communicate 

to the other parties.  

 

So, for instance, if I take the BGW protocol, this internal randomness basically constitutes the 

sharing polynomials which are picked randomly by the parties to secret-share their respective 

inputs. But if I consider any abstract MPC protocol, there will be some internal randomness. I 

do not know what kind of internal randomness are used inside the MPC protocol, because, right 

now, I am considering an abstract MPC protocol.  

 

And now, once the input and the internal randomness is decided, and the steps of the MPC 

protocol are there fixed, the parties exchange messages, where the messages are decided based 

on what exactly are the inputs of the parties, what are the random values that they have 

generated, namely, the random coins, and what messages they have received from the other 

parties. And then, finally, they obtain the function output.  

 

That will be the way we can abstract out any generic MPC protocol. So, now, for any generic 

MPC protocol, we can define 𝑣𝑖𝑒𝑤𝑖 to be the view of 𝑖𝑡ℎ party. And this is consisting of 

everything that 𝑃𝑖 possesses during the execution of the protocol. So, if I consider 𝑣𝑖𝑒𝑤1, say 

for instance; 𝑣𝑖𝑒𝑤1 will have definitely the input of the party, namely 𝑥1; final output of the 

party, namely 𝑦; the random coins which 𝑃1 has used to decide the messages during the 

protocol execution.  

 

So, for instance, if I take the BGW protocol or the linear function, then the random coins was 

the random polynomial which 𝑃1 used to compute the shares for the other parties; the messages 

that it has sent to the other parties. So, again, for the BGW protocol, it was the, it was the shares 

which it has communicated to the other parties and the final shares of 𝑦; and the messages 

which 𝑃1 would have received from the other parties during the protocol execution. Everything 

put together will constitute 𝑣𝑖𝑒𝑤1. Similarly, I can define 𝑣𝑖𝑒𝑤2 and so on.  
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So, these are views 𝑣𝑖𝑒𝑤1, 𝑣𝑖𝑒𝑤2, 𝑣𝑖𝑒𝑤𝑖, 𝑣𝑖𝑒𝑤𝑛. And the important thing is that, this 𝑣𝑖𝑒𝑤𝑖 is 

a random variable even though it is a variable, because, the input could take any value, the 

output could take any value, the random coins could take any value, the messages sent and 

received could be any value. So, that is why this 𝑣𝑖𝑒𝑤𝑖 is a variable, but it is actually a random 

variable.  

 

Why it is a random variable, even if I fix the function input and output? Because, the internal 

random coins could vary. And because the internal random coins could vary, that could make 

the messages communicated also to vary. And also the messages received could be varied. That 

means, even if I fix my, say input to be 𝑥𝑖 and say the final output that is learnt to be 𝑦; even if 

I fix this, these parts, the remaining things will change, will take different values with different 

probability.  

 

And that is why this 𝑣𝑖𝑒𝑤𝑖 will be a random variable, and it will take different values with 

different probabilities. So, that means, we will be now talking about probability distribution 

over the 𝑣𝑖𝑒𝑤𝑖, because 𝑣𝑖𝑒𝑤𝑖 will not be just taking a single value, because, even if the input 

and output is fixed, the messages communicated and received will be different with different 

probability.  
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Now, imagine that, during the protocol execution, adversary goes and corrupt a set of parties 

in 𝒞, where of course this cardinality of 𝒞 will be 𝑡; it could be any set of 𝑡 parties. Then what 

will be the view of the adversary? Well, the view of the adversary will be the collective view 

of all the parties, 𝑃𝑖, which are controlled by the adversary. So, for instance, if 𝑡 = 2, and if 

adversary goes and controls say the first and the second party, then, whatever is there in 𝑣𝑖𝑒𝑤1, 

along with 𝑣𝑖𝑒𝑤2, will be called as the view of the adversary.  
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Now, when do we say that MPC protocol satisfies the privacy property? Intuitively, what we 

want to capture here is the following: We want to capture that whatever adversary has seen by 

corrupting a set of 𝑡 parties, that does not help the adversary to learn anything additional about 

the inputs of the other parties; of course, the adversary through the view of corrupt parties will 



have the inputs of those bad guys and the function output, because that is a part of the view of 

the corrupt parties also.  

 

We want to formally capture that, the view of the adversary should not reveal anything 

additional about the inputs of the other parties. Now, in the view of the corrupt parties, we also 

have the messages which those corrupt parties would have received from the honest parties, 

because they are also part of the view of the adversary. Intuitively, we will say that the MPC 

protocol is private if whatever can be learnt by the inputs and output of the corrupt parties, 

essentially, the same information is present in view itself, of the adversary.  

 

That means, adversary's view can be reproduced or recreated just based on corrupt parties’ 

input and output. And view contains the messages which honest parties would have 

communicated to the corrupt parties. So, what we are basically trying to argue here is that 

whatever honest parties would have communicated to the corrupt parties, and which is present 

as part of the view of the adversary, if it could be reproduced or recreated just based on the bad 

inputs; bad input means, the inputs of the bad guys; and the function output, then that in essence 

shows that whatever values the honest parties have actually sent to the bad guys during the 

MPC protocol execution is of no use for the bad guys.  

 

Because, if it could be recreated just based on the bad inputs and the function output, then what 

is the whole point of trying to analyse the information which honest parties have communicated 

to the bad guys? That information can be recreated by the adversary itself, without even getting 

those values from the honest parties. So, how do we formalise this intuition? We formalise this 

intuition by saying that, for every subset 𝒞 of corrupt parties where the cardinality of the corrupt 

parties is 𝑡; say for instance, in this case 𝒞 is equal to 𝑃1 and 𝑃2.  

 

So, for every subset of 𝑡 bad parties, there should be some magical algorithm which we call as 

simulator, which can reproduce the view of the corrupt parties, just based on the inputs of the 

bad guys and the function output. That means, this simulator will be some algorithm which 

should be just given the inputs of the bad guys and the function output. And then, there will be 

some steps for the simulator and simulator will produce some output.  

 



The simulator will be a randomised algorithm and its output also will be a random variable, 

which will have some probability distribution. So, if we can show that, if there exists a 

simulator which produces a probability distribution which is identical to the view of the corrupt 

parties in the MPC protocol, then that basically shows that my MPC protocol has the privacy 

property.  

 

And why so? Because, this 𝑣𝑖𝑒𝑤𝑖 with respect to all the parties in 𝒞, is actually the information 

which adversary possess by participating in the MPC protocol. It will have whatever decisions 

the bad parties have taken in the MPC protocol plus the messages which the bad parties would 

have received from the honest guys.  

 

I am saying that, if all the messages which honest parties would have communicated to the bad 

guys, if their probability distribution could be simulated or if those messages could be 

regenerated just based on the inputs of the bad guys and the function output, then, that is 

equivalent to showing that whatever communication has happened from the honest parties to 

the bad guy is of no use to the bad guys.  

 

And that shows that my protocol ensures the privacy property. And indeed, if I show the 

existence of such a simulator for which these 2 probability distributions are equivalent, then in 

essence, I am basically showing that adversary can regenerate its view of the MPC protocol by 

itself performing the role of the simulator, and without participating in the MPC protocol.  

 

That means, from the viewpoint of the MPC protocol, participating in the MPC protocol is as 

good as not participating in the MPC protocol and just stick to the corrupt parties' input, 

function output and run the simulator and come up with the messages which honest parties 

would have communicated to the bad guys. So, that precisely is the essence of this definition.  

 

So, to formally put, we will say that a generic MPC protocol has the privacy property if for 

every subset 𝒞 of bad parties corrupting up to 𝑡 parties, the view of the adversary with respect 

to the parties in 𝒞, can be simulated by a simulator such that the output of the simulator where 

the simulator is just given the inputs of the parties in 𝒞 and the function output; and the output 

of the simulator, its probability distribution should be perfectly indistinguishable from the view 

of the bad guys, in the real MPC protocol.  



 

So, this notation here means perfectly indistinguishable. If this is the case, then we will say that 

our MPC protocol does not reveal any additional information about the inputs of the honest 

parties. That means, whatever messages honest parties have communicated to the bad guys, it 

does not reveal anything additional, because they can be simulated by the simulator itself.  
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So, let us now try to prove that the BGW MPC protocol for the linear function satisfies this 

privacy property. And again, for simplicity, I am taking the case where 𝑛 = 4, 𝑡 = 2 and my 

set of corrupt parties in 𝒞 are 𝑃1 and 𝑃4. So, let us see what will be the view of the adversary, 

namely, the collective view of party 1 and party 4. So, the sharing polynomials which are 

picked by the party 1 and party 4, they will be a part of the view of the adversary.  

 

So, 𝑡 = 2, that means, all the sharing polynomials are of degree-2. So, the 𝐴 polynomial and 

the 𝐷 polynomial will be part of the view of the adversary. Now, the shares 𝑃2 and 𝑃3 

communicated to 𝑃1 and 𝑃4 during the protocol execution will also be a part of the view. So, 

regarding the second party's input, 𝑃1 gets the share 𝑥21; so, that will be included in adversary's 

view. And 𝑥24 will be communicated to party 𝑃4; so, that also will be a part of the view.  
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And for the third party's input, the adversary receives the first share and the fourth share. So, 

that will be a part of the view. What else?  
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So, now, everyone computes locally their respective shares of 𝑦. And then, 𝑃2 would have 

announced its share of 𝑦.  
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And 𝑃3 would have announced it shares of 𝑦.  
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All together, these shares of 𝑦, namely, the shares of 𝑦 with respect to 1, 2, 3 and 4 will now 

be public. And hence, it will be added to the view of adversary. And adversary will know that, 

okay, this vector of 𝑦 shares will interpolate to 𝑦. That is the view of this adversary by 

participating in the MPC protocol. Now, we have to show that, through simulator, we have to 

argue here that, whatever information the adversary would have obtained by participating in 

the MPC protocol and by corrupting 𝑃1 and 𝑃4, could be regenerated by a simulator who is 

only given the inputs 𝑃1, 𝑃4 and the function output +y.  

 

Why 𝑃1, 𝑃4? Because we have to reproduce the view with respect to the set of parties in 𝒞; and 

we are fixing the set of parties in 𝒞 to be 𝑃1 and 𝑃4 . So, we will say to the simulator, okay, 



assume simulator, you have, you are given the values 𝑥1, 𝑥4, the inputs of the corrupt parties 

and the final output 𝑦; can you reproduce whatever information this adversary would have 

actually seen by participating in the MPC protocol?  

 

So, the first thing this simulator can easily do is the following: It has to regenerate the 𝐴 

polynomials and the 𝐷 polynomials which 𝑃1 and 𝑃4 would have used for secret-sharing their 

𝑥1 and 𝑥4. And that is very easy to reproduce. What simulator can do is the following: It can 

just randomly pick a 𝑡-degree polynomial; 𝑡 in this case is 2. I am calling that randomly picked 

polynomial as 𝐴̃, because that could be a different polynomial from the exact 𝐴 polynomial 

which 𝑃1 used in the real execution.  

 

And the only constraint on this polynomial is that its constant term should be 1. Now, my claim 

is that, if you take the probability distribution of this simulated  𝐴̃ polynomial, then that has the 

same probability distribution as the 𝐴 polynomial which was actually picked by 𝑃1. Why so? 

Because, this 𝐴 polynomial would have been a random polynomial from this set of all possible 

2-degree polynomials whose constant term is 𝑥1, and so is the case for this 𝐴̃ polynomial as 

well.  

 

It is also a randomly chosen 2-degree polynomial whose constant term is 𝑥1. And that is why, 

I can say that, component wise, this component here, and this component here, have the 

identical probability distributions. That means, with whatever probability  𝐴̃(𝑍) polynomial 

can take values, with same probability, my 𝐴(𝑍) polynomial can also take values. And this 

basically captures the following: The simulator, it knows its own input.  
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Its own input means, imagine the case when simulator is the adversary itself; so, it knows its 

own input 𝑥1 and input 𝑥4, and it knows the way by which it has secret-shared 𝑥1 and 𝑥4. So, 

that is what I am basically doing here. It knows that I have secret-shared the inputs 𝑥1 by 

picking a random 2-degree polynomial whose constant is 𝑥1, and I have randomly shared 𝑥4 

by picking a random 𝐷 polynomial with degree-2 whose constant term is 𝑥4.  

 

So, these 2 components can be easily simulated, regenerated. That does not require the help of 

interaction with honest parties and so on. So, the first 2 components are regenerated with 

identical probability distribution; fine; but now comes the difficult part.  
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In the real execution, regarding the second party's input, adversary would have obtained the 

shares 𝑥21 and 𝑥24. By the way, I stress that there is a probability distribution associated with 



𝑥21 and 𝑥24, because, even if 𝑥2 is fixed once for all, the values 𝑥21 and 𝑥24 can take different 

values with different probability, because this 𝐵(𝑍) polynomial would have picked uniformly 

at random.  

 

It will not be the case that the same 𝐵 polynomial is picked again and again and again by 𝑃2 

for sharing its same input 𝑥2. And that is why, depending upon what is the value of 𝐵(𝑍) 

polynomial, the values of 𝑥21 and 𝑥24 are determined. So, that means, there is a probability 

distribution associated with 𝑥21 and 𝑥24. But what is that probability distribution?  

 

My claim here is that, the probability distribution on this x 21 and x 24 is uniform probability 

distribution. That means, these 𝑥21 and 𝑥24 could be any random field elements, they are not 

dependent on 𝐵 polynomial. It could be any 𝐵 polynomial; it could be in fact, any 𝑡-degree 

polynomial whose constant term could be anything; when evaluated at 𝛼1, produces 𝑥21, and 

when evaluated at 𝛼4, would have been 𝑥24; because this comes from your privacy property of 

Shamir secret-sharing.  

 

When we discussed the privacy property of Shamir secret-sharing, there we argued that, you 

take any 𝑡 values from the field, they could lie on any random 𝑡-degree polynomial whose 

constant term could be any value from the field. That means, it could be the case that this 𝑥21 

and 𝑥24 which adversary has seen, it is coming because of a polynomial 𝐵(𝑍) belonging to, 

say, set of all polynomials whose constant term is 𝑥2 and degree is 𝑡.  

 

Or it could be equally the case that these 2 values are shares for a polynomial say 𝐹(𝑍), 

belonging to the set of all polynomials whose constant term is 0, say, and degree is 𝑡. That is 

also possible. That means, we cannot say that these 2 shares 𝑥21 and 𝑥24 cannot occur as 2 

shares for secret being 𝑥2 or it cannot occur as shares for the secret being 0 and so on, because 

they are just 2 random shares on a 2-degree random polynomial whose constant term is an 

unknown value.  
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So, that means, if I consider from adversary's viewpoint, he has seen the value 𝑥21 and 𝑥24. 

From its viewpoint, this 𝑥21 and 𝑥24 could be the shares for secret 𝑥2, or it could be the shares 

for value 0, or it could be the shares for any other field element and so on. That means, it knows 

beforehand itself that, okay, the 2 shares that it is going to receive could be the shares for any 

𝑡-degree random polynomial whose constant term could be any value from the field.  

 

That means, it does not help him to learn anything concretely about 𝑥2. 𝑥2 could be as good as 

0 as well, from the adversary's viewpoint. And that is what we use here to simulate these 2 

shares by the simulator. So, what the simulator has to do? The goal of the simulator, has to 

reproduce a probability distribution which is identical to this 𝑥21 and 𝑥24. How it does that?  
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It randomly picks a 𝐵 polynomial whose constant term is 0. Why 0? Because it does not know 

the value of 𝑥2, the concrete value of 𝑥2. It does not know the concrete value of 𝑥2 and 𝑥3. It 

is just pretending as if 𝑥2 is 0, and it is playing the role of an honest party 𝑃2 by itself acting as 

a 𝑃2 and acting as a dealer. That means, it is acting as if 𝑃2 wants to secret-share the value 0.  

 

And for that it is randomly picking a polynomial  𝐵̃ whose constant term is 0, computing the 

shares 𝑥21 and 𝑥24 as per this sharing polynomial, and writing down it in the simulated view. 

And my claim is that, if I take the probability distribution of this simulated 𝑥21 ̃ and 𝑥24 ̃  its 

probability distribution is identical to the actual 𝑥21 and 𝑥24, which the adversary would have 

seen in the real protocol; because this 𝑥21 and 𝑥24 which adversary would have seen in the 

MPC protocol are just 2 random shares on a random 2-degree polynomial whose constant term 

is unknown, and they could take the value  𝑥21 ̃ and 𝑥24 ̃  also with equal probability; that is 

precisely is the intuition here.  
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So, this is precisely the reason because of which this simulation strategy works. Recall: When 

we discussed the properties of 𝑡-degree polynomials over field, there we argued that it does not 

matter whether you are picking a random polynomial for sharing the value 𝑠 or you are picking 

a random polynomial for sharing the value 𝑠′; with equal probability, any 𝑡 shares could take 

the values 𝑦1, … , 𝑦𝑡.  

 

That means, if you fix 𝑦1, 𝑦2, … , 𝑦𝑡, they could be shares for sharing the value 𝑠 as well as for 

sharing the value 𝑠′ with equal probability, provided the underlying sharing polynomials are 



picked uniformly at random. And that is what the simulator is doing. So, 𝑓(𝑍) was actually 

your 𝐵(𝑍) polynomial. Set𝑓(𝑍) = 𝐵(𝑍), and set𝑔(𝑍) =  𝐵̃(𝑍), and 𝑡 = 2. And I am focusing 

on 𝑥21 and 𝑥24. 

 

These  𝑥21 and 𝑥24 could occur as the shares of 0 as well as the share of 𝑥2. And in the same 

way, this 𝑥21 ̃ and 𝑥24 ̃ , they could also be the shares of 0 or they could also be the shares of 𝑥2 

with equal probability. And hence, the probability distribution of the actual 𝑥21 and 𝑥24 which 

adversary would have seen in the real view in the MPC protocol, is exactly identical to the 

simulated 𝑥21 ̃ and 𝑥24 ̃  which the simulator has generated.  
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In the same way, in the same argument, what simulator is doing is, it is just randomly picking 

a 𝐶 polynomial whose constant term is 0, and as per that sharing polynomial, producing the 

simulated 𝑥31 and 𝑥34. And whatever argument we used just now, we can use the same 

argument to argue that the simulated 𝑥31 and 𝑥34, their probability distribution is same as the 

actual 𝑥31 and 𝑥34 that adversary has seen in the real view.  

 

This is because 𝑥31 and 𝑥34 could occur as the share of 𝑥3 as well as 𝑥3 = 0, with equal 

probability. And 𝑥31 ̃ and 𝑥34 ̃  could also occur as the share for 0 as well as for the actual 𝑥3, 

with equal probability. And hence, till now, whatever the simulator has simulated, it follows 

that its probability distribution is identical to the corresponding component in the real view. 

Till now, everything is fine. Now, what about the vector of 𝑦 output shares? How it can be 

simulated?  
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That means, in the real view; real view means, in the real MPC protocol; adversary would have 

seen that 𝑃2 has communicated 𝑦2, and it would have seen that 𝑃3 would have communicated 

𝑦3. And it has its own 𝑦1, 𝑦4. Now, simulator has to simulate 𝑦2 and 𝑦3. Now, here comes the 

crux of the simulator. See, in the real MPC protocol, will learning 𝑦2 and 𝑦3 from 𝑃2 and 𝑃3 

reveal anything additional to the adversary? The answer is no.  
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Why so? Because, adversary has already 1 share of 𝑦 and another share of 𝑦, and anyhow it 

will learn the function output 𝑦. So, adversary has 𝑡 shares of final output plus the final output 

itself. My claim is that through this, adversary can itself compute the shares of final output 

which it will get from honest parties. Why so? Because it already has 𝑡 shares, and plus the 



final output; and remember the final output is nothing but the value (0, 𝑦); that constitutes a 

point on the final polynomial which has to be interpolated, to reconstruct the function output.  

And anyhow it has (𝛼1, 𝑦1) and (𝛼4, 𝑦4). And it knows that the final 𝑦 polynomial which will 

be interpolated will have degree 𝑡 + 1, in this case, 3. So, it has already 3 points on the final 

polynomial which will be interpolated. So, it can itself interpolate that 𝐸 polynomial. And if it 

itself can interpolate the polynomial, it will itself know that what is the value of 𝐸(𝛼2) which 

is 𝑦2 and 𝐸(𝛼3) which is 𝑦3, which 𝑃2 and 𝑃3 would have communicated to the adversary. That 

means, sending 𝑦2 from 𝑃2 and sending 𝑦3 from 𝑃3 to the adversary is not a new information 

which adversary will have.  
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It will already know, based on its shares 𝑦1, 𝑦4 and the function output y which it will anyhow 

learn, that, okay, these are the 𝑦3 and 𝑦2 which I will be getting. And that is the precise intuition 

which we can use when we simulate the output vectors 𝑦1, 𝑦2, 𝑦3, 𝑦4 by the simulator. So, what 

the simulator will do is the following: It will run the BGW protocol in its mind, assuming that 

𝑃1 has used this sharing polynomial, 𝑃2 has used this sharing polynomial, 𝑃3 has used this 

sharing polynomial and 𝑃4 has used this sharing polynomial.  

 

And it will get the corresponding first share and fourth share. I am denoting it as 𝑦1̃ and 𝑦4̃. It 

can do that because it is basically just playing the role of 𝑃1 and 𝑃4 in its mind. And now what 

it does is the following: Remember, the simulator also has the final function output. So, it has 

now together 𝑡 + 1 points through which it can interpolate a 𝑡-degree polynomial whose 

constant term will be 𝑦.  



 

And now, it can say the following: That okay, this is the share of 𝑦 which 𝑃2 will be 

communicating, and this is the share of 𝑦 which 𝑃3 will be communicating. And that will be 

the simulated vector of shares of 𝑦; 𝑦1̃, 𝑦2̃, 𝑦3̃, 𝑦4̃. And now, it is easy to see that this 

𝑦1̃, 𝑦2̃, 𝑦3̃, 𝑦4̃, it has the same distribution as the actual𝑦1, 𝑦2, 𝑦3, 𝑦4, which adversary sees in the 

real execution.  

 

For both the vectors, the constant term of the interpolated polynomial will be 𝑦. For both the 

vectors, the first component and the fourth component are actually what adversary would have 

seen if they would have participated in the MPC protocol. And now, you can see that this 

simulator, it is able to recreate whatever information the adversary will have by participating 

in the MPC protocol, without knowing; that is important; without knowing 𝑥2 and 𝑥3.  

 

That means, even without knowing 𝑥2 and 𝑥3, it could reproduce whatever information this 

adversary would have obtained by interacting with 𝑥2 and 𝑥3. And then, in essence, this is 

equivalent to showing that this interaction with 𝑥2 and this interaction with 𝑥3 is completely 

useless for the adversary. Similarly, this interaction between 2 and 4 and interaction between 

3 and 4 is completely useless for the adversary; because, whatever could be obtained by the 

adversary by interaction, it could be reproduced without even knowing 𝑥2 and 𝑥3.  
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And that shows that the BGW MPC protocol for the linear function satisfies the formal privacy 

definition that we have practiced. Thank you. 
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