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Hello everyone. Welcome to this lecture. So, in this lecture, we will see general secret-sharing 

schemes. Namely, we will see secret-sharing schemes against non-threshold adversaries. And 

by non-threshold adversaries I mean, where the cardinality of forbidden sets in my adversary 

structure need not be upper bounded by some specific threshold, unlike your threshold secret-

sharing scheme.  

 

So, we will see additive secret-sharing scheme adopted for the case of non-threshold 

adversaries. And it will be the case that the resultant secret-sharing scheme satisfies the 

linearity property.  
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So, let us recall the problem of general secret-sharing. So, in the problem of general secret-

sharing, you have a designated dealer with some private input and dealer is connected with 

individual shareholders by a secure channel. And there is some value s which dealer wants to 

share among these n shareholders; namely, it wants to compute shares of the values and 

distribute to the respective shareholders in such a way that the privacy under correctness 

properties are satisfied.  

 

Correctness means, if we have any authorised subset of parties who are coming together, and 

if they pool their shares together, they should be able to get back the secret s; but if there is any 

unauthorised subset of parties who tries to learn the secret s, they should fail to do that, even if 

they have unbounded computing power. So, this collection of authorised subset of parties and 

unauthorised subset of parties will be given to us.  

 

So, if we consider the set of all minimal authorised subsets, that is called as the access structure. 

So, it will be a proper subset of your power set of n shareholders. So, it will be collection of 

various subsets, and the collection is actually a collection of minimal subsets; because, if you 

have any authorised subset s belonging to Sigma, then it will be the case that any superset s 

prime where s prime is a superset of s, will also be a member of Sigma.  

 

That is why, we focus only on the minimal sized authorised subsets, and the collection of such 

minimal sized authorised subsets will be present in Sigma. It will be the case that any superset 

of those subsets also are implicitly elements of Sigma; we will not be writing them down 

explicitly.  
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And in the same way, if I take the compliment of the access structure with respect to the power 

set, that will give us the adversary structure namely the collection of all maximal unauthorised 

subsets. And maximal in the sense that, if A is an element of Gamma, that means, if A is an 

unauthorised subset, then any proper subset of A will also belong to Gamma.  

 

That means, if the parties in A, they alone cannot reconstruct back the secret s. Then, even if 

you remove any party further from the set A, they should also fail to get back the secret. That 

is what is the interpretation of saying maximal unauthorised subsets.  

(Refer Slide Time: 04:54) 

 

So, that is why, these two collection, this adversary access structure, and this adversary 

structure, they are complimentary in nature and they are often called as monotone structures. 



Monotone in the sense, for the access structure, any superset of minimal authorised subset is 

also an authorised subset. But with respect to adversary structure, any proper subset of a 

maximal unauthorised subset is also an unauthorised subset. That is why it is called monotone 

structures.  

(Refer Slide Time: 05:35) 

 

So, here is an example. So, it could be the case that this is my collection Gamma given to me, 

all in red. That means, party 1 and 2, they alone cannot reconstruct back the secret. That means, 

my secret should be distributed in such a way that 𝑃ଵ and 𝑃ଶ alone cannot reconstruct back the 

secret; or 𝑃ଶ and 𝑃ଷ alone, they should not be able to reconstruct back the secret; or 𝑃ଵ, 𝑃ଷ, 𝑃ସ 

alone, they should not be able to reconstruct back the secret.  

 

So, they are the maximal unauthorised subsets given to me. This also means that; so, if I take 

the first subset here, this automatically means that 𝑃ଵ alone or 𝑃ଶ alone also should fail to get 

back the secret. But I am not writing down them explicitly, because they are proper subsets. I 

am focusing on the largest possible subsets who are unauthorised; that is what I mean by 

maximal unauthorised subset.  

 

And now, if I take the complement of this all subsets which are explicitly here or implicitly 

here with respect to the power set, I will get the corresponding access structure, namely the 

minimal authorised subsets. So, this means that, 1, 2 and 3, if they come together, then fine, 

they should be able to get back the secret; or if 1, 2 or 4, they come together, they should be 

able to get back the secret; or if 2, 3, 4 come together, they should be able to get back the secret. 

This also means that if 1, 2, 3, 4 also come together, they should get back the secret.  



 

But I am not writing down it explicitly as an authorised set, because I am focusing on the 

smallest possible subsets which are authorised. So, let us see the secret-sharing scheme for a 

non-threshold adversary. By adversary, here I mean collection of unauthorised subsets. Our 

goal is to design a secret-sharing scheme where an adversary; and by adversary I mean an 

adversary who can control any subset from the adversary structure; should fail to get back the 

secret s. That means, from its viewpoint, the probability distribution of the shares that it is 

seeing is independent of the underlying secret.  
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So, we had already seen the secret-sharing scheme due to Ito et al. for the threshold adversary 

structure, where the cardinality of each unauthorised subset was 𝑡 . But now, we want to 

generalise it for any arbitrary adversary structure, where the cardinality of individual subsets 

in the adversary structure is not upper bounded by a threshold t. So, if you see this example, in 

my adversary structure, I had sets, I had subsets whose cardinality was 2 and I have also subsets 

whose cardinality is 3.  

 

So, that is why, this is not an example of a threshold adversary structure. So, my goal is now 

to design a secret-sharing scheme for such an arbitrary non-threshold adversary structure. So, 

the idea here remains the same. We want to distribute the secret or we want to split the secret 

in such a way that, for every potential unauthorised subset B, there should be some piece or 

some share missing for that unauthorised subset.  

And since that missing piece will be random from the viewpoint of the parties in B, it could be 

the case that any value from the secret space has been shared by the dealer. So, again, to 



demonstrate the scheme, I take a specific example. So, imagine this is the adversary structure 

given to you, and this is a non-threshold adversary structure, because different unauthorised 

subsets are of different cardinality; you have subsets of cardinality 2, and you have one subset 

whose cardinality is 3.  

 

So, my goal is to design a secret-sharing scheme where, if these 2 parties alone try to learn, 

they should fail; if these 2 parties alone try to learn, they should fail; or if these 3 parties alone 

try to learn, they should fail. And the corresponding access structure is this. That means, the 

sharing should also have the property that if these 3 parties come together, they should be able 

to get back the secret; or if these 3 parties come together, they should be able to get back the 

secret; or if these 3 parties come together, they should be able to get back the secret.  

 

So, let us simply generalise the threshold secret-sharing scheme that we had seen by Ito et al. 

when we discussed the threshold secret-sharing, for the case of non-threshold adversary. The 

idea will remain the same. We will list down the various subsets from my adversary structure, 

namely, the various maximal forbidden sets which are given to me as per the adversary 

structure. So, we are given 3 potential unauthorised subsets.  

 

Remember, implicitly, any proper subset of these subsets are also unauthorised. But we will 

not be focusing them explicitly, we will be focusing only on the maximal forbidden sets. That 

is important here. I am not again considering a red box where only 𝑃ଵ is present, or a red box 

where 𝑃ଶ is present. They are implicitly present in my adversary structure Gamma, but I am 

not going to consider them.  

 

I am going to consider only on the largest possible forbidden subsets which are given to me; 

and I am given 3 such subsets; call them as this fancy 𝑇ଵ, fancy 𝑇ଶ, fancy 𝑇ଷ. And now, I take 

the complimentary sets of this forbidden sets, complimentary with respect to the set of n parties, 

not with respect to the power set. Remember, the axis structure is computed as the complement 

of the adversary structure; but as part of the secret-sharing algorithm, these complimentary sets 

are basically just the complimentary sets with respect to the set of n parties.  

That means, if 𝑃ଵ, 𝑃ଶ is a forbidden set, the complement set will be 𝑃ଷ and 𝑃ସ. If 2 and 3 is a 

forbidden set, then the complement set is 1, 4, and so on. And remember, it is not the case that 

these subsets in the collection of the complement sets, they are member of the access structure; 



no. So, for instance, these 2 parties, they also constitute a potential forbidden set, because a 

bigger subset of these 2 parties is already listed as tau 3 here. So, do not get the impression that 

these complimentary sets constitute authorised subsets. I have just taken the compliment with 

respect to the set of parties.  
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Now, to share the secret s, what dealer will do is the following: It will check how many 

potential unauthorised subsets are given in the adversary structure. In this case, there are 3 

potential unauthorised subsets. So, it has to now compute 3 random shares for the secret s, 

which sum up to the secret s. And how it can do that? It can randomly pick 𝑠ଵ, it can randomly 

pick 𝑠ଶ, and it can set 𝑠ଷ to be the difference of s and summation of 𝑠ଵ and 𝑠ଶ.  

 

If there would have been more sets in my adversary structure, then dealer needs those many 

additional pieces as well. Now, how he should distribute 𝑠ଵ, 𝑠ଶ, 𝑠ଷ? Which group of parties 

should get 𝑠ଵ? which group of parties should get 𝑠ଶ? and so on.  
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So, it gives the first piece 𝑠ଵ to the complement of 𝜏ଵ. And the idea is that, if the subset 𝜏ଵ tries 

to get back the secret s, they should fail to do that, because the piece 𝑠ଵ is not available with 

them. And in the absence of 𝑠ଵ, the parties in 𝜏ଵwill fail to learn what is the secret s. That is 

idea.  
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Similarly, the piece 𝑠ଶwill be given to the complement of 𝜏ଶ, namely, to these 2 parties. And 

the idea is that if the parties in 𝜏ଶ now tries to learn the secret, they will fail to do that, because 

the piece 𝑠ଶ is missing for them. And in the same way, the piece 𝑠ଷ is given to the party, all the 

parties who are in the complement of 𝜏ଷ. And when I say it is given by this arrow, I mean to 

say that; remember, between dealer and every shareholder, there is a secure channel; so, 

whatever pieces are supposed to be given to respective parties, they are communicated over 

the secure channel available between the dealer and the corresponding shareholder.  
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So, now, what will be the overall share for the individual party? The overall share in this secret-

sharing scheme for the individual party will depend upon the number of complimentary sets 

where each individual party is present. So, if I consider this first party 𝑃ଵ, it is present only in 

this second complimentary set. And as part of that, it is getting the piece 𝑠ଶ. So, that will be the 

overall share of this party 𝑃ଵ.  
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In the same way, if I consider the second party, the second party is present only in the third 

complimentary set, and as part of that, it is getting the information 𝑠ଷ.  
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If I consider the third party 𝑃ଷ, it is present only in this complimentary set and getting 𝑠ଵ. So, 

that will be its overall share.  
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And if I consider the fourth party; now, you see, the fourth party is member of 2 complimentary 

sets. As part of 1 complimentary set, it is getting 𝑠ଵ; as part of another complimentary set, it is 

getting 𝑠ଶ. So, the overall share for this fourth party will be the concatenation or the collection 

𝑠ଵ, 𝑠ଶ; both will be considered as the share of   𝑠ସ. So, now, you can see here, unlike your 

Shamir secret-sharing where each party gets the same number of share, namely, 1 field element; 

here, different parties may get different number of shares, depending upon how many 

complimentary sets they belong to; it may not be symmetric.  

 



So, now, let us try to argue here that whether this scheme satisfies the privacy property and 

whether this scheme satisfies the correctness property.  
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The privacy is very easy to argue, because, that I have already demonstrated when I was 

explaining you how the shares are communicated to the respective complimentary sets. My 

claim here is that, you take any unauthorised subset from this adversary structure; for that 

unauthorised subset, there will be at least 1 piece 𝑠௜ as such which is missing. Say, if I consider 

for instance 𝛾௜, 𝑠ଵ is missing; if I consider 𝛾ଶ as a potential unauthorised subset, 𝑠ଶ is missing; 

if I consider 𝛾ଷ, then 𝑠ଷ is missing.  

 

And you cannot have more than 1 unauthorised subset trying to learn the secret. That is not 

allowed. Remember, when I say non-threshold adversary structure, then it can control only 1 

potential unauthorised subset from the adversary structure. So, if it controls the first 

unauthorised subset, it will fail to learn; or if it controls the second unauthorised subset 𝜏ଶ, it 

will fail; or if it controls the parties in the third unauthorised subset, 𝑠ଷ will be missing. So, it 

will fail to learn the secret. So, privacy is very easy to argue here. Now, comes the correctness 

property.  
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Can I say that if any collection of these green parties try to learn the secret, they will have 

enough information to get back? Yes.  
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So, let us consider the case when 𝑃ଵ, 𝑃ଶ and 𝑃ଷ tries to learn the secret. So, 𝑃ଵ, 𝑃ଶ, 𝑃ଷ, 

collectively they have 𝑠ଵ, 𝑠ଶ, 𝑠ଷ. And then, they can sum them up and get back the secret. Or, 

let us see whether 𝑃ଵ, 𝑃ଶ, 𝑃ସ, collectively they can learn.  
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So, yes, 𝑃ଵ, 𝑃ଶ, 𝑃ସ, collectively they can learn; because, if they come together, they have 𝑠ଵ, 

𝑠ଶ, 𝑠ଷ.  
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Or if 2, 3, 4 comes together, then also, collectively they have 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, and hence they can 

learn. Well, in this specific example, correctness is there; but we have to now argue that, okay, 

when we run this secret-sharing algorithm with respect to a general Gamma and a general 

Sigma, the correctness will be satisfied. 
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The claim here is the following: If you take any green subset, call that green subset as B. It 

could be either first green subset or second green subset or third green subset or any potential 

green subset from your access structure. My claim is, it will have all the 𝑠௜ pieces. Namely, if 

the secret s would have been divided into, say k number of pieces, then any authorised subset 

B will have all those k 𝑠௜ pieces. It will have 𝑘ଵ; that collectively, it will have 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସ, 𝑠௜, 

𝑠௞, everything. And if they have all the 𝑠௜ pieces, they can add them together and get back the 

secret s. Now, why this claim is true?  
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So, I have used the notation A here, for the authorised subset. So, consider an arbitrary 

authorised subset A, belonging to the access structure. Now, definitely, A will not be a subset 

of any of the forbidden sets; because, if A is a subset of a forbidden set, then how at the first 



place it is belonging to the access structure? Because, access structure consists of the 

complimentary parties with respect to the adversary structure.  

 

So, no subset of these red coloured subsets will be present in my Sigma. So, that means, if at 

all I am considering a subset A, a green subset of parties; and now, if I compare it with 𝜏ଵ, there 

will be at least 1 party in A, who is not a member of 𝜏ଵ. And that party who is not a member 

of 𝜏ଵ, but a member of A, will have the piece 𝑠ଵ. In the same way, if I consider 𝜏ଶ and the same 

subset A, this subset A will have definitely 1 party who is not a member of 𝜏ଶ; and dealer would 

have given the piece 𝑠ଶ to that party.  

 

In general, you take any bad subset 𝑇௜ from your adversary structure, there will be at least 1 

party in your set A, call it 𝑃௝, who will not be a member of 𝜏௝. And that party 𝑃௝ would have 

been given the peace 𝑠௝, by the dealer; because, that is how dealer would have distributed the 

pieces. That means, if I take all the parties in this authorised subset A, collectively they will 

have 𝑠ଵ, 𝑠ଶ, 𝑠௜, 𝑠௞, all the pieces of s; and hence, they can add them together and get back the 

secret s. That is the simple idea here.  
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So, that is our secret-sharing scheme now, against the general adversary structure. And if you 

see here that the share size is proportional to the size of the adversary structure; because, the 

secret s is divided into a number of pieces which is same as the cardinality of your adversary 

structure. So, if they are, if there are k number of subsets in the adversary structure, then 

basically, dealer has to now divide his secret s into k pieces.  



 

But in general, the size of your adversary structure could be exponentially large. In this specific 

example, it is only collection of 3 potentially bad sets, but in general, if I consider a general n, 

then my adversary structure could be as large as order of 2௡. There could be exponentially 

many number of subsets in my adversary structure. And that means, my k will be exponentially 

large.  

 

And hence, exponentially many number of 𝑠௜ pieces have to be computed by the dealer and 

distributed. And this is unlike your threshold adversary structure, which also could be 

exponentially large. For the case of threshold adversary structure, my k which is the cardinality 

of adversary structure, is basically order of n choose t; because, there could be 𝑛஼೟
 number of 

subsets of size t, and each potential subset of size t is a potential bad subset.  

 

And if I say t is, if I consider the case where t is roughly n/2, then this quantity 𝑛஼೟
 becomes 

exponentially large. But, even though my threshold adversary structure is a special case of 

general adversary structure, and my threshold adversary structure could be exponentially large, 

we have seen that, even for an exponentially large adversary structure with respect to the 

threshold case, we have efficient secret-sharing scheme, namely the Shamir secret-sharing 

scheme, where dealer need not have to distribute exponentially many number of shares; to each 

party, it just has to give 1 share.  

 

But Shamir secret-sharing scheme works for a specific threshold which is given to you, and 

you cannot run Shamir secret-sharing scheme for a general adversary structure; because, for a 

general adversary structure, the cardinality of individual subsets could be anything. So, now, a 

big open problem in the domain of secret-sharing is the following: Can we find tight bounds 

on the share size needed for any secret-sharing scheme against any given general adversary 

structure?  

 

I stress, for any secret-sharing scheme. For the scheme by Ito et al., we know that, okay, we 

may require exponentially many number of shares. But open problem here is the following: 

Can one design a secret-sharing scheme with respect to any given general adversary structure, 

where we end up distributing only polynomial many number of shares? Or, if we cannot do 

that, then prove that what is the minimum number of shares that any secret-sharing algorithm 



has to compute and distribute for tolerating that given general adversary structure. That is a big 

open problem in the domain of secret-sharing. With that, I end this lecture. Thank you. 


