
Secure Computation - Part I
Prof. Ashish Choudhury

Department of Computer Science
International Institute of Information Technology, Bangalore

Module - 3

Lecture - 15
Perfectly-Secure Message Transmission

(Refer Slide Time: 00:33)

Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: In this lecture,

we will see the problem of perfectly-secure message transmission, which is also called as PSMT.

We will see the problem definition and we will see that how we can solve this perfectly-secure

message transmission problem using the help of secret-sharing. And then, we will conclude with

what we call as the private-channel model in the multi-party computation.

(Refer Slide Time: 01:00)

So, let us start with the problem definition of perfectly-secure message transmission or PSMT in

short. So, the setting is as follows: You have 2 nodes or parties in the network, a sender S and a

receiver R, and they do not have any pre-shared information, and they are connected in a network

via intermediate nodes. So, you have several paths between the sender and receiver.

So, you have 1 path through the node A; you have another path through the node B and then

followed by node A; you have a path through the node C; and then you have a path through the

node D. And some part of the network could be under the control of a computationally unbounded

adversary. So, I have written here, part, in quote-unquote. Of course, sender and receiver, they are

not allowed to be under the control of the adversary; but some part of the network, that means,

some of the intermediate nodes between S and R, could be under the control of an adversary who

is computationally unbounded.

And they are controlled by the adversary, but they will not be deviating from any protocol

instructions. That means, if some instructions are given to the intermediate nodes, even if they are

under the control of the adversary, they will follow the protocol instructions; but whatever

communication is happening through those intermediate nodes, that communication will be

forwarded to the adversary.

So, what we do here is, we will abstract the underlying network by what we call as wire abstraction.

And by wire abstraction I mean, I consider node-disjoint paths also called as vertex-disjoint paths

between the sender and receiver. So, what does the vertex-disjoint or node-disjoint paths mean?

Let us try to understand that in the context of this example itself.

(Refer Slide Time: 04:00)

So, you can consider this path S and then A and then R as 1 path. And then, even though now you

have 2 other paths, 1 path going from S to B and B to A and then to R, and another path going

from S to C and C to B and then B to A and then A to R; they are not node-disjoint. So, if I consider

the path S to B and then B to A and then from A to R, and another path consisting of S to C and

then from C to B and then from B to A and then to R; these 2 paths, they are not node-disjoint,

because there is a common node, namely the node B which is present in both these paths.

So, together these 2 paths will be abstracted as a single wire w2, between S and R. And by wire, I

mean channel; do not consider it as a physical wire, that is just a name. Similarly, the path S, A

and R is abstracted as channel or wire w1. And now you have a third node-disjoint path namely S

to D and then D to R. So, there is no intermediate node here in this path, which is common in any

of the remaining paths which we have already considered.

So, overall, I can abstract this network, the intermediate nodes present between S and R as wires

between or channels between S and R, the disjoint channels. And the reason for abstracting this

communication as wires is the following: If any communication is happening through the node A,

from S to R, that can be abstracted as if that communication is happening from S to R.

(Refer Slide Time: 05:59)

On the other hand, if some communication is happening from S to R, which involves the

intermediate node B, and if the node B is under the control of the adversary; that means, even if

the communication would have happened from S to C and then C to B and then B to A, that

communication also will be under the control of the adversary; because, the node B is a common

node along the path S to B, B to A, A to R, as well as along the path S to C, C to B, B to A and A

to R.

That means, if this single node B gets corrupt; corrupt in the sense, if it gets compromised and get

controlled by the adversary, then the adversary can actually see the communication happening

through 2 of the paths between S to R. Namely, the communication happening over S to B, B to

A, A to R, as well as S to C, C to B, B to A, A to R; so, that is abstracted as if there is a single wire

between S and R, w 2.

And if it gets controlled by the adversary, then whatever communication is happening over this

channel or the wire, will be learnt by the adversary. So, that is a way we do the wire abstraction.

(Refer Slide Time: 07:26)

Now, what is the goal in the perfectly-secure message transmission problem? The goal is the

following: Sender will have some message m, which is known only to the sender. It could be a

single bit, it could be a bit string of certain length, whatever. The goal is to derive or devise a

mechanism which allows the sender to communicate this message m via these intermediate nodes

to the receiver R, in such a way that even if some part, some of these intermediate nodes or some

of these wires get controlled by a computationally unbounded adversary, the message should

remain private.

Of course, since we are assuming here that the adversary cannot cause the controlled node to

deviate from the protocol instructions, the message will be delivered correctly, that is not an issue;

but the goal here is to ensure the privacy of the message. And why we are calling it perfectly-

secure message transmission, because here we are trying to demand security against an adversary

who is computationally unbounded.

I stress here that the assumption here is that only a part of the network will be under the control of

the adversary, excluding S and R. That means, it cannot be the case that all the intermediate nodes

get controlled by the adversary. That is not possible. Because, if that would have been the case,

then that is equivalent to saying that all the wires, w1, w2, w3, all of them are under the control of

the adversary, then how can it be possible for the sender to communicate anything privately to the

receiver. That means, there should be at least 1 wire or some of the wires which are not under the

control of the adversary.

(Refer Slide Time: 09:15)

So, now, let us see that how exactly we model, that adversary controls a subset of the wires. So,

we assume that we have a computationally unbounded adversary who can sit over some of the

wires. And the adversary can be characterized as either a threshold adversary or a non-threshold

adversary. So, in the threshold adversary model, we assume that if there are n wires between S and

R, then at most t of those wires can be under the adversary's control, where t is strictly less than n

and n is the number of wires between S and R.

Whereas in a non-threshold adversary, we do not model the adversary by a threshold value t, but

rather we will be given an adversary structure which will consist of several potential subsets of

wires and any one of those subsets can be under the control of the adversary when the protocol

gets executed. And this adversary structure will be a monotone adversary structure.

That means, 𝛤 will consist of all the maximal subsets of wires which can potentially get corrupt

by the adversary. So, if there is a subset say B1, then, by monotone I mean that any proper subset

of wires of B1 will also be considered as a potentially corrupt set of wires which can get controlled

by the adversary; same as we had done for the case of secret-sharing.

So, it is easy to see that if our adversary is modelled as a threshold adversary, then of course, a

necessary condition to solve the perfectly-secure message transmission problem is that, there

should be at least 1 wire which is not under the control of the adversary, namely, t should be strictly

less than n. Because, if all the n wires are under the control of the adversary, there is no mechanism,

no way by which S can communicate its message in a perfectly private way to the receiver.

Whereas, the necessary condition for solving the PSMT problem against the non-threshold

adversary is that, my adversary structure should satisfy what we call as Q(1) condition. So, what

does this Q(1) condition mean? This Q(1) condition mean that, if you take any subset of potentially

corrupt wires from your adversary structure, that should not be the entire set of n wires between S

and R.

(Refer Slide Time: 12:21)

That means, if I consider that, say my Gamma consists of subsets B1, B2, and like that there are

say Bk potential unauthorised subset of wires over an adversary can sit, either the wires in B1 or

the wires in B2 or the wires in Bk, then, when I say that my adversary structure Gamma satisfies

the Q(1) condition, by that I mean that B1 is not the entire set of wires, or B2 is not the entire set of

wires, or Bk is not the entire set of wires, and so on.

And it is easy to see that this Q(1) condition is a strict generalisation of the t less than n condition.

So, t less than n condition means that, you take any subset of t wires, that does not cover the entire

set of n wires, because t is strictly less than n. That condition is strictly generalised to the Q(1)

condition, because now the cardinality of this potentially corrupt subsets of wires could be

different.

So, B1's cardinality could be different, B2's cardinality could be different, and so on. Because, in

the non-ratio model, there is no restriction that the size of each of this maximal potential corrupt

subset of wires should be same.

(Refer Slide Time: 13:46)

So, we have seen the problem definition of perfectly-secure message transmission. Now, let us see

that how we can solve this problem. And we will see here that, if you are given a secret-sharing

scheme, say in the threshold model, then you can get a PSMT protocol in the threshold model; if

you are given a secret-sharing protocol in against the non-threshold adversary, then you can design

a PSMT protocol against the non-threshold adversary.

So, let us see first for the case of threshold adversary. And for the sake of demonstration, I am

assuming that t = 3. That means, there should be 4 or more number of wires between S and R. So,

now imagine sender has the message m which it wants to privately communicate to the receiver.

And to do that, what sender does is the following: It computes a vector of shares according to a n,

t secret-sharing scheme, assuming that its secret is the message m.

So, the message m which sender wants to communicate privately to the receiver is treated as the

input for the secret-sharing algorithm. And we assume that we are given 1 such secret-sharing

algorithm. It could be any n, t secret-sharing algorithm. We are treating the n, t secret-sharing

scheme as a black box here. We are not interested in the underlying detail. It could be your Ito's

scheme, it could be Benaloh's scheme, it could be Shamir secret-sharing scheme, it could be any

n, t secret-sharing scheme.

Now, the secret-sharing scheme will generate n shares for the message m. And since the sharing

algorithm will be randomised, that is why I am using this arrow notation to denote the output of

the sharing algorithm; I am not using the assignment operator. And now, what sender does is the

following: It sends the first share over the first wire, it sends the second share over the second wire,

it sends the ith share over the ith wire, and the nth share over the nth wire; as simple as that.

So, intuitively, you can imagine this whole process as the message m is kind of divided into

packets. The shares of the message here can be in interpreted as various packets, which overall

when combined, gives you the message m. But these packets have the property that, if any t of

these packets get compromised, gets intercepted, it does not reveal anything about the underlying

message.

That is how you can interpret the division of the message into the shares m1, m2, m3, m4 and so on.

Now, let us see whether the privacy condition is satisfied or not here. So, what will be adversary's

view here? Imagine there is a threshold adversary and this threshold adversary can eavesdrop the

communication over any 3 out of the 4 wires. It could be, say the first 3 wires, the last 3 wires and

so on.

Say for instance, it eavesdrops the last 3 wires. So, it will learn the shares m2, m3, m4. But will

learning m2, m3, m4 reveal anything to this adversary? The answer is no. Because, as per the

property of this n, t secret-sharing scheme, these shares m1, m2, m3, m4, have the property that, if

any subset of 3 shares are considered, then they are probability distribution is independent of the

underlying secret which is used in the secret-sharing algorithm.

And the secret which is used in the secret-sharing algorithm is nothing but the message itself. And

this holds not only for the last 3 wires, the adversary can choose any 3 wires; it could be the first

3 wires, or it could be the first, second or fourth wire and so on. The property of this n, t secret-

sharing scheme ensures that the probability distribution of any 3 shares out of these n shares is

independent of the message. And hence, the privacy property is satisfied.

Now, how can the receiver get back the message? So, receiver will receive the shares m1 over the

first wire, m2 over the second wire, m3 over the third wire, and m4 over the fourth wire; and it will

know the reconstruction algorithm of the underlying secret-sharing scheme. It can use the

reconstruction algorithm and get back the message m. And correctness here will be satisfied.

By correctness I mean, receiver will be able to recover back the sender's message correctly without

any error, if the shares m1, m2, m3 and m4 are communicated as it is. That means, they are, their

contents, their values are not changed. That means, even if adversary is sitting over the second,

third and fourth wire, it has not changed any of the bits of m2 or m3 and m4. And that is guaranteed,

because, as per my assumption, I am assuming here that adversary is an eavesdropper here.

You might be wondering what if my adversary is not eavesdropper, it can tamper the contents over

the channels which are under its control. Well, there are mechanisms to deal with that as well. But

since the focus of this course is semi-honest adversaries or eavesdropper, we will be just focusing

our attention on eavesdropper; namely, adversary who does not alter the contents of the messages

communicated over the channels under its control.

So, this construction will work against the threshold adversary. Now, let us see whether the above

approach of computing shares for the sender's message and communicating over the individual

channels, work even against a non-threshold adversary as well. And the answer is yes. So, let me

consider a non-threshold adversary, where I consider this adversary structure. And this adversary

structure represents here that, during the execution of a PSMT protocol, the adversary can either

control the wire w1, or it can control together the second and third wire, or it can control only the

fourth wire.

So, now you can see, the cardinality of different subsets in this adversary structure are different. It

is not the case that the cardinality of all the subsets in this adversary structure is the same. So, now,

let us see whether sender can securely communicate the message here. So, we will run the non-

threshold secret-sharing scheme by Ito et al. And if you recall what we do in the secret-sharing

scheme of Ito et al., we find out the number of subsets in the adversary structure.

So, we have 3 subsets here. This is 1 bad subset, another bad subset and another bad subset. And

the idea behind the Ito's secret-sharing scheme is that, we divide the secret into so many pieces

that for each potential bad set in the adversary structure, there should be some piece which should

not be available with the parties in that bad set. So, since we have 3 bad sets here, the secret or the

sender's message is divided into 3 shares m1, m2, m3, which are random, and which will have the

property that they sum up to the message m.

So, here I am assuming that the message m is an element of the group, and the group has a plus

operation. Now, the first share of the message, m 1 needs to be communicated to the receiver.

Through which of the channels it will be communicated? So, again, m1 is communicated over all

the channels except the channels in the bad subset B1. So, the bad subset B1 has wire 1.

So, wire 1 will not be used to communicate the first piece of the message, but through the

remaining wires it will be communicated. And the idea here is that, if during the execution of the

protocol, if indeed adversary controls the wires in B1, it will not be getting the piece m1. And since

m1 will be missing for the adversary, from its viewpoint, even if it gets the remaining shares of the

message, it could be any message which sender has communicated to the receiver.

(Refer Slide Time: 23:01)

In the same way, the piece m2 will be communicated to the receiver over all the channels except

the channels in B2. So, the B2 channels, B2 subset has the channels w2 and w3. So, w2 and w3 will

not be used to communicate m2; but over the remaining channels, m2 will be communicated. And

again the idea here is that, if actually it is the set of wires in B2 which gets corrupt by the adversary

during the execution of the protocol, then m2 will be missing, and hence the adversary who is

controlling the set of wires in B2 fails to learn the message m.

(Refer Slide Time: 23:49)

Whereas, the third piece m3 will be communicated through all the wires except the wires in B3.

So, B3 has wire w4; so, wire 4 will not be used to communicate m3, but m3 will be communicated

over the remaining wires. Again, privacy is very easy to argue here. Namely, it does not matter

which subset of wires from the adversary structure adversary controls. If it is B1, then m1 is

missing; if it is B2, then m2 is missing; and if it is B3, then m3 is missing.

That means, irrespective of which bad subset adversary controls, there is at least 1 share of m

which will be missing; and hence, it could be any message m which sender has split and

communicated via various channels to the receiver R. So, privacy is guaranteed.

(Refer Slide Time: 24:45)

Now, what about the correctness? Will receiver be able to recover back the message? Yes. Since

we are assuming an eavesdropper here, it will be just eavesdropping the contents of the channels,

it will not be altering the contents of the channels. And the pieces m1, m2, m3 will be arrived as it

is, to the receiving end. And now, the receiver can apply the reconstruction algorithm of the

underlying secret-sharing scheme, and it will recover back the message m. So, now you can see

that if you have a perfectly-secure secret-sharing scheme, then that can be directly translated to

obtain a perfectly-secure message transmission protocol.

(Refer Slide Time: 25:39)

So, that brings us to what we call as the private-channel model in secure multi-party computation

protocols, which we will be designing later. So, very often, we use this term private-channel model

in MPC. We will say that, we make the assumption that we are in the private-channel model. And

by private-channel model, we mean that the parties p1 to pn who wants to perform secure

computation, they are connected by pairwise private channels.

That means, we abstract the underlying network as a complete graph. And when I say pairwise

private channels, that means, if there are 2 parties; suppose these 2 parties are honest and honest

means that they are not under the control of the adversary; then, by pairwise private channel, I

mean here that whatever communication is going to happen over this channel between these 2

parties, even if there is a computationally unbounded eavesdropper, passive adversary who is

monitoring the communication, cannot learn anything about the underlying messages which are

communicated by these 2 honest parties.

That is what I mean by the pairwise private-channel model. Of course, if 1 of these 2 parties is the

corrupt party, namely, under the control of the adversary, adversary will fully learn what exactly

are the underlying messages which are communicated, because, either it will be the sender or the

receiver of this channel. But if both the parties, namely the sender and the receiver at the receiving

end of this channel are not under the control of the adversary, then a pairwise private channel

means here that, even a computationally unbounded eavesdropper cannot make out anything

regarding the communication happening between these pair of parties.

So, now the question is that, how exactly we instantiate this model in practice; how we ensure that

between every pair of parties in the system, there indeed exists a private channel; because these

parties are finally going to be connected by internet, or they are part of a big network. The parties

might be disturbed, located across various parts of the globe; or even if they are within the same

city, they might be at different places and so on.

So, how can we ensure that indeed there is a mechanism to do secure communication between

every pair of honest parties? So, there are 2 ways to realise the pairwise private channels. One way

is that, we use some perfectly-secure encryption scheme, like, say one-time pad. Or, we realise the

private channel between these 2 parties by treating them as sender and receiver, and sender and

receiver respectively, and executing a perfectly-secure message transmission protocol.

That means, it might be the case that, even though they are not directly connected in the network,

they are connected via intermediate nodes. If it is ensured that there are more than t + 1 number of

node-disjoint channels between these 2 parties, and even if t of them are under the control of this

computationally unbounded adversary, we get the effect of this direct pairwise private channel

between these 2 parties.

So, that is another way to realise a direct pairwise private channel between any pair of parties in

the system. So, the point is that, we will abstract out the underlying network and we will make the

assumption that the n parties, they have mechanism to do pairwise private communication. Given

this setup, our goal will be to design a protocol for allowing the parties to perform secure

computation.

How exactly you instantiate the pairwise private channel? Well, you have one of these, you have

either option number 1, use perfectly-secure encryption scheme, or you have the option number 2,

use a perfectly-secure message transmission protocol.

(Refer Slide Time: 30:18)

So, with that, I end today's lecture. So, these are the references. So, perfectly-secure message

transmission in itself is a very interesting well studied problem in the secure distributed computing

community. The problem was introduced by the seminal work of Dolev et al. way back in 1993.

And if you want to know more about perfectly-secure message transmission, then you can refer to

this PhD thesis.

The Q(1) condition; so, we have used the Q(1) condition against the non-threshold adversary model

in our perfectly-secure message transmission protocol, but in general, we can have a condition

called Q(k) condition. The Q(k) condition demands that you take union of any potential k subsets

from the adversary structure that should not be the entire universal set. Universal set could be

either the set of parties or it could be the set of wires. So, this notion of Q(k) condition was

introduced by Hirt et al. in this paper in 1997. With that, I end this lecture. Thank you.

