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Hello everyone, welcome to the second part of the first tutorial. 
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So we will start with question  8, in question  8 we are defining a functionally complete set of

logical operators, if you are given a set of logical operators, we say it is functionally complete, if

every compound proposition can be converted into a logically equivalent proposition involving

only the logical operators, that is given in your collection. So the first part of question 8 asks you

the following. 

So here we want to prove that the set of  these three  operators is functionally complete.  That

means any compound proposition you can represent just by using these three operators, so how

do we prove this?  Well  if  I  am given a proposition which indeed involves  only  these three

operators, I do not have to do anything. But what about a compound proposition where I have an

occurrence of implication? 

In that case what I can do is I can use this logical identity that p → q is logically equivalent to



negation of p disjunction q and I can substitute p → q by this RHS expression. And by applying

this  rule  repeatedly  wherever  I  have  an  occurrence  of  implication  I  can  remove  those

implications and I will now have an equivalent formula where everything is represented only in

terms of conjunction, disjunction and negation. 

What if my expression has bi implication (↔) symbol? I do not have to worry, what I have to do

is I can use the identity that the bi implication is nothing but the conjunction of two individual

implications  and I  know that  each  individual  implication  can  be replaced  by  these two sub

expressions.  So now you can see that my original expression is converted into an expression

where every operator is either conjunction, disjunction and negation. 

So that  shows that  if  you have  these  three  operators  namely  a  conjunction,  disjunction  and

negation,  you  can  represent  any  statement,  any  compound  proposition  and  hence  this  is  a

functionally complete set of logical operators. Now the second part of the question says that I do

not need both conjunction and disjunction to be there. It is sufficient if I just have a disjunction

and negation operator and I can represent every statement. 

So what I have to do is from the first part of the question, I know that if you have an occurrence

of implication you can represent  them by just using negation and disjunction, this is what  we

have shown. What we have to now worry about is how do I represent even a conjunction, namely

a  proposition  where conjunction  is  involved by an equivalent  proposition  where  I  have just

occurrences of disjunction and negation.

And this is how we can prove that imagine you have an expression of the form conjunction of p

and q. This is logically equivalent to negation of negation of p, conjunction negation of negation

of  q and then by De Morgan's  law,  this  is  nothing but  equivalent  to negation  of  this  entire

expression,  namely  disjunction of  ¬  p and  ¬  q.  So  now you  see  that  even  if  you  have  an

occurrence of ‘and’, in your expression you can substitute that expression by another expression

where you have only occurrences of negation and disjunction.

And which  shows that  just  your  negation  operator  and disjunction operator  are  functionally



complete. You can represent any statement. The third part now says that you have to show that

only the negation operator and the conjunction  operator are functionally complete and here we

have to show how we can represent a disjunction in terms of conjunction and negation. And

again, we have to do similar work which we have done for the previous part, I can represent any

disjunction in this form where I have just occurrences of negations and conjunction. 

So that shows that just  two operators either conjunction along with a negation or  disjunction

along with negation is sufficient to represent any expression that you are interested in. 
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Question 9  asks  you  to  show  whether  this  long  expression  long  compound  proposition  is

satisfiable or not. So what I do here is this expression is already in its conjunctive normal form

and what I have done here is I have written down the various clauses that are involved in this

compound proposition. And I have to worry and I have to think that how is it possible that I can

simultaneously satisfy all these six clauses. 

Well,  if this expression is satisfiable then there might be many truth  assignments which can

satisfy all the six clauses, our goal will be to find at least one of them, so let us try to do that. So

what I do here is if I ensure that r is true then that will ensure that my clause C1 will be true, I do

not worry what is p and q. If I ensure r is true the disjunction of r with everything will be overall

true. 



And if I assume r to be true, what happens here is if I go to clause number 4 here, if r is true, then

negation of r will be false. Negation of r will be false then what I have to do is in order to satisfy

clause number 4, I have to make negation of p to be true or negation of s to be true. So let me

make negation of p to be true for that I have to ensure that p is false because if I ensure p is false

negation of  p will become true then overall this expression C4 will become true; that is why I

have put tick mark here; that means this clause will be satisfied now.

And due to the same truth assignment p equal to false the clause C2 also will be satisfied because

I have an occurrence of ¬ p. That means with r equal to true and p equal to false, I will be able to

satisfy clause number C1,  clause number C2,  clause number C4. Now my negation of  r will be

false because I am assuming here r is true and I am assuming p to be false, then to satisfy clause

number 6, I am left with only one option.

Namely I have to ensure negation of s is false, then only clause 6 can be satisfied and negation of

s is false means, so what I am doing here is I am not trying to satisfy clause 6 as of now. I am

trying to satisfy  clause number C3 first and to satisfy clause number C3 what I observe here is

that p is already taking the value false here and q is not taking any value as of now, I have not

assigned any value to q. 

But what I observe here is that if I ensure that negation of  s is true,  then  clause C3 will  be

satisfied and negation of s is true means s is false. And if I ensure s is false, my clause 6 also gets

satisfied because I have an occurrence of ¬ s, I do not have to worry what is p and ¬ r at all. That

means assigning these values to r, p and s, I am able to satisfy all the clauses except clause C5.

Clause C5 is not yet satisfied because I have assigned p to be false and I have assigned r to be

true, so the negation of r are also false. So the only way I can satisfy clause number 5 is I give

the value true to q in clause number C5 and that means I have found at least 1 truth assignment

which  can  satisfy  all  these 6  clauses.  So  now you can  see that  if  your  expression  is  in  its

conjunctive normal form, you can run this mental algorithm, you can try to individually satisfy

each clause at a time and try to come up with a truth assignment which can satisfy all the clauses.
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So in question 9a, there are some other expressions also which are given to you and you have to

verify whether they are satisfiable or not, I am leaving that for you. So let me go, sorry this is not

9b, this is question number 9a.3, sorry for this numbering. So the question basically asks you to

show the following: it says that imagine you are given an algorithm which can check whether a

compound proposition is satisfiable or not. 

You do not have to worry about the details of that algorithm. Imagine a box is given to you, you

feed some compound proposition to that box and it gives you and yes no answer. Now using that

algorithmic box, you have to come up with another algorithm which should tell you whether any

input that you feed to that algorithm is a tautology or not. So we first prove a very simple fact

here regarding satisfiable statements and tautology.

The claim here is that if you are given a compound proposition  X then it is a tautology if and

only if negation of X is unsatisfiable and it is very simple, and this is an if and only if statement.

So, let me prove it that if X is a tautology that is always be true, then what about the negation of

X the negation of  X can never be satisfied, you can never find a truth assignment which will

make negation of X true because if negation of X is also true and X is also tautology.

Then this is not possible simultaneously. On the other hand you assume that if negation of X is



unsatisfiable  then  I  have  to  prove  that  X is  a  tautology, we prove it  by contrapositive.  So,

showing that negation of X is unsatisfiable implies X is tautology is equivalent to showing that if

X is not a tautology the negation of  X is satisfiable. Our goal is to show  p →  q and this is

equivalent to showing ¬ q implies ¬ p. 

So if I want to show p → q it is equivalent to if it is enough if I showed ¬ q →¬ p and what is

negation of q? Negation of q is X is not a tautology and what is negation of p? That negation of

X is satisfiable and indeed this implication that if  X is not a tautology then negation of  X is

satisfiable is a true implication. Because if X is not a tautology it means it is not the case that X

is always true.

That means there is one truth assignment for which X is false. For that specific truth assignment,

what about negation of X? For that specific truth assignment negation of X will be true because

for that assignment X was false. So that proves the implication of this theorem statement in the

other direction as well and that is why this is a condition. So now we can utilize this theorem to

get an answer for our question.

So as  I  said  earlier  you are  given an  algorithm I  call  that  algorithm as  Asat, which  takes  a

compound proposition  and it  gives  you yes  no answer. It  gives  you an answer one if  X is

satisfiable,  it  gives  you the  answer  zero  if  X is  not  satisfiable.  Using this  I  design another

algorithm which I call as algorithm tautology Atau, which will take some compound proposition

and it will give me an answer yes if X is a tautology otherwise it will give me an answer no if X

is not a tautology.

And I am allowed to use this existing algorithm Asat. What I am going to do is my algorithm A

tautology will  do  the  following:  it will  first  find  a  negation  of  my  input  X.  So I  call  that

expression as  Y and I give the compound proposition  Y as an input to my algorithm Asat. The

algorithm is that will give me a yes no answer. It will give me the answer 1, if Y is satisfiable it

will give me the answer 0 if Y is not satisfiable. 

What I have to do is, I have to use this response that I am getting from an algorithm Asat to decide



the outcome  of the algorithm Atau. And my output is the following, if my  Asat says that  Y is

satisfiable, I will say that X is not a tautology, whereas if Asat says that Y is not satisfiable, I will

say X is a tautology. That means I will just give the reverse answer, opposite answer which I got

with respect to the expression Y from the algorithm Asat.

And this is because of the theorem statement which we have just proved now. We have proved

that  if  Atau X was a tautology then  Y will  be unsatisfied.  That is why I am just  flipping or

complimenting the bit or the response which I am getting for the expression ¬ X from the Asat

algorithm. What will be the running time of the algorithm Atau? The running time will be almost

the same as your algorithm Asat, plus the running time that you need to convert your expression X

into expression Y. 

That  means  if  your  algorithm  Atau is  going  to  take 1  hour  and  converting  expression  X to

expression Y takes the 10 minutes then the running time of Atau will be 1 hour 10 minutes, you

are almost proportional to the running time of Asat. 
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In question 10, you are given a set of premises and a conclusion and you have to verify whether

this is a valid argument or not. So what we first do is we convert statements into propositions, so

I introduce the variable p here and this is a simple proposition, then the second statement to

represent that I introduce another variable q because Randy works hard is already represented by



p and the second statement will be represented by then p → q.

For the third statement I need another variable r here to represent a Randy will not get the job.

And then the third premise q → r, the conclusion that I am drawing is Randy will not get a job.

The argument from here is very simple, you are given three premises and a conclusion is r. Let

us see whether this argument form is valid or not, so what I do is I apply Modus Ponen on the

first two statements here.

The first two premises here and come to the conclusion q. And then I apply again Modus Ponen

on q and third premise and draw the conclusion r. That means this is a valid argument form, a

valid conclusion because I can draw the conclusion from my premises. 
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Now in question 11, you are given the following, you are given that this argument form is valid

where you are given a set of n premises and (n + 1)th premises is q and the conclusion is r. Now

you have to show if this is the case then the argument form where only p1 to pn are the premises

and the conclusion is q → r is also valid. Again, there are several ways to do this, you can use a

truth table argument and so on, we will avoid that. 

Since we are given that this argument form is valid as per the definition of valid argument, I can

say that conjunction of p1 to pn and q → r is a tautology that means it is never possible that your



left hand side is true and RHS is false, that is not going to happen. That means if my LHS is true,

RHS is also true. That means if the conjunction of p1 to pn and q is true then r is also true and as a

result I can say that this implication is also true. 

Because if the conjunction of p1 to pn and  q is true, that means this part is definitely to this

conjunction of p1 to pn is true. And since  q is true here  r is also true, then true implies  true is

anyhow true and true implies true is anyhow true. But if I closely see here, what does exactly this

implication  means?  If  I  say  that  this  implication  is  always  true  then  another  form  of  the

implication is that you have the premises p1 to pn and the conclusion is q → r.

And if I want to say that this argument form is valid, this is equivalent to asking whether the

(conjunction of p1 to pn) → (q →  r) is  tautology and that is what we have proved here. That

means if this has been given, this argument form is given to be a valid argument form, then this

new argument form is also valid. 
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Now, let me go to question 12. I will not be solving part A here, I will be focusing on part B, part

A I am leaving for you. You have to show using resolution whether the following argument is

valid. So, these are the premises here, these are the three premises and this is the conclusion. So

as usual the first thing that we will do is  we will introduce propositional variables and bring

everything in the form of compound propositions. 



So, if I introduce the variables here like this, it is up to you what form of the variable you use. I

am using it is not raining as  ¬ r. You could have used r, it is not raining. In that case, it is raining

and becomes negation of  r and so on and you can use any name, you can use A, B, C for

propositional variables, just for my convenience that I am using these names. Now if I use these

propositional variables then the argument form here is the following. 

And I have to show whether this argument form is valid or not. The first thing I have to check is

whether this argument form is in its clausal form or not, that means everything the premises and

conclusion everything is in the form of clauses or not and in this case yes, this is clause C1, this is

clause C2, this is clause C3 and this is clause C4. What is the resolution refutation method? The

resolution refutation method says that you take the set of clauses which are your premises and to

that you add the negation of your conclusion. 

Remember we have to check whether s union negation of the conclusion if the resolvent of this

thing is  false or not if that is the case then I say that  C is a logical conclusion from my set of

premises in the set s, that is what is the proof by resolution refutation, so I have added a negation

of the conclusion and now I have to resolve. So, I take the first two classes here, I cancel out u

here and I get a resolvent disjunction of ¬ r and the ¬ w. 

Then I choose the resolvent and the next clause here and I cancel out r and r here and I get

negation of w and now if I take negation of w and w I cancel them and get false. So since I am

getting the resolvent to be empty that means this is a valid argument. 
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So now let  us  next  go to  question  number  13  and in  question  number  13,  we have  to  use

resolution to show that the following compound proposition is  not satisfiable  and  as per the

properties of resolution basically to show that the conjunction of these clauses is unsatisfiable. I

have to show that the constant F belongs to the resolvent of the above clauses. So let us build a

resolvent or resolution tree for this set of clauses here.

So I can pick the first two clauses and resolve p and then I can pick the last two clauses and I can

again resolve p.  So the resolvents  are  now added to the tree and now  I can pick these two

resolvents  for  resolving  and  I  obtain  the  conclusion,  the constant,  F which  shows  that  the

conjunction of these four clauses is not satisfied. So that is how you can actually prove whether a

kind compound proposition is satisfiable or not you have to bring everything in the clause form

and then build a resolvent, resolution tree and then arrive at the constant F. 
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Let us go to the last  question for the first tutorial.  So again, you are given a set of English

statements and you have to verify whether it is a valid argument or not. So what I do here is as I

am repeatedly  doing  it  I  will be  introducing  propositional  variables  and  converting  each

statement into some compound proposition, you are free to use any variable name here, I am just

using these variables for my convenience. 

After converting everything, this  is the  argument form here  and I am going to use proof by

resolution  refutation  because  I find  it  very  comfortable  because  we  just  have  to  keep  on

canceling clauses here. Cancelling literals in two clauses and keep on doing the simplification till

you either  get an empty conclusion or you cannot resolve further.  You do not have to worry

about logical identities, De Morgan law etc etc. That is why resolution refutation is a very very

powerful proof mechanism. 

So these are your set of premises converted into their equivalent clauses, so in this case I have to

convert some of the premises into their corresponding clause form or cnf form. In fact I have to

convert everything because none of the premises are available in their cnf form except this ¬ p.

Negation p is available in its cnf  form; everything else  has to be converted, after converting  I

have  added  all  the  premises,  so  that  is  my  set  of  clauses  or  premises  s.  And  what  is  the

conclusion? 



The conclusion that  I am trying to draw is negation of e which is already in its cnf form but  I

have  to  add  the  negation  of  C  in  the  resolution  tree  to  do  the  resolution  refutation proof

mechanism. And now I have to resolve, so I start with the first two things and cancel out p and

then  I cancel out a, then cancel out w, then cancel out  i, next  I cancel out m  and  then after

canceling out e I have left with nothing, empty. 

So I got a resolvent to be empty and that shows that this is a valid argument.  Well you could

have shown that this argument form is valid by using simplification, rules of inferences, Modus

Ponen etc etc not stressing that you have to only use resolution refutation. Just that I find the

resolution refutation to be a simpler proof mechanism. And again the tree that I have constructed

here need not be the only tree when you are building the resolution, when you are doing the

resolution refutation proof. 

You might pick the pair of clauses to resolve in any arbitrary order. It is just that some trees lead

you to the empty conclusion very soon; some trees might lead you to the empty conclusion after

a  long time.  So depending upon which two clauses you cleverly  use  at each stage that  will

determine how fast you reach to the empty conclusion that is all. So with that, I conclude the first

tutorial. Thank you.


