
Secure Computation - Part I

Prof. Ashish Choudhury

Department of Computer Science

International Institute of Information Technology, Bangalore

Module - 4

Lecture - 20

The BGW MPC Protocol for Linear Functions

(Refer Slide Time: 00:33)

Hello everyone. Welcome to this lecture. So, in this lecture, we will start going into the details

of the BGW protocol, the exact details. And we will start with a simple case, namely, we will

assume a function which just consists of linear gates.

(Refer Slide Time: 00:50)

Just to recap; this was the shared circuit-evaluation approach proposed by BGW, and all the

generic MPC protocols follow this blueprint of shared circuit-evaluation. Namely, it ensures

that the inputs are secret-shared and all the intermediate values in the computation are also

secret-shared. And then, finally, you go and publicly reconstruct the function output. What will

be different in different MPC protocols?

What exactly is the secret-sharing scheme you are following? How exactly the inputs are

shared? And how exactly the gate-invariant is maintained? But the approach or the philosophy

remains the same in all the generic MPC protocol. So, the BGW MPC protocols follows the

(𝑛, 𝑡) Shamir secret-sharing for instantiating this (𝑛, 𝑡) secret-sharing in this blueprint. And

the reason it uses (𝑛, 𝑡) Shamir secret-sharing is that, it ensures that the gate-invariant can be

maintained without requiring any interaction among the parties.

So, remember, I said that maintaining this invariant may require interaction among the parties,

depending upon the type of the gate; because, in the arithmetic circuit, we can have various

types of gates. What I am saying here is that, if we use Shamir secret-sharing to instantiate this

(𝑛, 𝑡) secret-sharing, then, maintaining this invariant does not require any interaction among

the parties, if the gate which needs to be evaluated is a linear gate. And this comes from the

linearity property of your Shamir secret-sharing.

(Refer Slide Time: 02:42)

So, let us quickly see, recap the linearity property of (𝑛, 𝑡) Shamir secret-sharing. This was

your Shamir secret-sharing algorithm. If 𝑠 is the value which needs to be secret-shared, where

𝑠 is an element from the field, then, the public setup is a finite field whose cardinality is more

than 𝑛 and the public knowledge of 𝑛 distinct non-zero evaluation points, 𝛼1, … , 𝛼𝑛. And these

evaluation points will be fixed once for all, for all the instantiations of Shamir secret-sharing,

for computing the shares.

So, now, if 𝑠 is the value which needs to be Shamir secret-shared, what we do is, we randomly

pick a 𝑡-degree polynomial 𝑦 = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑡𝑥𝑡 whose constant term is the value

𝑠. That means, the constant term 𝑠 is fixed, but all other remaining coefficients 𝑎1, 𝑎2, . . . , 𝑎𝑡,

they are randomly picked from the field. And when I say a polynomial of degree-𝑡, that does

not mean that 𝑎𝑡 is not allowed to be 0.

I am following the convention that, when I say a degree-𝑡, that means, there are 𝑡 + 1

coefficients altogether. The constant term will be the secret, the remaining coefficients can be

0, non-zero; they are any elements from the field. So, even if they are all zeros, altogether, I

will consider it as a vector of 𝑡 + 1 coefficients; and hence, a polynomial of degree-𝑡. That is

the nomenclature I am following here.

Also remember that this set 𝒫(𝑠,𝑡), it denotes the set of all polynomials of degree-𝑡 with 𝑠 as

the constant term. All these things, we have discussed rigorously in our earlier lectures. And

we know that the number of such polynomials is nothing but the cardinality of field raised to

the power 𝑡. So, to share the value 𝑠, one such polynomial is picked uniformly at random,

which is equivalent to saying that, pick your coefficients 𝑎1 to 𝑎𝑡 uniformly at random.

And the shares are computed by evaluating this polynomial at these evaluation points

𝛼1, … , 𝛼𝑛. And the 𝑖𝑡ℎ share will be the evaluation of the polynomial at 𝛼𝑖. I stress, every party

will know that the 𝑖𝑡ℎ share is computed by evaluating this random polynomial at 𝛼𝑖. That is

not private information, because the algorithm is publicly-known.

(Refer Slide Time: 05:37)

It is only the polynomial which is randomly decided by the dealer at the time of secret-sharing

the value 𝑠. So, the linearity property means here the following: If you have a value 𝑠 which

has been secret-shared through some random 𝑎-degree polynomial 𝐴, and if there is some

public constant 𝑐, then, each party, if it multiplies its respective share of 𝑠 with the same value

𝑐; each party does it locally; then, all together, they will obtain a vector of shares.

Together, they obtain a vector of shares, I mean, each party will have the 𝑖𝑡ℎ component of that

resultant vector; but as a whole, I am considering it as a vector. That resultant vector will be

now (𝑛, 𝑡) secret-sharing of the value 𝑐 ⋅ 𝑠. That means, without even knowing the value 𝑠, just

with the knowledge of 𝑐, each party can compute its share of 𝑐 ⋅ 𝑠. What does it have to do?

Just go and multiply its share of 𝑠 with the constant 𝑐; that is all.

(Refer Slide Time: 06:47)

In the same way, if every party just adds the public constant 𝑐 to its respective share of 𝑠, then,

each party gets access to its share of 𝑐 + 𝑠. And in the same way, if there is another value 𝑠′

which has been secret-shared by running Shamir secret-sharing, where the sharing polynomial

is say 𝐵(𝑍), which has been picked from the set of all possible polynomials of degree-𝑡 with

𝑠′ as the constant term; and now, if 𝑠𝑖 and 𝑠𝑖
′ are the shares of 𝑠 and 𝑠′ respectively, for the

party 𝑃𝑖, and if every party just goes and adds its respective share of 𝑠 and 𝑠′, it will obtain its

share of 𝑠 + 𝑠′.

So, linearity here means that you can perform linear operations on the secret by performing the

similar operation on the shares itself. That means, if you want to compute the shares of 𝑐 ⋅ 𝑠,

multiply 𝑐 with the shares of 𝑠. If you want to compute shares of 𝑐 + 𝑠, add the value 𝑐 to the

shares of 𝑠. If you want to compute the shares of 𝑠 + 𝑠′, add the shares of 𝑠 and 𝑠′.

(Refer Slide Time: 08:11)

So, now, with this observation, we will go and see the BGW MPC protocol for the simple case

where the function that the parties want to compute is a linear function. And again, there are

plenty of real-world examples, real-world computations which can be abstracted by linear

functions itself. So, the setting here is the following: So, this is the theorem statement that I am

quoting from the BGW paper. You have the set of parties, which I denote by 𝒫.

And we are in the private channel model. And assume that there is a publicly-known function

𝑓 over the field, which is a linear function. That means, it takes the inputs 𝑥1, 𝑥2, . . , 𝑥𝑖 , … , 𝑥𝑛

from the respective parties; and the output is 𝑐1 ⋅ 𝑥1 + 𝑐2 ⋅ 𝑥2 + ⋯ . +𝑐𝑛 ⋅ 𝑥𝑛 , where

𝑐1, 𝑐2, … , 𝑐𝑛 are publicly-known constants from 𝔽; because, this is the form of any linear

function over the field.

So, for instance, if I take 𝑛 = 4, then the inputs are 𝑥1, 𝑥2, 𝑥3 and 𝑥4, and this is the

corresponding arithmetic circuit. So, as I said, there can be several real-world functions which

can fall under these categories. If you remember the toy summation protocol; the summation

protocol is basically a linear function, because your constant 𝑐1, 𝑐2, . . , 𝑐𝑛 are 1, all. So, like that,

there are several interesting linear functions which the parties may want to securely compute.

(Refer Slide Time: 10:05)

Now, what the BGW theorem says here for the linear functions is the following: If you are in

the private channel model and if there is a semi-honest adversary controlling any set of 𝑡

parties, where 𝑡 of course has to be strictly less than 𝑛; then, still there exists a secure MPC

protocol for computing this function 𝑦. And this holds even if the 𝑡 corrupt parties are

computationally-unbounded. So, we are now going to see the proof of this theorem.

The proof of this theorem will be through a protocol. And then, we will analyse the security of

this protocol. And now, if you are wondering, why𝑡 < 𝑛? Because, if I say 𝑡 = 𝑛, then

basically, if all the 𝑛 parties are corrupt, then, all the inputs are revealed. So, that is why, the

trivial bound for 𝑡 is 𝑡 < 𝑛. And again, what we are going to do is, we will see the BGW shared

circuit-evaluation for securely evaluating this function.

(Refer Slide Time: 11:13)

For demonstration purpose, I stick to the case where 𝑛 = 4, but whatever I am discussing here,

it generalises for any𝑛 > 𝑡. So, this is the circuit which parties want to securely compute. What

the first party does is the following: So, remember the first stage in the shared circuit-evaluation

is approaches; the inputs, respective inputs of the parties for the function needs to be secret-

shared. And who should secret-share those inputs?

The input owners themselves. So, 𝑃1 is the owner of the value 𝑥1. It will run an instance of

(𝑛, 𝑡) Shamir secret-sharing, where the parameter 𝑡 is also publicly-known. Let us make 𝑡 =

2, again for the sake of demonstration. So, it will pick, namely, a 𝑡-degree polynomial whose

constant term is 𝑥1 and compute the vector of these shares 𝑥11, . . , 𝑥1𝑛. In this case, 𝑛 is 4; so,

it will compute 4 shares.

And it will distribute the respective shares to the respective parties. So, it keeps 𝑥11 itself. It

gives 𝑥12 over the secure channel to 𝑃2. It gives 𝑥13 over the secure channel to 𝑃3. And it gives

𝑥14 over the secure channel to 𝑃4. So, that means, now, each party, what information regarding

𝑥1 do they have respectively?

(Refer Slide Time: 12:43)

Each party now has its respective shares of 𝑥1 in their local copy of the circuit.

(Refer Slide Time: 12:54)

In parallel, party 𝑃2 will act as a dealer and secret-share its input 𝑥2 with the threshold 𝑡 = 2.

So, it will compute a vector of 4 shares; it will keep the share 𝑥22 with itself; and the first share

of 𝑥2 = 𝑥21, it will give over the secure channel to 𝑃1 and so on. And now, each party, they

have got 1 share of 𝑥2. And remember, all the evaluations are performed over the same

𝛼1, … , 𝛼𝑛.

That means, the 𝛼1, … , 𝛼𝑛 which are used by 𝑃1 to compute the shares, will be the same as the

evaluation points used by 𝑃2 to compute its shares of 𝑥2. 𝑃3 also will use the same set of

𝛼1, … , 𝛼𝑛, so on. So, 𝛼1, … , 𝛼𝑛, they are not going to change; and that is why I am not bringing

them into picture.

(Refer Slide Time: 13:53)

In parallel, 𝑃3 will independently secret-share its input as per Shamir secret-sharing. And now,

everyone will have their respective shares of 𝑥3.

(Refer Slide Time: 14:09)

And 𝑃4 will independently generate Shamir shares for the input 𝑥4 and distribute among the

parties. Now, before I proceed, let me stress here that; remember, Shamir secret-sharing is a

randomised algorithm; that means, even if the parties 𝑃1, 𝑃2, 𝑃3, 𝑃4 executes this BGW MPC

protocol with the same value of 𝑥1, 𝑥2, 𝑥3 and 𝑥4, the shares which are going to be produced in

every instance will be different, because they depend upon the internal randomness, namely,

the sharing polynomials which are used to compute the shares.

(Refer Slide Time: 14:49)

And it will not be the case that for sharing the same 𝑥𝑖, every time the same sharing polynomial

will be picked. The coefficients of the sharing polynomial, they are picked uniformly at

random. So, that is why, since the sharing polynomial could be picked uniformly at random,

the shares themselves are going to take different values depending upon what precisely are

those random coefficients.

So, this completes the input stage. All the inputs are now available in an (𝑛, 𝑡) secret-shared

fashion. Now, the parties will proceed to evaluate the gates. And what are the gates in this

circuit here?

(Refer Slide Time: 15:37)

If you see closely here, all these gates are linear gates. So, this gate is a multiplication gate, but

multiplication with a public constant 𝑐1. This second gate is also a multiplication gate, but it is

a linear gate, because 𝑐2 is publicly-known constant and so on. And after that, there is a plus

gate, which anyhow is a linear gate. So, remember, your computations which parties want to

compute is,𝑦 = 𝑐1 ⋅ 𝑥1 + 𝑐2 ⋅ 𝑥2 + 𝑐3 ⋅ 𝑥3 + 𝑐4 ⋅ 𝑥4.

This is the computation which parties want to securely compute. 𝑥1, 𝑥2, 𝑥3, 𝑥4, no one knows

their values right now; they are collectively secret-shared. And since this is a linear function of

 𝑥1, 𝑥2, 𝑥3, 𝑥4, by the linearity property of Shamir secret-sharing, if the same linear computation

is performed on the shares of 𝑥1, 𝑥2, 𝑥3, 𝑥4, it will result in shares of 𝑦. And that is what the

parties will do.

Each party will locally compute the same linear function of the shares of 𝑥1, 𝑥2, 𝑥3, 𝑥4. And

this, they are doing locally. By saying locally, I mean, they are not interacting. Whatever values

they have at their own disposal, they are computing this linear function respectively. And now,

after this, there is no other gate in the circuit. That means, the computation has been performed.

Now, it is the time to announce the results. So, everyone announces the result publicly. Namely,

their respective shares of 𝑦1, 𝑦2, 𝑦3 and 𝑦4 , they publicly announce.

(Refer Slide Time: 17:29)

And if they now publicly announce, everyone will now have the full vector of 𝑦1, 𝑦2, 𝑦3, 𝑦4,

namely, all the shares of 𝑦. And now, they can apply the Lagrange interpolation on this vector

of 𝑦 shares and get back the value 𝑦. That is a BGW MPC protocol. So, now we have to analyse

whether this protocol is secure or not and so on.

(Refer Slide Time: 17:59)

But before going into that, we will first analyse the number of rounds required in the protocol

and how much communication is done in the protocol. So, round complexity means the total

number of rounds required in the MPC protocol. Communication complexity means how many

bits are communicated in the protocol overall. And remember, by round, I mean the following:

1 round means, compute something; send those values; and whatever the parties have sent in

that round, receive them; that finishes 1 round.

Next round, process whatever messages you have received in the previous round as per the

protocol; and then decide what to send in this round; send those messages. And other parties

are also doing the same. So, they will be sending something; receiving the values sent by other

parties. And then, round ends. So, like that, we have to count how many such send-receive

compute are performed by the parties in this BGW protocol, assuming that the parties want to

securely compute the linear function of n inputs.

So, where exactly interaction is needed in the BGW MPC protocol? The interaction is needed

for secret-sharing the inputs of the parties. So, the first step of the protocol was, each party

acted as a dealer and distributed shares for its respective input. So, for that, interaction is needed

over the secure channel. If I want to implement this protocol; by interaction, I mean; say, I have

to open the SSH socket or SSL socket and then I have to communicate my shares to the

respective receiver over those channels.

So, how many times I have to basically open the channel and communicate? That is what I am

now trying to compute here. So, interaction is needed for sharing the inputs. And this can be

completed in 1 round. Even though when I demonstrated the protocol, I first demonstrated that

𝑃1 shares, and then followed by 𝑃2, and then followed by 𝑃3, and then followed by 𝑃4; but

when you are implementing it, when 𝑃1 is secret-sharing its input, at the same time, 𝑃2 also can

start its secret-sharing instance; because, there is no dependency between 𝑃2 sharing its input

and 𝑃1 sharing its input; because the sharing polynomials which 𝑃1 and 𝑃2 pick, respectively,

they are independent.

So, when 𝑃1 is sending its share, at the same time, 𝑃2 also can start sending its shares, because

the channels are independent here. So, that is why, overall it will require 1 round of

communication. It will not be the case that the sharing is happening here in a sequential fashion;

no; the sharing is happening in parallel. So, that is why it requires 1 round. And how much

communication happens if I count all the instances of sharing here? So, there are 𝑛 instances

of secret-sharing.

(Refer Slide Time: 21:12)

And for each instance of secret-sharing, 𝒪(𝑛) values or field elements have to be

communicated. Each 1 field element has to be communicated to every other party, because that

is a share. So, for 1 instance of secret-sharing, 𝑛 field elements are communicated. For the

second sharing instance, 𝑛 field elements are communicated. For the 𝑖𝑡ℎ sharing instance,

𝑛 field elements are communicated.

And for the last sharing instance, 𝑛 field elements are communicated. So, overall, 𝒪(𝑛2) field

elements are communicated. Of course, a party keeping its share of its own input to itself will

not be considered as a communication; but in terms of order notation, the overall

communication that is happening is 𝒪(𝑛2). So, these many field elements are communicated,

and each field element can be represented by these many bits.

Namely, there are these many number of field elements, and each field element can be

represented by log of the number of elements in the field. So, since 𝑛2 such field elements have

to be communicated throughout, the communication needed for the sharing protocol, sharing

part is this much. Now, where else is the interaction needed in the BGW protocol, if the

function that needs to be communicated is a linear function?

(Refer Slide Time: 22:48)

Well, the shares of 𝑦, they are computed locally. That does not demand any interaction among

the parties. But then, to learn the function output, the value 𝑦, the shares of 𝑦 needs to be made

public. Everyone has to announce the share 𝑦𝑖. So, if 𝑃𝑖 is the 𝑖𝑡ℎ party, it has to announce the

share 𝑦𝑖 to every other party. It will be sufficient if any 𝑡 + 1 of these 𝑛 parties make their

respective shares of 𝑦 public; but in the worst case, my 𝑡 could be all the way 𝑛 − 1.

(Refer Slide Time: 23:25)

That means, I may need all the 𝑛 shares. So, that is why, when I am explaining here, I will say

that, okay, all the 𝑛 shares need to be public; but any 𝑡 + 1 shares are sufficient if they are

made public. So, there are 2 approaches here. One approach could be that, in a single round,

every party sends its respective share of 𝑦 to every other party. So, this will require a single

round, and quadratic in the number of parties’ communication. Alternately, I can do the

following:

(Refer Slide Time: 24:04)

A modified reconstruction: Instead of 1 round, if you are willing to give me 1 additional round

of communication, but ask me to save the communication, I can do the following: In the 1

round approach, every party sends its share of 𝑦 to every other party. So, that is why, single

round but 𝑛2 communication; of course, 𝑛2 ⋅ log (𝔽) bits. But if you give me 2 rounds, then

what I can do is the following:

Let all the parties agree on a pre-determined party, as per the protocol itself. It could be any

pre-determined party, any designated party; let it be the first party for simplicity. Then, in the

first round, every party sends their respective share of 𝑦 only to that designated party. So, that

will require 1 round and 𝒪(𝑛) communication in terms of field elements. That single party,

now it will have all the shares of 𝑦, at the end of the first round.

(Refer Slide Time: 25:07)

So, it can reconstruct 𝑦. And now, in the second round, it goes and announces the result 𝑦 to

everyone. So, that will be the second round. And how much communication happens in the

first round? It is 𝒪(𝑛), again in terms of field elements. How much communication happens in

the second round? Again, a single field element, which is 𝒪(𝑛). So, overall, 𝒪(𝑛) ⋅ log (𝔽) bits

are communicated. So, there is a trade-off here.

If your network is kind of very slow, where you cannot afford to communicate multiple times

among the parties, then go for this 1 round approach. That means, if the bandwidth is not an

issue, but number of times the parties need to open the socket and interact is the issue, then go

for this 1 round approach. But if the bandwidth is the issue, but the network is stable and you

can communicate as many times as possible, but the restriction is that every time you are given

a restriction that your bandwidth is very small, then go for this 2 round approach.

So, depending upon what is your primary constraint, whether it is the number of times you

want to interact is more critical or whether it is how much you want to communicate every

time, that is critical; you decide whether you want to go for this 1 round reconstruction

approach or whether you want to go for this 2 round reconstruction approach.

(Refer Slide Time: 26:41)

So, these are the references used for discussing today's lecture. We have not yet seen the

security analysis. We have seen only the protocol details for computing the linear function, and

we have analysed the round and communication complexity. Thank you.

	Secure Computation - Part I
	Prof. Ashish Choudhury
	Department of Computer Science
	International Institute of Information Technology, Bangalore
	Module - 4
	Lecture - 20
	The BGW MPC Protocol for Linear Functions

