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Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: In this lecture, 

we will see the definition of linear secret-sharing, which is going to play a very crucial role when 

we later design MPC protocols. And we will see that our Shamir secret-sharing satisfies the 

linearity property.  
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So, linear secret-sharing also known as LSS is as follows: So, recall, our sharing algorithm for a 

secret-sharing scheme takes a secret s and some internal randomness from the randomness space 

and generates the shares. So, these shares are computed as some function of your secret under 

internal randomness. Now, we will say that our secret-sharing algorithm Sh is satisfying the 

linearity property, or we say that secret-sharing scheme is linear if the shares are computed as some 

linear function of the secret and the randomness.  

 

What does that mean? It means the following: If my internal randomness is represented by the 

vector r1, r2, rl, that means, the internal random coins which are generated are r1, r2, rl, during the 

execution of the sharing protocol. And if it is the case that each share si is computed as some linear 

combination of the secret and the randomness; so, this is a linear combination or a function of 

secret and the randomness.  

 

And why it is a linear function of secret and the randomness? Because there are this publicly known 

linear constants which are also called as linear combiners. And your ith share can be expressed as 

a linear combination of the secret and the components of the randomness. So, if this is the case, 

then we will say that our sharing algorithm is a linear scheme. That is the definition of linear secret-

sharing.  
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So, now, let us see some instantiations of linear secret-sharing, and we will start with Shamir 

secret-sharing. So, just to recall, this is the Shamir secret-sharing algorithm, where all the 

computations are performed over a field. If s is a field element which you want to share as per 

Shamir secret-sharing, then we randomly pick a polynomial f ( X ) whose constant term is s and 

its degree is t, and the shares are the value of this polynomial at n publicly known non-zero distinct 

field elements x1 to xn.  

 

So, now, to see, to verify whether the Shamir secret-sharing satisfies the linearity property, we 

have to verify whether each share si can be expressed as a linear combination of the secret and the 

randomness. And to verify that, notice that s of i, the share s of i is computed by evaluating the 

polynomial at X equal to xi, namely, wherever X is occurring, I have to substitute X equal to xi, 

and then only I get the value of si.  

 

And, okay, so, sorry for the typo here. uh Let me change this publicly known elements as 𝛼1 to 𝛼௡, 

because that is what I am going to use later in my MPC protocols. Right. So, and my share 𝑠௜ is 

the value of the f polynomial at X equal to 𝛼௜. Right. So, I can keep any n non-zero evaluation 

points, namely the values at which the shares will be computed. Earlier I called them as 𝑥1 to 𝑥௡, 

but right now, I am calling them as 𝛼1 to 𝛼௡; sorry for this typo. Okay. So, my share s of i is 

computed by substituting X equal to alpha i and if I do that, wherever X is there, I substitute it by 

alpha i; I get that s of i is this value. Right. So, this holds for every i equal to 1 to n. So, if you want 



to compute the value of 𝑠 ௜  , you have to substitute X equal to 𝛼1; if you want to compute the share 

𝑠2, you have to substitute X equal to alpha 2, and so on. And now, this can be interpreted as if my 

share 𝑠 ௜   is a linear function of the secret s and the randomness 𝑎1 to 𝑎௧, okay, because I can 

interpret this 𝛼0
௜ as some constant uh element 𝑐௜1, from the field; I can interpret this 𝛼1

௜ as 𝑐௜2; I 

can interpret this  𝛼௧
௜ as some constant 𝑐௜(௧ା1).  

 

Right. More specifically, if I consider the vector of Shamir shares which are computed here as per 
the Shamir secret-sharing, then I can rewrite the vector 𝑠1 to 𝑠௡, the share vector, as the following: 
I can interpret it as the product of this uh row along with this matrix. And the matrix, you have 

various powers of 𝛼1 to 𝛼௡, starting from the 0௧ℎ power to the 𝑡௧ℎ power. So, now, you can interpret 
the entire process of uh computing Shamir uh shares as per the Shamir secret-sharing scheme as 
follows:  
 
So, this vector s along with 𝑎1 to 𝑎௧ constitute a secret and randomness. Right. So, remember, as 
per our abstract notation of secret-sharing, there is an internal randomness. That internal 
randomness is, in Shamir secret-sharing scheme, is this vector of coefficients for the f (X) 
polynomial. That constitutes your internal randomness. And this is your secret s. And these are my 
public linear combiners. Okay. And hence, this satisfies the definition of linearity property, right.  
 
So, each share,𝑠1 is a linear function of your secret randomness and a linear combiners will be the 
first column of this matrix; 𝑠2 will be considered as a linear combination of your secret randomness 

and the second column of this matrix. And like that, the 𝑛௧ℎ share will be considered as a linear 

combination of your secret randomness and the 𝑛௧ℎ column of this matrix. And that is why Shamir 
secret-sharing scheme satisfies the linearity property. (refer time: 08:49) Okay. So, now, this uh 
vector, this matrix of linear combiners or ; this matrix has got very nice properties.  
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So, now, this matrix of linear combiners, this matrix has got very nice properties. And in linear 

algebra, we have a special name for this matrix; this matrix is called as Vandermonde matrix. We 

will come back to the matrix again later and explore some nice properties of this Vandermonde 

matrix. So, we have shown that Shamir secret-sharing scheme satisfies the linearity property.  
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And since Shamir secret-sharing scheme satisfies the linearity property, now we will see some 

very nice properties; we will see some magic; namely, we will see that how it is possible to 

compute linear functions of secrets which are shared as per Shamir secret-sharing scheme, without 

knowing the secrets, but by performing the operations on the shares themselves.  

So, imagine that there is some value s which is secret-shared as per Shamir secret-sharing scheme. 



So, this is your vector of (n , t) Shamir shares of some value s. So, imagine that the value s is not 
known to anyone. There was a dealer who has secret-shared value s. Party 1 has the share 𝑠1; party 
2 has the share 𝑠2; party i has to share 𝑠௜; and party n has the share 𝑠௡. Again, uh let us not uh call 
these evaluation points as 𝑥௜, but rather let us call them as 𝛼௜.  
 
So, from now onwards, I will assume that all the evaluations are happening at 𝛼1, 𝛼2 and 𝛼௡, which 
are non-zero and distinct and publicly known elements from the field. So, these are our evaluation 
points. That means, these evaluation points are fixed once for all, and all instances of Shamir 
secret-sharing scheme will use them as the evaluation points while computing the shares. So, that 
means, the value s is secret-shared, say by picking a random polynomial A of X, whose degree 
was t and constant term was s; and that polynomial was evaluated at X equal to 𝛼1 and gave you 
the share 𝑠1; evaluated at 𝛼2, gave you the share 𝑠2, and so on.  
 
And no one knows the value of secret s; it is some value which is secret-shared. And as a whole, 
this is now a vector of n shares. I stress that no single party has this full vector; but rather, 
component wise, each party has the corresponding component of this vector. And now, imagine 
that c is some publicly known element from s, from your field F. Okay. Everyone knows this; all 
the n parties knows the value of this (sec) uh public constant, public element, c. It could be any 
element, 0, 1, any element from the field.  
 
Now, imagine that each party locally adds the 𝑠ℎ respective shares of s. No one knows the value 
of s, but they have shares of some unknown value s. To their respective shares, each party add the 
public value c. Okay. This can be done because this is a + operation of your field. So, what I am 
saying is, 𝑃1 takes the value 𝑠1 and adds the element c. In parallel, 𝑃2 takes the value 𝑠2 and adds 
the value c. In parallel, the ith party 𝑃௜ takes the share 𝑠௜ and adds a value c, and so on.  
 

Now, since the field satisfies the closure property with respect to the + operation, they will obtain; 

the addition operation will result in another set of field elements. So, let u 1 be the result of P 1's 

addition; u 2 be the result of second party's addition; u i be the result of ith party's addition; and u 

n be the result of nth party's addition. Again now, this is a vector of n values.  

 

Now, since the field satisfies the closure property with respect to the + operation, they will obtain; 
the addition operation will result in another set of field elements. So, let 𝑢1 be the result of uh P 

1's addition; 𝑢2 be the result of second party's addition; 𝑢௜ be the result of 𝑖௧ℎ party's addition; and 
𝑢௡ be the result of nth party's addition. Right. Again now, this is a vector of n values. Now, the 
question is, is this vector of n values, namely 𝑢1 to 𝑢௡ are; is is it an arbitrary vector of n field 
elements or does it constitute some special property?  
 



It turns out that it is not an arbitrary vector of n field elements, but rather it has the property that it 
constitutes a vector of (n , t) Shamir shares of the element c + s. This is because, if I consider a 
polynomial C( X), which is the constant polynomial; namely, the polynomial c(x) is of the form c; 

its constant term is c, + all other coefficients are 0; namely, 0 * x, 0 * 𝑥2, and like that, 0 * 𝑥௧. So, 
I can say that c(x) is a polynomial belonging to the set of all possible polynomials whose constant 
term is this element c and whose degree is t.  
 
I can treat this c(x) as an element of that bigger set of polynomials. It is fine if the remaining 

coefficients apart from the constant term is 0, but it will be considered as a t-degree polynomial. 

So, now, if I consider this vector of uh new values 𝑢1 to 𝑢 ௡, I can say that they are values of the 

polynomial A (X) + C( x ), call that polynomial as, say R(X). So, let R of X be the summation of 

A(X) and C (x) polynomial. And R of X polynomial evaluated at 𝛼1 is basically 𝑠1 + c, which is 

𝑢1. R(𝛼2) is basically 𝑢2; R (𝛼௜) is 𝑢௜; and R of 𝛼௡ is 𝑢௡. And what is the degree of R(X)? It is a 

t-degree polynomial. Right. So, it is a de t-degree polynomial, degree-t. Why? Because A(X) is a 

t-degree polynomial C(x) is a t-degree polynomial; if you add two t-degree polynomials over a 

field, you still get a t-degree polynomial. And what can you say about the constant term of R (X)? 

The constant term of R(X) will be the summation of constant term of A and the constant term of 

C polynomial.  

The constant term of the A polynomial is the value s; the constant term of the C polynomial is c. 
That means, I can say that R of x is one of the polynomials, okay, from the set of all possible 
polynomials whose constant term is s + c and whose degree is t. And moreover, if my A (X) 
polynomial was randomly chosen, I can say that R(X) polynomial is also randomly chosen. That 
means, this vector of n values 𝑢1 to 𝑢௡ actually lies on a random t-degree polynomial whose 
constant term is s + c. I stress here that no party still learns the value of s or the value of s + c; they 
have just performed the operation individually on their respective shares of s and c, that is all.  
 

And as a result, now they have got a vector of; they have individually got a share of the value c + 

s, without even knowing the value c, without even knowing the value s; of course, c is publicly 

known.  

(Refer Slide Time: 17:31) 



 

 In the same way, imagine I take another operation where parties have a share, parties have their 
respective shares of some unknown value s, 𝑠1 to 𝑠௡; and suppose they lie on this t-degree 
polynomial A (X).  
 
And now, suppose I instruct every party that, okay, you take your respective share of the unknown 

value s and multiply it with some publicly known element c, public constant c; it is known to 

everyone. The constant c is known to everyone. Now, if I instruct every party to do this, and now 

since the dot operation of the field satisfies the closure property, after performing the dot operation 

on their respective shares, we will again obtain a vector of field elements, where the ith component 

of the vector will be available with the ith party.  Let us call the resultant uh product elements as 

𝑣1to 𝑣௡. Now, what can I say about this new vector of n values 𝑣1 to 𝑣௡?  

 

Is it an arbitrary vector of n field element or does it constitute a special vector? Again, it turns out 

that it constitutes a special vector of n values. Namely, these vectors constitute an n, t Shamir 

secret-sharing of the value c * s. Why so? Because, A(X) was a polynomial of degree-t, and its 

constant term was s. Now, consider the polynomial c * A(X). Its degree also will be t, because you 

are just multiplying each coefficient of the A(X) polynomial by a field element.  

 

And as a result, you will, the coefficient just will change, but you will still have uh terms from 𝑥0 

to 𝑥௧; so, that is why its degree will be t. And what can I say about the (const) so, let uh let us call 

this polynomial as uh U(X) polynomial. So, U(X) polynomial is a t-degree polynomial. And what 



can I say about the constant term of this U polynomial? The constant term of this U polynomial is 

c * A0.  

 

And A0 is nothing but my secret s; so, it is nothing but c *s. So, that means, by multiplying their 

respective shares of the unknown value s with this public constant c, the parties will obtain another 

set of shares which will actually constitute a vector of Shamir shares for the element c *s. That 

means, as if the value c * s has been now secret-shared among the parties.  

 

And moreover, if this vector of shares for the secret s was random; vector is random in the sense 

that, if this A(X) polynomial was randomly chosen from the set of all possible t-degree 

polynomials whose constant term is s, then so is the U(X) polynomial. So, if A(X) polynomial was 

a random element from the set of all possible polynomials of degree-t with constant term s, then I 

can claim that the polynomial U(X), which will be the product of the c and A(X) polynomial is 

also a random element from the set of all possible t-degree polynomials whose constant term is c 

* s. I stress, in both operations, the value of s is not revealed, parties are not performing any 

interaction among themselves, they are just applying the operation locally on their shares of s.  
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Now, let us see some another magic. Imagine that there are 2 independent values s and s'which are 

secret-shared among the parties P1 to Pn. Again, let us call this𝛼௜ here and 𝛼௜ here. That means, in 

both the instances the shares are computed by evaluating the sharing polynomial at the same fixed 



𝛼1 to 𝛼௡. That means, for secret-sharing the value s, a random polynomial of degree-t whose 

constant term would have been a was picked; and that polynomial was evaluated at𝛼1 to 𝛼௡, 

resulting in this vector of shares.  

 

And for evaluating the secret s’, a random polynomial B(X) was picked, whose constant term is s’ 

and degree was t; and that polynomial was evaluated at 𝛼1 to 𝛼௡, resulting in this vector of shares.  
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Now, imagine that each party adds its respective shares of s and s’. Since the + operation is 

satisfying the closure property, they will obtain another set of field elements as a whole. So, this 

will be now, the new vector of n field elements. And now, if you see closely here, this new vector 

of n field elements actually constitutes a set of (n, t) shares, Shamir shares for the secret s + s’.  

 

This is because, if I consider the polynomial A( X ) + B (x); let us call that polynomial as V of X 

polynomial. Now, this V of X polynomial will have degree-t, because A(X) is a t-degree 

polynomial, B(X) is a t-degree polynomial; hence its summation also we will be a t-degree 

polynomial. And the constant term of this V polynomial will be the summation of the constant 

terms of the A polynomial and the B polynomial, namely s and s'.  

 

So, that means, I can imagine as if this w 1 to w n is a vector of n values, which would have been 

obtained if the secret s + s'would have been shared by picking this polynomial V of X. And, again 



we get the property that, if A(X) was randomly chosen from the set of all possible polynomials of 

degree-t with constant term s, or B(X) was randomly chosen; that means, if any of these 2 vectors 

of n, t's shares, either the shares of s or the shares of s'were random vector of shares, then I can 

conclude that, this V of X also constitutes a vector of random n shares for the secret s + s’.  

 

Because, if at least 1 of these 2 polynomials A(X) or B(X) was randomly chosen, then so is the V 

of X polynomial. So, that means, what we have seen till now is that there are certain operations 

which can be performed over the underlying shared value without knowing them, by performing 

the same operations on the shares themselves.  
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Now, what about the multiplication of s and s'? So, imagine s for secret-shared and this was the 

vector of shares; and s'is also secret-shared. Parties do not know the value of s; parties do not know 

the value of s'; but they would like to compute shares of s * s'. So, again, based on whatever we 

have seen till now, you might be tempted to propose that, why not let each party multiply locally 

its share of s and its share of s'?  
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So, let us do that. So, let us propose the following. Each party, say party P 1, takes its share of s 

and its share of s', and it multiplies them and obtain a new value, call it y 1. Similarly, P 2, it takes 

its share of s and its share of s', multiply them and it gets a value y 2, and so on. So, like that, every 

party is doing that. Now, what can I say about the vector of this new n values? Do they constitute 

Shamir shares of the secret s * s'?  

 

So, if I consider the product of these 2 polynomials A(X) and B(X); let us call that polynomial as 

mm c(x) polynomial. Now, c(x) polynomial evaluated at alpha 1 will give you y 1, because C of 

alpha i will be equal to A of alpha i into B of alpha i. A of alpha i is s i, the ith share of the value 

s; B of Alpha i is the ith share of s', namely s i prime. And as per the multiplication operation that 

each party has performed, this is nothing but y of i. So, that means, indeed, these values y 1 to y 

n, they lie on the polynomial c(x) at X equal to alpha 1, X equal to alpha 2, X equal to alpha n; 

fine.  
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But what is the degree of this c(x) polynomial? The degree of this c(x) polynomial is no longer t, 

because it is now the product of two t-degree polynomials. And if I multiply two t-degree 

polynomials, the degree of c(x) becomes 2t; it is no longer t. That means, this new vector of n 

values, it indeed constitutes shares of s * s'. But, the degree of sharing is no longer t, but rather it 

is 2t.  

 

But, this was not the case for the earlier operations, right? For the earlier operations, when I 

performed the operations on the shares, I still obtained a new vector of shares, where the degree 

of sharing was still t. But now, the degree of sharing has changed from t to 2t. What does it mean 

that the degree is 2t? It means that, in order to reconstruct the value s * s', it is no longer the case 

that any set of t + 1 shareholders can come together and reconstruct it.  

So, we started with a t sharing or n, t sharing of the values. That means, the secret s was shared in 

such a way that any group of t + 1 shareholders could come together and reconstruct the value s, 

because they constitute an authorised set. Similarly, the secret s'was shared in such a way that any 

group of t + 1 parties could come together and reconstruct this polynomial B of X.  

 

But now, if parties locally multiply their shares of s and s'and obtain their shares of s into s'; to 

reconstruct the value s into s', we now need 2t + 1 or more number of shareholders to come 

together, and then only they can reconstruct back this polynomial c(x). If just a set of t + 1 

shareholders come together, they can no longer reconstruct it.  
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So, let me summarise the linearity property of Shamir sharing. We have seen some operations 

which we can perform on secret-shared values, namely, we have seen addition by public constants. 

So, this was the addition by public constant operation. This is the addition of two secret-shared 

values. This was the multiplication by a public constant. So, these three operations, this operation, 

this operation and this operation satisfies the linearity property.  

 

That means, you started with some secret-shared value and you want to either add a constant 

element or multiply the secret-shared value with some constant element or you want to add two 

unknown secret-shared values; all of them can be performed locally. Namely, you just apply the 

same operation which you want to perform on the underlying shared value, on the shares 

themselves, and you obtain the shares of the result that you would have obtained or you would 

have desired on the secret-shared value.  

But when it comes to multiplying two secret-shared values, that is not possible by just locally 

multiplying the shares of the secret-shared values. So, what does it tell you, this entire set of 

linearity operations? So, it tells you that, if you have any publicly known linear function of some 

shared values, then the result of that publicly known linear function can be obtained in a secret-

shared fashion by applying the linear function on the shares themselves. So, for instance, what I 

am saying here is the following:  

(Refer Slide Time: 32:59) 



 

If you have a function of the following form; if say y is equal to, say some constant * a + another 

constant * b + some another constant time, say e, and say another constant * f. If this is the case, 

if this is the function you want to compute, and suppose you do not want to reveal the values of a, 

b, e and f. The constants c1, c2, c3, c4, they are publicly known, but the values a, b, e and f, they are 

not publicly known, but rather they are available in a secret-shared fashion.  

 

That means, each party has a share of a; each party has a share of b; each party has a share of e; 

and each party has a share of f; where the shares would have been computed by Shamir secret-

sharing. Now, my claim is that, if this is the setting given to you, then by asking each party to 

multiply their shares of a with c1, and multiplying their shares of b with c2, and then multiplying 

their shares of e with c3  and multiplying their shares of f with c4, and then adding all the resultant 

values, we actually will obtain a vector of n shares, which constitutes a Shamir secret-sharing of 

the value y.  

 

That means, it is fine even if you do not know the value a, b, e and f. By performing some 

operations on the shares of a, b, e and f, you would have obtained shares of y. That is what is the 

linearity property of Shamir secret-sharing. It allows you to compute any linear function of secret-

shared values by applying the linear function on the shares themselves.  
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So, let us see an example for this, where this will be useful? And we will require this specific 

example later. So, here, the setting is as follows: You are given d + 1 distinct points in the two-

dimensional plane over the field. And if that is the case, then we know that there exists a unique 

d-degree polynomial g(X) passing through those d + 1 distinct points. So, these are the d + 1 

distinct points given to you.  

 

So, there would be some curve g(X) passing through this d + 1 distinct points, which we can obtain 

as per the Lagrange's interpolation formula. And if I expand this Lagrange's interpolation formula, 

as we have seen in the earlier lecture, this will be the value of the ith delta polynomial. It will have 

all the elements except x i as its roots. And as a result, it will vanish if I substitute X equal to x 1, 

x2, x i minus 1, x i + 1, and so on. And it will survive at x equal to x i.  

(Refer Slide Time: 36:29) 



 

Now, imagine there is a new value of x, x new, which is different from all the previous x 

coordinates x 1, x 2, x  d + 1. And I want to compute the value of this g polynomial at X equal to x 

new. My claim is that the value of this polynomial g at X equal to x new is a linear function of the 

existing y values and the existing x values. Why so? Because, if this is my g polynomial, then to 

compute the value of this g polynomial at X equal to x new, I just have to substitute X equal to x 

new everywhere, in all the delta polynomials.  

 

So, that is what I have done. At all the delta polynomials, I have substitute X equal to x new. And 

now, I know the value of each delta polynomial. So, if I take the first delta polynomial and there 

if I substitute X equal to x new, I will obtain this value; multiplied with y1, that is outside. In the 

second delta polynomial, if I substitute X equal to x new, I will obtain another value multiplied 

with y2. And then finally, if I take the last delta polynomial, there if I substitute X equal to x new, 

I will obtain this value. And that has to be multiplied with y d +1.  
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So, now, if you see closely here, I can call this term, whatever is there in this square bracket, as c 

1. This c 1 is different from this c 1; so, that is why a different font; this is a new constant. And why 

it is a constant? It is a constant because, c 1 inverse is given, it is publicly known; and x new is 

given; and all the values of old x's, namely x 1 to x  d + 1, they are also given.  

 

So, that is why, the result of performing the operation inside the square bracket, whatever is the 

result, that will be a field element, but that will be publicly known; so, I can consider it as a 

constant. So, let me call it constant c 1. In the same way, whatever is there inside the d + 1th square 

bracket, the result of that operation, I am denoting it by c d + 1, which is a constant; because 

everything inside the d + 1 th square bracket is publicly known.  
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And then, I can imagine now that my g(X) new is equal to this constant * y 1 + second constant * 

y 2, and like that, the d + 1th constant * y  d + 1, which is precisely a form of a linear function. That 

means, g(X) new is basically a linear function of y1 to y d + 1, where this c1, c2, cd+1  are your linear 

combiners and they are publicly known.  

 

So, these linear combiners c1, this fancy c1, fancy looking c2, fancy looking c’d+1 , they are the 

linear combiners, and some times, they are often called as Lagrange's coefficients. So, the point 

here is that, if you want to compute the value of g curve at x new, that can be expressed as a linear 

combination of the existing values on the g polynomial. The existing values were y1, y2, yi, y(d+1).  

 

If they are given to you, then, any new point on this g curve can be expressed as a linear 

combination of the existing d + 1 points on that g curve. Now, imagine a setting where you are not 

given the exact value of y1, but each party is given a share of y1 as per the Shamir secret-sharing. 

That means, the value y1 is not available in the clear, but it is secret-shared. In the same way, the 

value y2 is secret-shared, value yi is secret-shared and value y(d+1) is also secret-shared.  

 

x1, x2, x(d+1), they are not secret-shared, they are publicly known; but the y components, they are 

secret-shared individually, among the n parties. If that is the setting given to you, my claim is, you 

can compute the value of g polynomial at x new also in the secret-shared fashion. That means, no 



one will learn the value of the g polynomial at x new, but they can perform some operation on the 

shares of y1, y2, yi, y(d+1), which will give them shares of g(X) new, as per Shamir secret-sharing.  

 

And this is like a magic, because even without knowing the full curve g(X); in this whole process, 

that curve g(X) will not be constructed, but rather you will be magically able to compute shares of 

g(X) new.  
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So, let me demonstrate that with an example here. So, I take a field Z 7, where all the addition and 

multiplication operations are performed modulo 7. Let us consider a case where t = 1, namely, all 

the values are secret-shared with degree of sharing being 1, namely, all the values will be shared 

through a straight line. And suppose there are n parties and say these are my evaluation points for 

Shamir secret-sharing.  

 

That means, the shares of first party for all the values in the system will be computed by evaluating 

the underlying straight line at alpha 1 and so on. So, you can see that I am free to choose any 4 

distinct non-zero elements, I have not selected alpha 2 to be 2, I have purposely selected alpha 2 

to be 3. So, the point is, alpha 1, alpha 2, alpha 3, alpha 4, they can be any 4 distinct non-zero 

elements from this field, that is all.  

 



So, now, imagine that my x1, x2 and x3, they are 1, 2, 3 and say the corresponding y values are 0, 

2 and 1. So, I have denoted the corresponding y values in colour, because they are not available 

with any single party, but rather the value 0, 2 and 1, they are secret-shared among these 4 parties 

by instances of Shamir secret-sharing with the degree of sharing being 1. So, imagine that the value 

is 0 is shared through the straight line 0 + 0 Z.  

 

That is a straight line equation. It is fine that the coefficient of Z is 0; that is fine. But overall, this 

can be interpreted as a straight line. And now, this straight line evaluated at 1, 3, 4 and 5, will give 

you the shares 0, 0, 0, 0. That means, I can imagine that this is now a vector of 4, 1 Shamir shares 

of the value 0. In the same way, imagine that the value 2 is secret-shared through this straight line; 

and that straight line evaluated at alpha 1, alpha 2, alpha 3, alpha 4, gives you these values.  

 

And imagine that the value 1 is shared through this straight line; and that straight line evaluated at 

alpha 1, alpha 2, alpha 3, alpha 4, gives you these vector of shares. That is a setting given to you. 

That means, if any 1 of these 4 parties is curious and trying to find out what is the value of y1, y2 

and y3, it cannot find out as per the property of Shamir secret-sharing.  

 

So, that means, I am basically now talking about a curve passing through 1, 0. That means, at 1, it 

evaluates to 0; at 2, it evaluates to 2 say; this is the point; and at 3, it evaluates to 1; say, some 

curve; so, this is not the precise curve. And I now want to evaluate that curve at x = 0, and compute 

the shares of the resultant y value. So, this is my x new. I want to compute shares of y new.  

 

And in the whole process, nothing about y1, y2 and y3 should be revealed; just somehow we want 

to ensure that y new's shares are computed. So, let us call this unknown curve as g(X) curve. So, 

this g(X) curve is basically passing through 1, 0; 2, 2; and 3, 1. And now, if I apply the Lagrange's 

interpolation, I will get this. So, this will be my delta 1 polynomial; this will be my delta 2 

polynomial; and this will be my delta 3 polynomial.  

 

And now, remember, all the operations are performed over field. So, it should not interpret this as 

dividing by the denominator, but rather you should interpret it as multiplying with the 

multiplicative inverse. And I am denoting these values in colour because, these values are not 



available in clear, but parties have their shares of these coloured values; the uncoloured values, 

they are publicly known.  
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So, now if I simplify, I get that my unknown curve g(X) is this. That means, my goal is to compute 

g of 0; that is my x new. x new is 0, so, value of g 0 is nothing but, it is a linear combination of the 

existing y values. So, this is my y 1, y 2 and y 3. And these are my; so, this 3, 4, and 1, they 

constitute the Lagrange's coefficient. So, this is my Lagrange's coefficient c 1, Lagrange's 

coefficient c 2, Lagrange's coefficient c 3.  

 

So, I obtain the fact that g of 0 is 3 * the first y value, 4 * the second y value, and 1 time the third 

y value; but the first y value, second y value and third y value, they are not available with any 

party, single party, but rather secret-shared.  
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So, I have to just apply the same linear function individually on the shares of the respective parties. 

I means, I am asking the parties to do that. So, that means; now, what the first party will do? First 

party will take c 1; c 1 is 3, so, 3 * 0; c 2 is 4, so, 4 * 2; and c 3 is 1, so, 1 * 1. And all the operations 

are performed over the field. So, it is 4 * 2, 8; 8 + 1, 9; 9 modulo 7 is 2. So, this will be party 1's 

share of y new.  

 

Same operation, party p 2 will do. c 1 * its share of first y value; 2 * its share of the second y value; 

and 1 * its share of the third y value; and it will obtain its share of the y new value. And like that, 

party 3 has to do; and similarly, party 4 has to do.  
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And now, you can see here clearly that these 4 values actually now constitute a vector of shares 

for the value 2, because they lie on this polynomial 2 + 0 Z, which is 1-degree polynomial whose 

constant term is 2; and this value 2 is basically the value of y new. That means, in this whole 

process, what I have demonstrated is, even without revealing the y 1, y 2 and y 3, the parties can 

apply, they can compute some linear operation on their respective shares of y 1, y 2, y 3, which will 

give them their respective shares of y new. With that, I end this lecture. Thank you. 

 


