
Secure Computation - Part I
Prof. Ashish Choudhury

Department of Computer Science
International Institute of Information Technology, Bangalore

Module - 3

Lecture - 16
A Toy MPC Protocol

(Refer Slide Time: 00:35)

Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: So, now,

we will start our discussion on multi-party computation, how to design protocols for

performing secure computation. And in this lecture, we will do a warm up. We will see a

very simple function, namely that of secure addition; we will see the problem definition, what

exactly we mean by secure addition; and we will see a very simple MPC protocol for

securely computing the addition function.

(Refer Slide Time: 01:06)

So, here is the definition of the addition function, which I also call as the sum function. So,

you are given set of n parties, P1, P2, Pi, Pn, and each party has a private bid. So, party 1 has

the bid b1, party P2 has the bid b2, ith party has the bid b i, nth party has the bid b n, and they

are private, but everyone knows that the input of every party is either 0 or 1. That is a public

information, but what exactly is the value of the bid, that is not known.

And the goal is to compute the addition of the n bids. So, let us denote the sum as S. So, the

parties want to learn the sum of the n bid values. That is the goal here. And if you are

wondering what is the bid deal, why cannot every party just announce that this is my bid, and

then let everyone take the sum of the announced bids? Well, to make the problem interesting,

since we want to do secure computation, the requirement here is that, we want to learn the

sum, and in the process, it should be ensured that no party Pi should learn anything beyond

what it can learn from the sum and its own input.

That means, what I want here is to ensure the following: The sum S will be finally learnt by

everyone. Now, P1, it will have its bid b1, and it will learn the final sum S. From that, it can

infer something regarding the inputs of the remaining parties. Only that much should be

inferred in the whole protocol. Similarly, if I consider b2, P2, it will have its own bid and it

will learn the final sum.

Based on that, it will have some knowledge about the inputs of the remaining parties; that is

allowed. Other than that, nothing additional should be revealed, and so on. That is the goal.

So, now that simple protocol where all the parties just announce their bids in public, and then

you take your sum, it is not going to work; because you are not only learning the sum, you

are learning every other party's input bid, which is not supposed to be learnt.

So, now, let us try to understand what exactly it means by saying that Pi should not learn

anything beyond the final result and its own input. What does it mean, does not learn

anything beyond? So, let me propose an ideal solution. This is a hypothetical solution. That

means, there are problems with this solution, but let us consider this solution and try to

understand that what is the information a party learns in this ideal solution.

In this ideal solution, we assumed that we have what we call as a trusted third party, TTP.

That means, it is a party different from these n parties. And it is trusted in the sense, it is

assumed that he is the friend of all the n parties; friend in the sense that he is willing to help

the n parties compute the sum, but even if he learns the input of the respective parties, he is

trusted, he will not be leaking those input values to the other parties.

That is the guarantee, that is the assumption, that is what we mean by a trusted entity,

equivalent to God, you can imagine. So, assume that such a trusted party is present. And

imagine that there is a mechanism for each party to privately communicate with this trusted

third party. That means, there is some dedicated channel between every party and this trusted

third party. Then, what will be the mechanism to securely compute the sum function?

Well, the simple protocol will be, every party individually communicate its private input to

this trusted third party. And this communication is happening over the private channel, which

is available between each party and the trusted third party. That means, when b1 is

communicated from P1 to this trusted third party, no other party can make out what is the bid,

what is the value of b1 that is communicated and so on. That is the assumption here.

(Refer Slide Time: 05:55)

Now, once this trusted third party learns all the n input bids, it can itself compute the sum,

because it has got all the n input bids. And then, it simply announces the result to everyone

publicly. That is the ideal solution. And why it is called ideal solution? Because this is the

most secure protocol that you can think of. In this process, what is the information any party

learns about other parties’ input? Nothing.

There is only 1 communication happening between every party and the TTP. The party sends

input, gets back the output; that is all. If I consider say for instance, party P2, will it learn

anything about b1, b2, bi, bn, when they are communicating to the TTP? The answer is no,

because that communication is happening over secure channels. And anyhow, S is learnt by

everyone.

So, this is the most secure solution that you can think of for computing the sum function. And

in this protocol, it is indeed ensured that each party, if you consider each individual party, it

just has finally its own input and the sum value. From that, whatever they can infer regarding

other party's input; they can make some hypothesis, okay, it could be the case that the inputs

of this combination of parties is this, blah, blah, blah; all these things are finally anyhow

allowed to be revealed.

We cannot prevent that from getting revealed from the sum and the individual inputs, but

since no communication is happening among the parties here, in this ideal solution; that is

important; no communication is happening among the parties in this solution. Individually, a

party is not allowed to learn anything in this ideal solution. But the problem with this ideal

solution is that, it creates what we call as single point of failure.

Namely, how suddenly we will get someone who is cent percent trusted? This whole solution

works under the assumption that there is a third party, a friend party who is trusted by

everyone. How in this real world you can find someone who is indeed cent percent trusted?

Because trust is very rare and volatile. And if there is trust in the world, then we do not need

to design, we do not need to study MPC.

Because, if a trusted third party is there, then whoever are the set of n mutually distrusting

parties, they can take the help of this trusted party to keep the privacy of their messages,

inputs, and at the same time perform computation on their inputs. But at the first place, we

are actually trying to design a protocol because we know that there is no one called a trusted

third party in this real world.

(Refer Slide Time: 08:54)

Because, there is always a distrust in the world; because, without darkness, one cannot know

light; without hatred, one cannot feel love; without war, one cannot realize the price of peace;

without noise, one cannot appreciate serenity; and without distrust, one cannot value trust.

So, the ideal solution that we have proposed, that is a hypothetical solution, that will work

only under the assumption that you have someone who is trusted by everyone.

So, now it looks like we are kind of stuck. We do not have any trusted third party, we just

have the n parties, that is all. And at the same time, we want a mechanism which allows those

n parties to maintain the privacy of their respective bids; but at the same time, the sum should

be computed and announced publicly. Looks like an impossible task, because how can it be

possible that without anyone knowing all the individual bids, b1, b2, bn, the sum is computed?

Because, if at all the sum needs to be computed, the values of the n bids have to be known.

Who should know that? Because we cannot afford to let P1 learn all the n bids, compute the

sum and announce; or we cannot let P2 know all the n bids, compute the sum and announce;

because our goal is that, no single party should learn anything additional beyond its own

input bid and the final sum.

So, you might be now wondering that, do we indeed require a trusted third party to compute

this very simple sum function? We are talking about the real world MPC motivation

examples that we talked about. They are very complex functions; privacy-preserving data

mining, checking whether there is a probability of 2 satellites colliding and so on. Forget

about those complex functions, we are just talking about a very simple sum function, that is

all.

How can it be possible without trusting anyone, any single party, still we are able to compute

the sum of n bid values? Looks like an impossible task, but we will do now some magic. We

will see a very simple protocol for computing this sum function.

(Refer Slide Time: 11:18)

So, now, we do not make any assumption that we have a trusted third party. We will be

designing a protocol according to which the parties will communicate messages among

themselves. And we assume that to communicate, parties have pairwise private channel. That

means, there is a way for every party to communicate some message, whatever message it

wants to communicate to any other receiver, in a private, in a perfectly secure way.

And we had seen in the last lecture, how exactly such channels can be realized. The problem

setting is the following: Each party has a private bid bi, and the goal is to securely compute

and announce the sum of n bid values. And it should be done in such a way that no party Pi

should learn anything beyond what it can learn from the final sum and its own input bid

during the protocol execution.

That means, whatever messages any party Pi learns, gets during the protocol execution, that

should be kind of independent of the inputs of the other parties. That is what roughly we want

to achieve here. So, what will be the protocol? So, to begin with, it is easy to see that the final

sum is in the range 0 to n; 0, because it could be the case that the inputs of all the parties is 0;

n, because it could be the case that all the input parties have the bid 1.

By the way, if all the parties have the input bid 1, and if the final sum is learnt, is to be n, then

anyhow, parties will learn that all the parties have participated with input 1. That is not a

breach of privacy, because that is allowed to be learnt, remember. If the final sum is n,

everyone will know that, okay, every party has participated with input 1; that is leaked

anyhow, from the input and the final output.

That is not called a privacy leak or privacy breach here. In the same way, if the final sum

turns out to be 0; fine; everyone will learn that every party participated in the protocol with

input 0; that is not a privacy breach. But suppose if the sum is turned out to be, say 1, then

again, the party whose input is 1, he will know that, okay, I only have participated with input

1, but others have participated with 0; fine; that is again not a privacy breach.

But suppose if sum is turned out to be 2 after the execution of the protocol and suppose b1 is

equal to 1, then party 1 will learn from this output that, okay, definitely there is only 1 more

party whose input is 1. Which party has participated with input 1? That should not be learnt,

because that is not allowed to be learnt from b 1 equal to 1 and s = 2. The information that is

allowed to be learnt from b 1 equal to 1 and s = 2 is that there is another party and only 1

party who has participated with input 1.

That is allowed to be learnt, but anything additional apart from that, that should not be learnt

in the protocol execution. Whereas, if b3 is equal to 0 and s = 2, from its viewpoint, it will be

learning that anyhow that there are 2 parties who have participated with input 1; that is

allowed to be learnt from b3 equal to 0 and s equal to 2. But who are those 2 parties? That

should not be leaked.

So, that is what roughly I mean here that nothing additional should be revealed beyond a

party's own input and the function output. So, do not consider that if s = n, then everyone

learns that all the parties have participated with input 1, and that is a privacy breach; no. That

is why I have stressed here the term anything beyond.

(Refer Slide Time: 15:27)

So, since the sum is going to be a value in the range 0 to n, the parties will agree upon some

public modulus capital M. Agree upon means, they will, the protocol will be designed in such

a way that all the operations will be performed modulus M. That means, it will be ensured

that all the values computed in the protocol, they lie in the range 0 to M - 1; and M is strictly

greater than n. That is what we mean by parties agree upon this public modulus.

Now, here is the protocol. To start with, the first party, it picks a random value; and since

here n = 4, I am taking for demonstration purpose 4 parties here; that is why my sum value

could be in the range 0 to 4; and that is why we have agreed upon the, we will be performing

all the operations modulo 5. And Z5 means, the set 0, 1, 2, 3, 4. So, what P1 does is the

following:

It picks a random value k from this set Z5; with equal probability, it could be 0, 1, 2, 3, 4; and

that is known only to P1. Now, it computes an encryption of its bid b1. And how it computes

the encryption? It simply adds the value k to its bid, and that is the ciphertext c1, which it now

communicates to the second party over the private channel which is available between P1 and

P2.

So, people who are familiar with one-time pad encryption, this c1 is nothing but a OTP

encryption of b1 with pad k. And remember, this plus operation is performed modulo 5. That

means, the value of c1 will remain in the range 0 to 4, because every time a value crosses 4,

we will perform the mod operations. And P2 will know that, okay, whatever value it is

receiving, that is an OTP encryption of the bid b1.

But since the pad k is uniformly random, it does not reveal anything about the actual value of

the bid P1. Now, what P2 does? It takes the OTP encryption c1 and add its own input bid to

that ciphertext.

(Refer Slide Time: 18:44)

And if we expand the OTP ciphertext c1, the ciphertext to c2, which now P2 is communicating

to the next party, can be interpreted as if the sum of the first 2 bids, b1 and b2 is encrypted

using the pad k. And this ciphertext c2 is communicated over the private channel available

between the second party and the third party. And now, the third party further extends this

process.

It takes the ciphertext which it is receiving and it adds its own input bid. And now, this will

be treated as an OTP encryption of the sum of the first 3 input bids using the pad k. And this

will be communicated to the fourth party. And now fourth party adds its own input bid and

this will be treated as if the sum of the 4 input bids is encrypted using the pad k. And this

ciphertext or this encryption will be communicated back to the first party.

Now, first party; if you see the value of c4 closely here; is getting an OTP encryption of the

sum of 4 bids with respect to the pad k which is available with P1. So, it can just remove the

pad k or it can actually perform the decryption of your ciphertext c4. So, the decryption

operation will be unmasking the pad. Unmasking the pad means, subtracting out the pad. So,

if the pad k is subtracted from this OTP encryption c4, that will give the sum S, namely, the

summation of b1, b2, b3, b4, which this first party can now announce to everyone publicly.

(Refer Slide Time: 20:46)

That is a simple protocol. Now, we have to analyse this protocol and we have to argue that in

this protocol, any single party, we call it P1 or P2 or P3 or P4, any single party, does it learn

anything beyond what it can learn from S and bi, even if it is computationally unbounded?

Let us make bi computationally unbounded. That means, even if the first party is

computationally unbounded, does it learn anything about the inputs b2, b3, b4, beyond what it

can learn about b2, b3, b4, from the sum and its own input value b1?

That is what we want to argue. In the same way, we want to argue that suppose if P2 is

computationally unbounded, after the protocol gets over, he will anyhow learn the sum, he

has his own bid value b2. Now, it wants to analyse the messages that it has received during

the execution of the protocol. Is it possible that if P2 is computationally unbounded, there is a

mechanism for P2 to analyse the messages that it has received and infer anything additional

about b1, b3, b4, beyond what it can infer from the final sum and b2? and so on. And we want

to perform this analysis for every single party here.

(Refer Slide Time: 22:21)

So, to prove the privacy property that indeed this simple protocol satisfies the privacy

property, what we will do is the following: We will define first what we call as the view of

any party Pi. So, I have written down the view of every party in this rectangular box. And

roughly, this is the information which is learnt by the party Pi, during the protocol execution.

So, the view will have definitely the inputs of the parties.

So, sorry, I have not written it down explicitly here in the boxes. So, view will definitely have

the inputs of the parties. And if there are any random coins which are used by the parties

during the protocol execution, they also will be a part of the view. So, if you see here, no

party except the first party, tosses a random coin. It is only the first party who picks the

random pad, but apart from that, no party has any random coin being used in the protocol.

So, k also will be a part of the view of the first party. And then, whatever messages that party

has received from other parties and communicated to the other parties, they will be a part of

the view of that party. So, for instance, if I consider this party number 2, his view will be, it is

learning the final sum, it would have received the ciphertext c1, so, that is why c1 is part of its

view.

And it would have communicated c2 to the other party, so, that is why c2 is a part of its view,

and b2 also will be a part of its view, because that is his own input. And to prove that indeed

this protocol is secure, this simple toy MPC protocol is secure, we have to argue that Pi

should not learn anything beyond what it can learn or compute itself from S and bi. And this

is equivalent to saying that, anyhow the sum S will be learnt and bi is available with the party

Pi, based on bi and S, it will have multiple candidate values for the inputs of the remaining

parties, which along with bi would give the sum S, which is learnt by the party.

We have to show that this Viewi which is learnt by the party Pi during the protocol, that is

equiprobable with respect to every such candidate b1, b2, bi, bn, which sums up to the given S.

And remember here that the view Vi here, namely, the view of the each party here, it is not a

fixed set of values. That means, it is not the case that every time the protocol is executed,

even with the same set of inputs b1, b2, b3, b4, the same ciphertext c1, c2, c3, c4, would be

circulating in the system.

Because, c1 will be different every time, because the pad, one-time pad is picked randomly in

each execution. So, even if b1 is same across multiple executions, c1 will take different

values. And if c1 takes different values, c2 will take different values, even if b2 is fixed, and

so on. So, that is why, the contents of Viewi is not going to be a fixed set of contents, even if

the inputs b1, b2, b3, b4 are fixed. And that is why, Viewi here is a random variable, and it can

take different values with different probability.

We have to argue here for privacy that the probability distribution of Viewi is independent of

the inputs of the other parties. Namely, you fix bi, you fix the sum S, then for every candidate

remaining inputs, which along with this fixed bi gives you this fixed S; Viewi could occur

with equal probability. And if we show this, then this is equivalent to showing that the

information learnt by Pi is more or less equivalent to what Pi would have learnt in the ideal

solution.

Remember, in the ideal solution, the view of the ith party would have been just its own input

and the function output, namely the sum S, because that is the only information learnt by Pi in

that ideal solution. But in this toy MPC protocol, Viewi has other things as well, the

ciphertext received by the party and the ciphertext which it communicates to the other party

and so on.

If we show that view is distributed independent of the inputs of the other parties, then that is

equivalent to showing that basically Viewi has the same amount or equivalent amount of

information which Pi would have learnt in the ideal solution. And that is what we will do in

our next lecture. Thank you.

