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Module - 4
Lecture - 21
The BGW MPC Protocol for Linear Functions: Security Analysis

Hello everyone. Welcome to this lecture. So, in this lecture, we will continue our discussion
on the BGW MPC protocol for securely computing linear functions, and we will perform its
security analysis.
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So, before going into the security analysis formally, let us try to understand the security through
an example itself, because that will help us to understand the intuition regarding why the
protocol is secure. And | am considering here the toy example, where my number of parties is
4 and the threshold is 2. That means, any 2 out of the 4 parties can be passively corrupt. And |

am performing all the computations over this field.

And my plus and dot operations are +5 and -5 respectively. And | am taking the case where
my constant c4, c,, c3 and c, are all 1. Namely, | am taking simply the sum function, and | am
setting my evaluation points to 1, 2, 3 and 4 respectively. Well, anyhow, these are the only
non-zero evaluation points available for this specific field. But in general, if | take a finite field,
it could be any non-zero elements which are distinct, and they can be chosen as your evaluation

points.

And | am taking an execution scenario where the inputs are 2, 1, 1 and 0. Namely, the final
sum will be 4. So, that means, finally the parties will learn the sum y = 4; and depending upon
which 2 parties are corrupt, they will learn anyhow, what could be the overall sum of the
remaining 2 parties. That much information is allowed to be learnt from the inputs and output
of the correct parties; but we have to see that, apart from that, whatever messages the parties
exchange in this BGW MPC protocol, that does not help those 2 bad parties to learn anything
additional.

So, for instance, if | say the first 2 parties are under the control of adversary, they will anyhow
learn that the inputs of the remaining 2 parties, together it is 2; because the final sum is 4. But
whether it is 1, 1 or whether it is 0, 2 or whether it is 2, 0, that much information should not be
revealed, because that is not allowed to be learnt to these corrupt parties as per the security
definition. That is what we have to ensure.
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So, to start with, P; will secret-share its input. So, suppose this is its sharing polynomial; as |
said, this will be considered as a 2-degree polynomial. So, all the sharing polynomials have to
be degree-2. So, this is a 2-degree polynomial, even though the coefficients of Z and Z? are 0;
but overall, it will be considered as a 2-degree polynomial. And the shares that P; will compute
with respect to this sharing polynomial will be 2, 2, 2 and 2, which will be communicated over
the private channels to the respective parties; and that will be the individual shares of the input
of the first party.
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Now, suppose the second party decides to secret-share its input 1 through this sharing
polynomial; call this sharing polynomial is B polynomial. Again, it could be any B polynomial
whose constant term is 1; and the remaining 2 coefficients can be randomly chosen from Zs.

And now, with respect to this sharing polynomial, this B polynomial evaluated that is



01, @y, a3, @y Will produce the shares 2, 0, 0, 2. And the shares will be communicated over the
private channel. So, that will give the individual parties their respective shares of x,.
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Suppose, the third party decides to secret-share its input through this polynomial; so, | have
not written down 0 - Z2; so, it is a polynomial of degree-2. And with respect to this C
polynomial, the shares computed by P; will be 3, 0, 2, 4, which it will securely communicate.
And that will give the parties their respective shares for the input x;.
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And say, for the fourth party, it decides to secret-share its input through this random D
polynomial; compute the shares and distribute to the respective parties. That is the input stage.

And after that, what the parties have to do? They have to just add their respective shares of



X1, X5, X3 and x,. That means, P; has to add these 4 shares, and then add as per addition modulo
5.S0,3+2is5;5+ 2is7; and then, 7 modulo 5 will be 2.
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That will be party P;'s share for the final output y. Similarly, P, has to go and add it is all shares
of x4, x5, x5, x4. SO, 4 + 2 is 6; and 6 modulo 5 will be 1. So, by the way, in the animation, you
compute your final share of y and communicate that to everyone.
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So, y; will be communicated to everyone.
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Similarly, the share of y for P, will be 1, because 4 + 2 will be 6; 6 modulo 5 is 1. And then, it
will communicate to everyone. But remember, in the actual protocol, this is not done like this.
Every party obtains its respective share of y and simultaneously communicates to everyone;
but for the animation, | am showing it in a sequential way, remember.
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Now, P; will do the following: If it adds its shares ofx,, x,, x5, x4, that will be 6; 6 modulo of
5 will be 1. That is share of y it will communicate to everyone.
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And then, P, finally goes and add its shares of x;, x,, x3 and x,. That will be 12; 12 modulo 5
will be 2. And now, it will communicate that to everyone.
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So, now, everyone will have the full vector of shares ofy,, y,, y3, y.. And now, they have to
interpolate these and get back the value of y. So, interpolate in the sense, they have to now
interpolate (aq,y1); (a3, ¥2); (a3, y3); and (a4, y4); they have to interpolate. And now, if they
interpolate these values, they obtain this E polynomial. And the constant term of this E
polynomial will be taken as the final output.

That is the execution of BGW protocol, assuming x; = 2, x, =1, x3 = 1, x, = 0. | stress,

again if the BGW protocol is executed by the parties with the same set of inputs x;, x,, x3, X4,



then it need not be the case that they pick the same A polynomials, B polynomials, C
polynomials and D polynomials for sharing, and get the same E polynomial.
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It could be any random A polynomial, any random B polynomial, any random C polynomial,
any random D polynomial, of course, with their respective constant terms being 2 and 1 and 1
and 0. And finally, they will obtain; an E polynomial which could be another random
polynomial of degree-2 except that its constant term will be 4; because, there is an internal
randomness used as part of the BGW MPC protocol, even though your function y is a

deterministic output of x4, x,, X3, x,4.
(Refer Slide Time: 09:09)

BGW Protocol for Linear Functions: Privacy

So, now, we will try to understand the privacy through this example, which will help us to
understand the intuition. We take the case where, say the first and the fourth party, they are



corrupt. And basically, | have constructed here a table, where basically | have written down all
the variables and the values that they have taken during the concrete execution. And along the
first row, the values that are there, basically they are the shares of the value x; that the

respective parties, P;, P,, P; and P, would have seen.

Along the second row, | have denoted the shares. So, basically, the first row values, they are
the values on A(Z) polynomial, which party P, has taken and during the execution. The second
row basically are the shares computed as per the B polynomial. The third row denotes the C
polynomial; the fourth row denotes the D polynomial; and the last row denotes the E

polynomial which parties finally obtain by interpolating the shares y;, v,, ¥3, y4.

And in the table, you see that certain values are highlighted, they are bold. So, for instance, the
first row is completely bold, because | am considering the case where P; and P,, | am assuming
to be corrupt. So, that means, in this table, the values P; and P, see in the protocol is their view,
and that is highlighted in the bold. So, since P; is under the control of adversary, it will

completely know the polynomial A(Z).

And hence, it will know that what are the shares P; has distributed. That is why, the values
along the first row, they are highlighted in bold. But P, is not under the control of the adversary,
so, that is why, the value of x, is not highlighted in bold. But for x,, there are 2 shares which
adversary learns, namely, the share which is given to party 1 and a share which is given to party
4.

So, that is why, this value and this value in the second row, they are highlighted in bold.
Similarly, x5 is not known to the adversary. But for x5, P; and P,, they give their respective
shares to the adversary. So, that is why, the first value here, first share here and the fourth share,
they are highlighted in bold. And x, is now completely known to adversary. And the D(Z)
polynomial is completely known to the adversary, because, adversary | am assuming is

controlling party P,.

So, that is why, it will know the complete fourth row. And now, the last row, all the values are
public, because y, is made public, y, is made public, y; is made public, y, is made public.

And since the polynomial E (Z) is interpolated in public, the value y is known. So, that means,



from the viewpoint of the adversary, the values which are not highlighted in bold are the
unknown values.
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So, let me put them in question mark, from the viewpoint of P; and P,. Whereas, all other
values which are not with question mark, they are actually known to the adversary, where | am
assuming, | stress, I assuming that P; and P, are corrupt. If it would have been another set of 2
corrupt parties, then the question marks will be changed here. That means, that question marks

will be in some other entries and so on.

So, now, what adversary will try to do here, assuming P, and P, are bad? They will take this
table; and of course they know that x; is 2, x, is 0 and the final sum is 4. They will try to figure
out what could be these 2 question marks, because that is a private information. So, now,
adversary might try to analyse and ask many questions in its mind. It may ask in its mind, is it
the case that the values that | have seen in the protocol are actually corresponding to the case

where P,'s input was 0 and P5's input was 2?

That is one possibility for the adversary. Or, adversary could ask in its mind that, is this table
of information some of which is known, some of which is not known could occur for the case
where x, is 2 and x5 is 0. Or, is it the case that x, was 1 and x5 was 1? That means, these are
the various possibilities from adversary's point of view, based on this information that he has

seen.



Now, it at all our BGW MPC protocol is private; private in the sense, if it ensures the privacy
property, then, even if adversary does this analysis, and even if its computing power is
unbounded, he should not be able to figure out whether actually these values which he has seen
here are with respect to the input configuration being 0, 2, or input configuration with respect

to 2, 0, or with respect to input configuration 1, 1.

If that is the case, then basically, we end up showing that adversary's view here is consistent
with every candidate x,, x; which along with x; being 2 and x, being 0, sum up to the value
4. And we will show that actually this is indeed the case. So, let us see.
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Now, the adversary is thinking in its mind that, can it be the case that these question marks
here, this x, being a question mark and x; being a question mark, is actually 0 and 2
respectively? But, you see, he is not changing the shares that he has seen, namely, the first
share of the question mark here, first share of x, and the fourth share of x,, because, they are

actually fixed.

That is what adversary has seen here. It is just asking in his mind that, can it be the case that
x, was 0, its first share was 2 and the fourth share was 2? Well, that is quite possible if P,
would have selected this polynomial for secret-sharing, namely B(Z) = 2Z2. But adversary
does not know what is the value of the B polynomial which P, would have selected for secret-

sharing his unknown x,. For that unknown x,, he has just got 2 shares.



Those 2 shares could be with respect to any B polynomial whose constant term could be any
X, ; that is what is the privacy property of secret-sharing. So, that means, if x, is fixed to 0,
that, along with the first share being 2 and the fourth share being 2, automatically fixes the B
polynomial which P, would have picked; because, they are now total 3 points, and 3 points
uniquely determine a 2-degree polynomial.
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In the same way, adversary does not know what is this question mark in place of x5's value.
He only knows that, okay, there was some 2-degree polynomial with some unknown constant,
but that polynomial evaluated at a; should have produced 3, and evaluated at a, should have
produced 4. What could be that unknown polynomial? Well, that unknown polynomial could
also be this C polynomial whose constant term would have been 2.
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And now, you see, this table matches the configuration of information which adversary has
actually seen while participating in the process. That means, it is quite possible that the
information which adversary has seen during the execution of the BGW MPC protocol is
matching as per this configuration as well. That means, it could be the case that x, was 0, x3
was 0, the B polynomial was this, C polynomial was this, and it is consistent with whatever

adversary has seen in the actual protocol.

That is quite possible; adversary cannot rule it out. Or, it could be the case that these unknown
question marks here, corresponds to x, being 2 and x5 being 0, and the remaining things fixed
as per the values that adversary has seen.
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It is quite possible that this configuration also would have produced the same information
which adversary has seen while participating in the protocol. It is quite possible here; you can
see here. It could be the case that B(Z) was shared through the polynomial 2+ 0-Z + 0 - Z2,
whose first share would have been 2 and fourth share would have been 2. And x5 was 0 and
secret-shared through 0 + 2 - Z + Z?2, producing the first share being 3 and the fourth share
being 4.

And then, P; announces 2 as its share of y, and P, announces 1 as its share of y, and P;
announces 1 as its share of y, and P, announces 2 as its share of y; and all together, they
interpolate back and give the value 4. That is also quite possible.
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And in the same way, it is quite possible that the unknown x,, x5 could be 1, 1 as well, shared
through this respective B and C polynomial, and matching with everything that adversary has
actually seen while participating in the protocol. So, what | have demonstrated in this example
is the following: That even though adversary has seen the values which are highlighted in bold
in this table of information; so, this is the entire view of adversary.
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This is, call it as view, 4; that is the view of adversary, because these are the values messages
which it has communicated, which it received during the protocol execution. What | have
shown through the example here is the following: That this view which adversary has seen
could be possible for the input configuration x, = 0,x5 = 2; or it could occur with x, =

1,x3 = 1; or it could also occur with x, = 2, x3 = 0, with equal probability.



Adversary cannot say that this was the case or this was the case or this was the case; no. And
hence, the information which adversary has learnt here does not helps him to learn anything
additional about x, and x3; | stress, additional. Of course, it learns that x, + x; = 2. It learns
that information, fine. This is revealed; but this is allowed to be revealed; because, again and
again | stress, we want to ensure that adversary should not learn anything additional beyond

what it can learn from its own input and function output.

So, that means, this example at least demonstrates that adversary does not learn any information
during the BGW MPC protocol for evaluating linear functions. That means, we have shown
that adversary's view is consistent with every candidate x,, x5 from the field, which along with
x; = 2 and x, = 0, sums up to 4.

(Refer Slide Time: 21:20)
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So, now, we have to argue that why it is happening. Is it only for this specific example, because

we have performed all the computations over Zz? No. The answer is, it is indeed going to
happen irrespective of what are the values of x;, x,, x3, x,. And we are now going to give a
formal security proof; but for that, we have to first analyse or we have to first give the formal

privacy definition.

When do we say that a generic MPC protocol has the privacy property? So, any MPC protocol
for computing any kind of function; it could be linear function, it could have multiplication
gates, it could be any kind of function, will be abstracted as follows: So, in the protocol, every

party will have its own input and there will be internal random coins. These are internal random



coins which the party might be using to decide what values it has to exchange or communicate

to the other parties.

So, for instance, if | take the BGW protocol, this internal randomness basically constitutes the
sharing polynomials which are picked randomly by the parties to secret-share their respective
inputs. But if I consider any abstract MPC protocol, there will be some internal randomness. |
do not know what kind of internal randomness are used inside the MPC protocol, because, right
now, | am considering an abstract MPC protocol.

And now, once the input and the internal randomness is decided, and the steps of the MPC
protocol are there fixed, the parties exchange messages, where the messages are decided based
on what exactly are the inputs of the parties, what are the random values that they have
generated, namely, the random coins, and what messages they have received from the other

parties. And then, finally, they obtain the function output.

That will be the way we can abstract out any generic MPC protocol. So, now, for any generic
MPC protocol, we can define view; to be the view of i*" party. And this is consisting of
everything that P; possesses during the execution of the protocol. So, if | consider view,, say
for instance; view, will have definitely the input of the party, namely x,; final output of the
party, namely y; the random coins which P; has used to decide the messages during the

protocol execution.

So, for instance, if | take the BGW protocol or the linear function, then the random coins was
the random polynomial which P; used to compute the shares for the other parties; the messages
that it has sent to the other parties. So, again, for the BGW protocol, it was the, it was the shares
which it has communicated to the other parties and the final shares of y; and the messages
which P; would have received from the other parties during the protocol execution. Everything
put together will constitute view,. Similarly, I can define view, and so on.

(Refer Slide Time: 24:50)
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So, these are views view;, view,, view;, view,,. And the important thing is that, this view; is
a random variable even though it is a variable, because, the input could take any value, the
output could take any value, the random coins could take any value, the messages sent and
received could be any value. So, that is why this view; is a variable, but it is actually a random

variable.

Why it is a random variable, even if | fix the function input and output? Because, the internal
random coins could vary. And because the internal random coins could vary, that could make
the messages communicated also to vary. And also the messages received could be varied. That
means, even if | fix my, say input to be x; and say the final output that is learnt to be y; even if
| fix this, these parts, the remaining things will change, will take different values with different

probability.

And that is why this view; will be a random variable, and it will take different values with
different probabilities. So, that means, we will be now talking about probability distribution
over the view;, because view; will not be just taking a single value, because, even if the input
and output is fixed, the messages communicated and received will be different with different
probability.
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Now, imagine that, during the protocol execution, adversary goes and corrupt a set of parties
in C, where of course this cardinality of C will be t; it could be any set of t parties. Then what
will be the view of the adversary? Well, the view of the adversary will be the collective view
of all the parties, P;, which are controlled by the adversary. So, for instance, if t = 2, and if
adversary goes and controls say the first and the second party, then, whatever is there in view,,
along with view,, will be called as the view of the adversary.
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Now, when do we say that MPC protocol satisfies the privacy property? Intuitively, what we
want to capture here is the following: We want to capture that whatever adversary has seen by
corrupting a set of t parties, that does not help the adversary to learn anything additional about

the inputs of the other parties; of course, the adversary through the view of corrupt parties will



have the inputs of those bad guys and the function output, because that is a part of the view of

the corrupt parties also.

We want to formally capture that, the view of the adversary should not reveal anything
additional about the inputs of the other parties. Now, in the view of the corrupt parties, we also
have the messages which those corrupt parties would have received from the honest parties,
because they are also part of the view of the adversary. Intuitively, we will say that the MPC
protocol is private if whatever can be learnt by the inputs and output of the corrupt parties,

essentially, the same information is present in view itself, of the adversary.

That means, adversary's view can be reproduced or recreated just based on corrupt parties’
input and output. And view contains the messages which honest parties would have
communicated to the corrupt parties. So, what we are basically trying to argue here is that
whatever honest parties would have communicated to the corrupt parties, and which is present
as part of the view of the adversary, if it could be reproduced or recreated just based on the bad
inputs; bad input means, the inputs of the bad guys; and the function output, then that in essence
shows that whatever values the honest parties have actually sent to the bad guys during the

MPC protocol execution is of no use for the bad guys.

Because, if it could be recreated just based on the bad inputs and the function output, then what
is the whole point of trying to analyse the information which honest parties have communicated
to the bad guys? That information can be recreated by the adversary itself, without even getting
those values from the honest parties. So, how do we formalise this intuition? We formalise this
intuition by saying that, for every subset € of corrupt parties where the cardinality of the corrupt

parties is t; say for instance, in this case C is equal to P; and P,.

So, for every subset of t bad parties, there should be some magical algorithm which we call as
simulator, which can reproduce the view of the corrupt parties, just based on the inputs of the
bad guys and the function output. That means, this simulator will be some algorithm which
should be just given the inputs of the bad guys and the function output. And then, there will be

some steps for the simulator and simulator will produce some output.



The simulator will be a randomised algorithm and its output also will be a random variable,
which will have some probability distribution. So, if we can show that, if there exists a
simulator which produces a probability distribution which is identical to the view of the corrupt
parties in the MPC protocol, then that basically shows that my MPC protocol has the privacy

property.

And why so? Because, this view; with respect to all the parties in C, is actually the information
which adversary possess by participating in the MPC protocol. It will have whatever decisions
the bad parties have taken in the MPC protocol plus the messages which the bad parties would

have received from the honest guys.

| am saying that, if all the messages which honest parties would have communicated to the bad
guys, if their probability distribution could be simulated or if those messages could be
regenerated just based on the inputs of the bad guys and the function output, then, that is
equivalent to showing that whatever communication has happened from the honest parties to

the bad guy is of no use to the bad guys.

And that shows that my protocol ensures the privacy property. And indeed, if | show the
existence of such a simulator for which these 2 probability distributions are equivalent, then in
essence, | am basically showing that adversary can regenerate its view of the MPC protocol by
itself performing the role of the simulator, and without participating in the MPC protocol.

That means, from the viewpoint of the MPC protocol, participating in the MPC protocol is as
good as not participating in the MPC protocol and just stick to the corrupt parties' input,
function output and run the simulator and come up with the messages which honest parties

would have communicated to the bad guys. So, that precisely is the essence of this definition.

So, to formally put, we will say that a generic MPC protocol has the privacy property if for
every subset C of bad parties corrupting up to t parties, the view of the adversary with respect
to the parties in C, can be simulated by a simulator such that the output of the simulator where
the simulator is just given the inputs of the parties in C and the function output; and the output
of the simulator, its probability distribution should be perfectly indistinguishable from the view
of the bad guys, in the real MPC protocol.



So, this notation here means perfectly indistinguishable. If this is the case, then we will say that
our MPC protocol does not reveal any additional information about the inputs of the honest
parties. That means, whatever messages honest parties have communicated to the bad guys, it
does not reveal anything additional, because they can be simulated by the simulator itself.
(Refer Slide Time: 34:40)

BGW Protocol for Linear Functions: Privacy

N=4§ 1=

4
& X4.2
AQ) & whl,@%@ %& e
X24
X1
B(Z) €, P2 g 2 C(2) €, PR

©) x4

So, let us now try to prove that the BGW MPC protocol for the linear function satisfies this
privacy property. And again, for simplicity, | am taking the case where n = 4,t = 2 and my
set of corrupt parties in C are P; and P,. So, let us see what will be the view of the adversary,
namely, the collective view of party 1 and party 4. So, the sharing polynomials which are

picked by the party 1 and party 4, they will be a part of the view of the adversary.

So, t = 2, that means, all the sharing polynomials are of degree-2. So, the A polynomial and
the D polynomial will be part of the view of the adversary. Now, the shares P, and P;
communicated to P; and P, during the protocol execution will also be a part of the view. So,
regarding the second party's input, P; gets the share x,;; so, that will be included in adversary's
view. And x,, will be communicated to party P,; so, that also will be a part of the view.
(Refer Slide Time: 36:02)
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And for the third party's input, the adversary receives the first share and the fourth share. So,
that will be a part of the view. What else?
(Refer Slide Time: 36:11)
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So, now, everyone computes locally their respective shares of y. And then, P, would have
announced its share of y.
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And P; would have announced it shares of y.
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All together, these shares of y, namely, the shares of y with respect to 1, 2, 3 and 4 will now
be public. And hence, it will be added to the view of adversary. And adversary will know that,
okay, this vector of y shares will interpolate to y. That is the view of this adversary by
participating in the MPC protocol. Now, we have to show that, through simulator, we have to
argue here that, whatever information the adversary would have obtained by participating in
the MPC protocol and by corrupting P; and P,, could be regenerated by a simulator who is

only given the inputs P, P, and the function output +y.

Why P,, P,? Because we have to reproduce the view with respect to the set of parties in C; and

we are fixing the set of parties in C to be P, and P, . So, we will say to the simulator, okay,



assume simulator, you have, you are given the values x;, x,, the inputs of the corrupt parties
and the final output y; can you reproduce whatever information this adversary would have

actually seen by participating in the MPC protocol?

So, the first thing this simulator can easily do is the following: It has to regenerate the A
polynomials and the D polynomials which P; and P, would have used for secret-sharing their
x; and x,. And that is very easy to reproduce. What simulator can do is the following: It can
just randomly pick a t-degree polynomial; t in this case is 2. | am calling that randomly picked
polynomial as A, because that could be a different polynomial from the exact A polynomial

which P; used in the real execution.

And the only constraint on this polynomial is that its constant term should be 1. Now, my claim
is that, if you take the probability distribution of this simulated A polynomial, then that has the
same probability distribution as the A polynomial which was actually picked by P;. Why so?
Because, this A polynomial would have been a random polynomial from this set of all possible
2-degree polynomials whose constant term is x;, and so is the case for this A polynomial as

well.

It is also a randomly chosen 2-degree polynomial whose constant term is x;. And that is why,
| can say that, component wise, this component here, and this component here, have the
identical probability distributions. That means, with whatever probability A(Z) polynomial
can take values, with same probability, my A(Z) polynomial can also take values. And this
basically captures the following: The simulator, it knows its own input.
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Its own input means, imagine the case when simulator is the adversary itself; so, it knows its
own input x; and input x,, and it knows the way by which it has secret-shared x; and x,. So,
that is what | am basically doing here. It knows that | have secret-shared the inputs x; by
picking a random 2-degree polynomial whose constant is x;, and | have randomly shared x,

by picking a random D polynomial with degree-2 whose constant term is x,.

So, these 2 components can be easily simulated, regenerated. That does not require the help of
interaction with honest parties and so on. So, the first 2 components are regenerated with
identical probability distribution; fine; but now comes the difficult part.
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In the real execution, regarding the second party's input, adversary would have obtained the

shares x,; and x,,. By the way, | stress that there is a probability distribution associated with



X571 and x,,, because, even if x; is fixed once for all, the values x,; and x,, can take different
values with different probability, because this B(Z) polynomial would have picked uniformly

at random.

It will not be the case that the same B polynomial is picked again and again and again by P,
for sharing its same input x,. And that is why, depending upon what is the value of B(Z)
polynomial, the values of x,, and x,, are determined. So, that means, there is a probability

distribution associated with x,, and x,,. But what is that probability distribution?

My claim here is that, the probability distribution on this x 21 and x 24 is uniform probability
distribution. That means, these x,; and x,, could be any random field elements, they are not
dependent on B polynomial. It could be any B polynomial; it could be in fact, any t-degree
polynomial whose constant term could be anything; when evaluated at «,, produces x,,, and
when evaluated at a,, would have been x,,; because this comes from your privacy property of

Shamir secret-sharing.

When we discussed the privacy property of Shamir secret-sharing, there we argued that, you
take any t values from the field, they could lie on any random t-degree polynomial whose
constant term could be any value from the field. That means, it could be the case that this x,,
and x,, which adversary has seen, it is coming because of a polynomial B(Z) belonging to,

say, set of all polynomials whose constant term is x, and degree is t.

Or it could be equally the case that these 2 values are shares for a polynomial say F(Z2),
belonging to the set of all polynomials whose constant term is 0, say, and degree is t. That is
also possible. That means, we cannot say that these 2 shares x,, and x,, cannot occur as 2
shares for secret being x, or it cannot occur as shares for the secret being 0 and so on, because
they are just 2 random shares on a 2-degree random polynomial whose constant term is an
unknown value.
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So, that means, if | consider from adversary's viewpoint, he has seen the value x,; and x,,.
From its viewpoint, this x,; and x,, could be the shares for secret x,, or it could be the shares
for value 0, or it could be the shares for any other field element and so on. That means, it knows
beforehand itself that, okay, the 2 shares that it is going to receive could be the shares for any

t-degree random polynomial whose constant term could be any value from the field.

That means, it does not help him to learn anything concretely about x,. x, could be as good as
0 as well, from the adversary's viewpoint. And that is what we use here to simulate these 2
shares by the simulator. So, what the simulator has to do? The goal of the simulator, has to
reproduce a probability distribution which is identical to this x,; and x,,. How it does that?
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It randomly picks a B polynomial whose constant term is 0. Why 0? Because it does not know
the value of x,, the concrete value of x,. It does not know the concrete value of x, and x5. It
is just pretending as if x, is 0, and it is playing the role of an honest party P, by itself acting as

a P, and acting as a dealer. That means, it is acting as if P, wants to secret-share the value 0.

And for that it is randomly picking a polynomial B whose constant term is 0, computing the
shares x,; and x,, as per this sharing polynomial, and writing down it in the simulated view.
And my claim is that, if | take the probability distribution of this simulated x3; and x5, its
probability distribution is identical to the actual x,, and x,,, which the adversary would have
seen in the real protocol; because this x,; and x,, which adversary would have seen in the
MPC protocol are just 2 random shares on a random 2-degree polynomial whose constant term
is unknown, and they could take the value x3;and x;, also with equal probability; that is
precisely is the intuition here.

(Refer Slide Time: 46:37)

BGW Protocol for Linear Functions: Privacy
i) 5l

/i(Z) € Ppr12 ﬁ(z) €, Pra2
e
20%24
s Ht
(uey) SRR \ i

fe!

Xy

= D(2) €, P¥4?
; . L AZ) €, P2 & % @&
Qi@e P2 QD) P y, o Y

A I P

L] fz1i9(d1) é" \6\ 1\8‘". 8(: )

b Lo | f):8(a)
Pr [(fl@) =y AA (@) = 30 ?”FL‘\

" P" v er g

2y o Qe P
Pr (@) =y A=A (gla) =yl = Y2 g &

0 R 2

So, this is precisely the reason because of which this simulation strategy works. Recall: When

we discussed the properties of t-degree polynomials over field, there we argued that it does not
matter whether you are picking a random polynomial for sharing the value s or you are picking
a random polynomial for sharing the value s’; with equal probability, any ¢ shares could take

the values y;, ..., y¢.

That means, if you fix y;, y,, ..., y¢, they could be shares for sharing the value s as well as for

sharing the value s" with equal probability, provided the underlying sharing polynomials are



picked uniformly at random. And that is what the simulator is doing. So, f(Z) was actually
your B(Z) polynomial. Setf(Z) = B(Z), and setg(Z) = B(Z), and t = 2. And | am focusing

0N x,q and x,4.

These x,, and x,, could occur as the shares of 0 as well as the share of x,. And in the same
way, this X357 and x5, , they could also be the shares of 0 or they could also be the shares of x,
with equal probability. And hence, the probability distribution of the actual x,; and x,, which
adversary would have seen in the real view in the MPC protocol, is exactly identical to the
simulated x3; and x5, which the simulator has generated.
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In the same way, in the same argument, what simulator is doing is, it is just randomly picking
a C polynomial whose constant term is 0, and as per that sharing polynomial, producing the
simulated x3; and x3,. And whatever argument we used just now, we can use the same
argument to argue that the simulated x5, and xs,, their probability distribution is same as the

actual x5, and x5, that adversary has seen in the real view.

This is because x3; and x5, could occur as the share of x5 as well as x3 = 0, with equal
probability. And x37 and x3; could also occur as the share for 0 as well as for the actual x;,
with equal probability. And hence, till now, whatever the simulator has simulated, it follows
that its probability distribution is identical to the corresponding component in the real view.
Till now, everything is fine. Now, what about the vector of y output shares? How it can be

simulated?
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That means, in the real view; real view means, in the real MPC protocol; adversary would have
seen that P, has communicated y,, and it would have seen that P; would have communicated
y3. And it has its own y;, y,. Now, simulator has to simulate y, and y;. Now, here comes the
crux of the simulator. See, in the real MPC protocol, will learning y, and y; from P, and Ps
reveal anything additional to the adversary? The answer is no.
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Why so? Because, adversary has already 1 share of y and another share of y, and anyhow it
will learn the function output y. So, adversary has t shares of final output plus the final output
itself. My claim is that through this, adversary can itself compute the shares of final output

which it will get from honest parties. Why so? Because it already has t shares, and plus the



final output; and remember the final output is nothing but the value (0, y); that constitutes a
point on the final polynomial which has to be interpolated, to reconstruct the function output.

And anyhow it has (a4, y,) and (ay, y4). And it knows that the final y polynomial which will
be interpolated will have degree t + 1, in this case, 3. So, it has already 3 points on the final
polynomial which will be interpolated. So, it can itself interpolate that E polynomial. And if it
itself can interpolate the polynomial, it will itself know that what is the value of E(a,) which
is y, and E (a3) which is y5, which P, and P; would have communicated to the adversary. That
means, sending y, from P, and sending y; from P; to the adversary is not a new information
which adversary will have.
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It will already know, based on its shares y;, v, and the function output y which it will anyhow
learn, that, okay, these are the y; and y, which I will be getting. And that is the precise intuition
which we can use when we simulate the output vectors y,, y,, ¥3, ¥4 by the simulator. So, what
the simulator will do is the following: It will run the BGW protocol in its mind, assuming that
P; has used this sharing polynomial, P, has used this sharing polynomial, P; has used this

sharing polynomial and P, has used this sharing polynomial.

And it will get the corresponding first share and fourth share. 1 am denoting it as y; and ;. It
can do that because it is basically just playing the role of P, and P, in its mind. And now what
it does is the following: Remember, the simulator also has the final function output. So, it has
now together ¢t + 1 points through which it can interpolate a t-degree polynomial whose

constant term will be y.



And now, it can say the following: That okay, this is the share of y which P, will be
communicating, and this is the share of y which P; will be communicating. And that will be
the simulated vector of shares of y;y7,¥3,¥3, ¥2. And now, it is easy to see that this

~ o~ ~ o~

real execution.

For both the vectors, the constant term of the interpolated polynomial will be y. For both the
vectors, the first component and the fourth component are actually what adversary would have
seen if they would have participated in the MPC protocol. And now, you can see that this
simulator, it is able to recreate whatever information the adversary will have by participating

in the MPC protocol, without knowing; that is important; without knowing x, and x;.

That means, even without knowing x, and xs, it could reproduce whatever information this
adversary would have obtained by interacting with x, and x5. And then, in essence, this is
equivalent to showing that this interaction with x, and this interaction with x5 is completely
useless for the adversary. Similarly, this interaction between 2 and 4 and interaction between
3 and 4 is completely useless for the adversary; because, whatever could be obtained by the
adversary by interaction, it could be reproduced without even knowing x, and x;.
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And that shows that the BGW MPC protocol for the linear function satisfies the formal privacy

definition that we have practiced. Thank you.
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