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Hello everyone, welcome to this lecture, in this lecture, we will continue our discussion over 

finite fields and we will focus in this lecture on the multiplicative group of a finite field and 

we will prove some nice properties regarding the multiplicative group of a finite field 

specifically we show that it is always a cyclic group, it will have some generators and those 

generators are called as the primitive element.  
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So, let F be a finite field with an abstract plus and dot operation and I denote by F* the set 

consisting of all elements of the field except the 0 element where 0 is the additive identity 
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element. And my claim here is that if I focus on the nonzero elements of the field and dot 

operation, then that constitutes a cyclic group. And of course, it constitutes a group that 

comes from the properties of your field axioms.  

 

But what I am claiming here is that it is actually a cyclic group and by cyclic group, I mean 

that has at least 1 generator. That means, there exists at least 1 special element g or say f here 

such that all the different powers of f will give you the elements of this set F*. So, the proof 

strategy here will be the following, so basically I want to show the following: imagine that 

the nonzero elements are f1 to fn, there are n such elements.  

 

My goal is to show the following, I am claiming here that there exists at least 1 element f in 

this collection F* whose order is n. By that I mean that f
n
 is your identity element and n is the 

smallest such positive integer. If I can show that this claim is true, then that shows that indeed 

my set F* constitutes a cyclic group.  It is already a group as I said, but if this claim is true, I 

end up showing that it is actually a cyclic group. 

 

And the proof is slightly involved we will be taking help of several lemmas which are 

actually independent properties of groups and so on. And then we will finally arrive at the 

proof of this claim, so the claim is actually proved by contradiction. So, we want to show that 

there exists at least 1 element in this collection F* whose order is n, the contradiction will be 

that there exists no element in the set F* whose order is n, that is a contradiction.  

 

If that is the case, then I have to arrive at some contradiction or some false statement. So, the 

proof strategy will be the following. I will be taking help of a simple fact regarding 

polynomials over the field. My fact here is the following, my claim is that if I take this degree 

n polynomial which is a monic polynomial over the field, then it has exactly n roots in the 

field F. That is my fact 1, I will very I can prove this very easily, but this is my fact.  

 

Actually if you see; if you recall the properties of the roots of polynomials, we know that 

since the polynomial here has degree n, the number of roots can be at most n, but my fact 

here is that it has exactly n roots from the field F and the proof of this fact is the following. 

My claim is that you take any element from the set F*, that means you take any nonzero 

element from the field F it will satisfy this equation (x
n
 – 1 = 0).  
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If that is the case, then basically I am showing you that all elements of set F* are actually the 

roots of this equation or roots of this polynomial. So, let us prove this fact that each element 

of the set F* is a root here. So imagine that the order of the element  fi is k. By that I mean 

that the number of distinct field elements which I can generate by computing different powers 

of fi is k; that is another equivalent definition of an order.  That means fi
k
 is your identity 

element.  

 

Now I can invoke here the Lagrange’s theorem of groups and subgroups. Since this cyclic 

subgroup <fi> is a subgroup of your parent group F*, of course, with the dot operation that I 

am not writing down separately, then as per the Lagrange’s theorem, the Order(<fi>) or the 

order of cyclic subgroup <fi> generated by fi should divide the order of your parent group and 

the order of the parent group is n because as per my definition F* cardinality is n.  

 

So, n is divisible by k that means, n can be written down as some c times k. That means, I can 

say that, since fi
k
 is 1, then fi

n
 will give me the same element which I obtain by raising (fi)

ck
. 

Then as per the rules of group exponentiation I can take k inside and keep c outside and fi
k
 as 

per the definition of order of fi will give me the identity element 1 and identity element 1 

raised to power c will give me the identity element itself. That means, I have shown that f1 is 

a root of x
n - 1

. 

 

I have shown that f2 is also a root of the polynomial x
n - 1

 and fn is also a root of the 

polynomial x
n - 1

. That means, I have shown you n roots so, that shows that this fact is true. 

Now, coming back to this claim, I want to show that among the elements f1 to fn there is at 

least 1 element whose order is n.  I will show that if the order of none of the elements f1 to fn 

is n, then I will show that this polynomial x
n - 1

 do not have n number of roots.  But that will 

contradict fact number 1 because fact number 1 has been proved, I have established fact 

number 1. To prove this claim, my strategy will be to show that if there exists no element in 

the collection F* whose order is n that means the order of f1 is strictly less than n order of f2 

is strictly less than n and like that order of fn is also strictly less than n. 

 

Then I will show that this polynomial does not have n number of roots, which will contradict 

my fact 1 and that will show that indeed this claim is correct that is the proof strategy. But as 
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I said to prove this implication, so, now, the proof boils down to proving this implication 

assuming that the statement in the claim is incorrect.  To prove this implication, I will take 

help of several lemmas several related properties.  

(Refer Slide Time: 09:08) 

 
So, let us prove those independent related properties. So, this is helping lemma number 1.  

So, here I want to prove some property regarding the Euler totient function denoted by φ. So, 

remember, recall that φ(n) is basically the cardinality of the subset {1, ... , n}, where the 

elements are co-prime to n.  Basically you want to focus on the number of elements in the 

range 1 to n which are co-prime to n, the number of such elements is denoted by φ(n).  

 

Now we can prove a very nice property in regard for this Euler totient function.  The property 

here is that if you take various divisors here, so, this notation d | n that means d divides n. So, 

the property here is that if you take various divisors of n, call them as d1, d2, dk and so on and 

then take the summation of φ of those divisors that will give you the number n. Let us prove 

this. So, let S be my collection 1 to n and imagine that d1, d2, dk they are the distinct divisors 

of n.  

 

Now, I am defining a collection Cdi is basically all those elements from the set S whose GCD 

with n is di. So, what basically I am trying to do here is the following: if I take any number x 

from the set S and try to find the GCD of that number x along with n, then the GCD has to be 

one of these divisors of n, because the GCD has to be first of all a divisor of n and the only 

divisors of n are d1 or d2 or dk. So, that means if I take the GCD of any x here from the set S 

and number n,  it has to be either d1 or d2 or dk.  
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So, I am basically trying to bucket or put all various elements of the set S according to the 

GCDs that they have with the element n.  And the various buckets are Cd1, Cd2 and Cdk. Now, 

as per the definition of this set Cdi, it is easy to see that this collection is actually a partition of 

S. It is easy to see that the intersection of these sets is actually empty, because you cannot 

have a number x whose GCD with n is both di as well as dj. So that trivially shows that the 

intersection of these collections Cd1, Cd2 and Cdk is empty.  

(Refer Slide Time: 12:20) 

 
And it is also easy to see that if I take the union of various collections here that will give me 

the entire set S, because you take any element x, either it will go to the bucket Cd1 or it will 

go to the bucket Cd2 or it will go to the bucket Cdk, because if you take the GCD of x with n, 

it has to be either d1 or d2 or dk a very simple fact here. That means I can say that the 

summation of the cardinality of these individual buckets is nothing but the cardinality of your 

set S and the cardinality of your set S is n.  

(Refer Slide Time: 12:59) 
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Now, comes a very crucial claim, my claim here is that the cardinality of the bucket Cdi is 

same as the value of the Euler totient function for input  
𝑛

𝑑𝑖
. And remember 

𝑛

𝑑𝑖
 is an integer 

value because n is divisible by di and di is a distinct divisor of n. Now, assuming for the 

moment this claim is true, then, if I apply this claim on this equation n = |Cd1| + ... + |Cdk|, so, 

call this equation as equation number 1 if I apply this claim on equation number 1, I basically 

get that n is same as the summation of the Euler totient function for 
𝑛

𝑑1
, the Euler totient 

function for 
𝑛

𝑑2
 and like that the Euler totient function for 

𝑛

𝑑𝑘
. That is what I have written here 

your n is summation of various divisors of n and then you sum over the Euler totient function 

for various 
𝑛

𝑑𝑖
. But now, if you see closely here, if you divide n  by a divisor of n, you will 

obtain a divisor of n itself because d1, d2, dk are the different divisors of n. So, if you divide n 

by one of the divisors you will get another divisor.  

(Refer Slide Time: 14:40) 

999



 
So, what I can say is I can rewrite this equation and apply the logic that since d here runs 

through the various divisors of n, this 
𝑛

𝑑
 will run through those divisors itself.  That means 

whatever effect I can obtain here the same effect I will obtain if I run through the divisors of 

n in this summation and instead of taking the summation over φ(
𝑛

𝑑𝑖
), I simply take the 

summation over φ of the various divisors itself. 

 

So, it is a very simple fact I am not going to demonstrate; you can easily verify that.  The 

proof for this is that since, di is one of the divisors of n and if I divide n by one of those 

divisors, I will again obtain a divisor in the list d1 to dk itself. And that shows the proof of my 

lemma, but now I have not yet proved this claim.  So I have used this claim and then proved 

my lemma now, the question boils down to how exactly we prove this claim.  

 

So, my goal is now, to prove that there are indeed these many number of elements in the ith 

bucket, so for that let us try to analyse the property of each of the elements in the ith bucket. 

So, an element x will be present in the bucket Cdi, if and only if the GCD(x, n) = di that is the 

definition of the ith bucket. But, if the GCD(x, n) = di, then that is possible if and only if the 

GCD(
𝑥

𝑑𝑖
, 
𝑛

𝑑𝑖
) = 1, very simple.  

 

Because if the GCD(
𝑥

𝑑𝑖
,  

𝑛

𝑑𝑖
)  ≠ 1 and now at the first place the GCD(x, n) was di, that means, I 

can say that only those elements x will be present in the bucket Cdi such that for those x the 

GCD(
𝑥

𝑑𝑖
, 

𝑛

𝑑𝑖
) = 1, that means, I can say that ith bucket consists of all the elements in my 
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collection 1 to 
𝑛

𝑑𝑖
 which are co-prime to 

𝑛

𝑑𝑖
 because any number in the collection 1 to 

𝑛

𝑑𝑖
 which 

is co-prime to 
𝑛

𝑑𝑖
, say, call that number as 

𝑥

𝑑𝑖
.  You multiply that number with di that will give 

you actually a number x which is having a GCD di with the element n.  And how many 

elements I have I can have in the collection 1 to 
𝑛

𝑑𝑖
 which can be co-prime to 

𝑛

𝑑𝑖
? As per my 

definition of the φ function it will be φ (
𝑛

𝑑𝑖
) and that shows my claim is correct. So, I have 

proved my helping lemma number 1.  

(Refer Slide Time: 18:00) 

 
Helping lemma 2 is the following: imagine I take a multiplicative group and imagine there is 

an element from the group G whose order is d, so, my element is x whose order is d.  Then 

my claim is that for the same element x, if you consider the element x
k
 and remember x

k
 as 

per the rules of group exponentiation is obtained by multiplying the x to itself k number of 

times, which will be an element of the group itself because my group; since G is a group it 

satisfies the closure property with respect to the dot operation.  

 

So, the element x
k
 is actually an element from the group itself. Now, my claim here is that 

since x
k
 is an element of the group and it will have some order. Its order will be 

𝑑

𝐺𝐶𝐷(𝑑 ,𝑘)
.  So, 

to prove this statement, I will take the help of some property from the abstract group theory 

which we had discussed earlier. The property that I am going to use here is that if the element 

x has order d, and then if you find that x
y
 is giving you the identity element then that is 

possible if and only if the exponent y is a multiple of d.  So, you can recall the proof of this 

fact from one of our earlier lecture. Now, my goal is to show that the order of x
k
 is this value 

and for that we have to prove two things.  The definition of order is, you have to prove that if 
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you indeed compute this power of the element x
k
, you will get the identity element and that is 

trivial to prove. 

 

Because since the order of x is d, that means x
d
 is the identity element, then I can say that the 

element x
k
 raised to this power will give you the identity element because, if I take x

k
 raised 

to power 
𝑑

𝐺𝐶𝐷(𝑑 ,𝑘)
,  this is same as x

d
 whole raised to the power 

𝑘

𝐺𝐶𝐷(𝑑 ,𝑘)
  and x

d
 is the identity 

element. Identity element raised to power anything will give me the identity element, this is 

trivial. 

(Refer Slide Time: 20:43) 

 
The second thing that we have to prove to show that indeed the order of element x

k
 is  this is 

the following:  I have to show that among all possible different positive powers of x
k
 such 

that the s
th

 power or the corresponding power gives you the identity element. The power 

where s is actually 
𝑑

𝐺𝐶𝐷(𝑑 ,𝑘)
 is the minimum, what basically I am saying is that it is not the 

case that x
k
 raised to the power just single s gives you the identity element, there can be 

multiple exponents s.  You can have an exponent s1 which gives you the identity element, you 

can have another exponent s2 which also gives you the identity element and like that, you can 

have another exponent sn which also gives you the identity element. So, what I am basically 

trying to argue here is: in order to show that the order of x
k
 is this value, you have to show 

that among the various powers s1 to sn the power where the value of the power is 
𝑑

𝐺𝐶𝐷(𝑑 ,𝑘)
  is 

the minimum one, so, the proof here is as follows. 
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Since the order of x
k
 is s, assuming that s indeed is the order of x

k
, I know that x

ks
  is 1.  And 

if x
ks

 is 1, I can trigger this result regarding the order of x and I can argue that k times s is a 

multiple of d. In the same way, k times s1 is also a multiple of d, k times s2 is also a multiple 

of d, k times sn is also a multiple of d. So, what basically I am arguing here is that if x
k
 and 

whole raised to power s1 is giving you 1, that means k times s1 is a multiple of d, k times s2 is 

a multiple of d and like that k times sn is also a multiple of d. 

 

Now, I have to focus on the smallest si such that this smallest k times si which is a multiple of 

d satisfies the condition that x
ksi

 is giving you the identity element 1. 

(Refer Slide Time: 23:34) 

 
So, what I can say here is the following: if s is the smallest index or the smallest power 

among these various powers s1 to sn satisfying the condition that x
ks 

is 1, then the property of 

s is that this is the least positive integer of the form k times s which is a multiple of d. That 

means, I can say that another property of the order s is that: it is such that k times s is the least 

common multiple of both d and k, of course, k times s is a multiple of k. And k times s will 

be also a multiple of d, but since s is the order of element x
k
 that means it is the smallest 

positive integer such that k times s constitutes LCM(d, k). Now, I can trigger or use the 

following relationship regarding the least common multiple and the GCD. If I take the 

LCM(d, k) that will be same as the product of the two numbers divided by their GCD.  

 

And then I can rearrange the terms.  Since the LCM(d, k) is k times s.  I can substitute LHS 

by k times s and then I get the conclusion that the smallest positive integer s such that x
ks 

is 
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the identity element is actually this index (
𝑑

𝐺𝐶𝐷(𝑑 ,𝑘)
) and that shows the helping Lemma 

number 2 is also correct.  

(Refer Slide Time: 25:22) 

 
And my third helping lemma is the following: the lemma says that if you have a 

multiplicative group and if you focus on e(d) : all the elements of the group whose order is d; 

for a given d; then the cardinality of e(d) will be φ(d), if the set e(d) is non empty.  Of course, 

your set e(d) could be empty itself that means there might be no element in the group whose 

order is d. The lemma says that if your set e(d) is non empty, that means, if there exists at 

least 1 element in the group whose order is d then actually there are φ(d) of such number of 

elements.  

 

So, the proof will be as follows: we will take the help of helping lemma number 2 which we 

have just proved. So, imagine g is an element of the group whose order is indeed d.  That 

means, your set e(d) is not empty and my goal is to show this property regarding the 

cardinality of the set e(d). Since the order of g is d that means, I can say that element g
d
 will 

give you the identity element. 

 

And now, if you see closely here, each of these powers of the element g also will give you the 

identity element.  Say for instance, g
2d

.  g
2d

 can be rewritten as g
d
 raised to power 2, g

d
 is 1. 

So, it will give 1
2
 and 1

2
 is 1.  That means, if I take this polynomial x

d - 1
 over the group G, I 

have shown here that the elements g
0
, g

1
, g

d - 1 
are the distinct d roots of this polynomial x

d - 1
. 
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And that is the maximum number of roots that I can have for this polynomial x
d - 1

 because 

this polynomial x
d - 1

 is of degree d. So, it can have at most d roots, but I have shown you 

actually d distinct elements from the group which constitutes the roots of this polynomial.  

That means, I can say that any root, you take any root of this polynomial, I can relate that root 

to the element g.  What I am saying is that if h is any root of x
d – 1

, then I can say that h is 

either g
0
 or h is g

1
 or like that h is g

d – 1
, because I have shown that only roots which are 

possible for this polynomial are g
0
, g

1
, g

d - 1
.  That means, one of these powers of g will give 

you the element h where h is some root of the polynomial x
d – 1

.  That is a relationship 

between any root of this polynomial and element g that I have established. And what I also 

know is that you take any element whose order is d apart from g.  So, you take any element 

say r such that order of r is also d.  Then whatever argument I have used here I end up 

showing that element r also will be the root of this polynomial. Because if g has order d then 

g constitutes a root of the polynomial x
d - 1

.  In the same way if r is an element different from 

g and its order is d as well, then r is also going to satisfy the polynomial x
d - 1

 and so on.  

 

But, I already argued here that you take any root of the polynomial x
d - 1

, it is related to the 

element g namely, it has to be of the form either g
0
 or g

1
 or g

2
 or some g

k
. So, tying these 2 

properties together, this property and this property, I can come to the following conclusion, if 

your goal is to find out various elements whose order is d, then it is equivalent to finding 

various elements of the form g
k
 whose order is d.  

 

Because any element whose order is d will be a root of this polynomial and if it is a root of 

this polynomial x
d - 1

 it will be of the form g
k
. So, my goal was to find out the number of 

elements whose order is d. I have reduced that problem to another problem namely finding 

the number of elements of the form g
k
 whose order is d, but my helping lemma2 says is that 

the order of the element g
k
 will be 

𝑑

𝐺𝐶𝐷(𝑑 ,𝑘)
.  

 

So, when can it be possible that the order of g
k
 is precisely d?  If your denominator becomes 

1 namely the GCD(k, d) becomes 1.  Because if the GCD(k, d) becomes 1 then I get the order 

of g
k
 is d divided by 1 which will be 1.  

(Refer Slide Time: 31:51) 
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That means, I can say that the number of elements of the form g

k
 whose order is d is equal to 

the number of elements of the form g
k
 such that the GCD(k,d) = 1, and how many such k can 

be there whose GCD with d will be 1. There will be precisely φ(d) number of such k values 

and that shows that the number of elements in my collection e(d) will be φ(d).  

(Refer Slide Time: 32:32) 

 
So, coming back now to the proof of the main theorem, which I wanted to prove.  So just to 

recall I wanted to prove that if I focus on the nonzero elements of the field it constitutes a 

cyclic group.  Basically, I have to show, I have to argue about the existence of a generator. I 

had already proved this fact and these are my 2 helping lemmas which we had proved.  The 

goal was to show that among the n elements in your collection F* at least 1 element has order 

n.  The proof will be by contradiction.  
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Namely, we will show that if there exists no element in F* whose order is n then this 

polynomial x
n - 1

 has less than n roots and that will go against this fact number 1. So, let us 

prove this claim now. Assume that none of the elements from F* has order n. So, let the 

various orders which are possible, namely, I have listed down the orders of various elements 

from your set F* and let those orders be d1 to dk.  

 

So, you have n elements, it is not the case that all of them have distinct orders.  It might be 

possible that order of f1 is same as order of f2, order of f3 and so on. So, it is not necessary 

that since you have n elements, you have n distinct orders and few of the orders may be 

repeated.  So that is why let k be the possible orders for various elements in F*. And since I 

am assuming that there is no element in F* whose order is n, that means none of these orders 

d1 to dk is n. 

  

Now I also know that each of these possible orders d1 to dk is a distinct divisor of n.  They are 

distinct because they are the various possible distinct orders and why it is a divisor of n 

because I know that order of any element from F* which actually is a group divides the order 

of F*, the order of F* is n.  So, that is why order of f1 will be a divisor of n, order of f2 will 

be a divisor of n, order of fn will be a divisor of n.  

 

Now, when I proved the fact number 1, I also argued, I also showed there that you take any 

element from F* f1, f2, fn each of them is a root of this polynomial.  And as per our 

assumption, that order of F will be either d1 or d2 or dk. So, by tying these two facts together, 

what I can say about the number of possible roots for this polynomial?  The number of 

possible roots will be, namely, the number of elements with order d1, the number of elements 

with order d2 and the number of elements with order dk.  If I sum the number of elements 

with these orders that will basically give me the number of roots for this polynomial x
n – 1

. 

Because among the elements from F*, the orders that are possible are either d1, d2, or dk.  

And each element from F* is actually a root of x
n – 1

.  So, that is why I get this equation (# of 

roots of x
n
 – 1 = e(d1) + ... + e(dk)). Now, I will use this helping lemma here and I can say 

that the number of elements in F* whose order is d1 is nothing but φ(d1). 

 

In the same way the number of elements from F* with order dk is nothing but φ(dk) and so 

on. And what can I say about the summation in my RHS? The summation in the RHS is 
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strictly less than n:  why it is strictly less than n?  Because even though d1, d2, dk they are 

distinct divisors of n, as per my assumption, none of them is actually n.   

 

That means, neither d1 is n, nor d2 is n and so on.  And as per the helping lemma 1, only when 

I sum over φ of various distinct divisors of n, I will get the value n.  But since none of these 

divisors d1 to dk is n that means I am missing at least one distinct divisor of n. And that is 

why I can say that if I take the summation of these quantities φ(d1), φ(d2), φ(dk), I would not 

be getting the full n.  If there would have been a divisor, if that means if I would have 

included φ(n) here as well, then I can say that the summation of all these things is n, but since 

φ(n) is missing here because as per my assumption there is no number, no element, from F* 

with order n, I can say that my RHS is actually strictly less than n.  My RHS is actually the 

number of roots of this polynomial. So, this goes against the fact 1 because I have separately 

shown already that indeed there are n number of elements from F which constitutes the root 

of this polynomial.  In fact, all the elements of F* satisfy this polynomial and that is possible 

only if at least 1 of the elements from F* has order n.  So that proves the theorem.  

(Refer Slide Time: 38:50) 

 
So now, let us apply this theorem here.  So we have proved that you take any finite field and 

if you focus on the nonzero elements, we have shown it constitutes a cyclic group.  That 

means, the collection F* along with the dot operation will have a generator and the generator 

is also called as the primitive element of your entire field.  And how many such primitive 

elements will be there? You will have  φ(|F*|)  number of such primitive elements. 
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Because as per our helping lemma there are φ(d) number of elements with order d.  So, we 

basically want to find out how many elements are there with order same as the order of your 

F*. So, it will be same as φ(|F*|).  And now if I apply this theorem for the special case of the 

field, ℤp. So, your ℤp will have all the elements from 0 to p - 1 and if I say ℤp*, then it will 

have p - 1 elements.  All the elements except 0 are present here. 

 

Since ℤp constitutes a field, if I focus on the nonzero elements, I get ℤp* and if I apply this 

theorem, I get the conclusion that your ℤp* is a cyclic group and it will have these many 

number of generators (φ(p – 1)).  And this is a very crucial property which if you recall we 

utilized to during our discussion on Diffie-Hellman key exchange protocol and Elgamal 

encryption scheme; there we performed operations over ℤp* and there I assumed that it is a 

cyclic group with some generator. 

 

There you might be wondering what is a guarantee that indeed ℤp* is a cyclic group. Now, 

we have proved that indeed ℤp* is a cyclic group and it will have many generators it will have 

φ(p – 1) number of generators.  

 

(Refer Slide Time: 41:00) 

So, with that I conclude today's lecture.  Just to summarize today, we discussed about the 

multiplicative group of a finite field and we proved that it is a cyclic group.  The generators 

of that cyclic group are also called as the primitive elements of your finite group. 
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