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Hello everyone, welcome to this lecture.   The plan for this lecture is as follows. In this 

lecture, we will continue our discussion on finite fields and we will discuss what we call as 

order of a finite field and what are the properties of an order of a finite field. 
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So, basically order of a finite field is the number of elements in your set F if F is the field 

and we can prove a very strong property; a very strong statement regarding the order of a 

finite field. So, the statement here is the following: imagine your field F is a finite field and 



suppose its characteristic is p. Now, as per the discussion that we had in the last lecture, we 

know already that this number p is a prime number. 

 

What we can prove actually is that the number of elements in this field is of the form p
r
 

where r greater than and equal to 1. That means you take any finite field, the number of 

elements in the field will be of the form p
r
 where p is a prime number, the characteristic of 

your field. Before going into the proof of this theorem, you can recall easily that the fields 

that we had discussed in the last lecture. 

 

We saw there a field consisting of 9 polynomials, its cardinality is 3
2
, because its 

characteristic was 3. In the same way, we saw the abstract field consisting of 4 symbols its 

cardinality is 2
2
 because the characteristic of that field was 2, if you take the field ℤp , its 

cardinality is p
1
 because its characteristic is p and so on. So, what we are actually going to 

prove is that it is not the case that it is happening accidentally only for F9 F4 ℤp. 

 

But you take any prime any finite field with characteristic p, the number of elements in the 

field will be of the form p
r
. So, before going into the proof of this theorem, we are going to 

introduce some notations which we will be using in the proof. So, remember the additive 

identity of the group is 0 and the multiplicative identity of the group is 1. I will use the 

notation n with different font here (n)  to denote the element, which I will obtain by adding 

the multiplicative identity n number of times. So, typically in regular integer arithmetic where 

this element 1 is the numeric 1 if I add 1 to itself n times we get n but, this element 1 need not 

be the numeric 1 it is the multiplicative identity. If you add this element 1 to itself n number 

of times and as for the closure property of the field you will obtain an element from the field, 

that can be any abstract element. But just for the sake of simplicity, I will use this notation n 

with a different font to represent a result of 1 added to itself and n number of times. In the 

same way. 1 added to itself p number of times will be represented by this special font p and 

since the characteristic of the field is p itself this element p with a special font is nothing but 

the element 0. 

 

That comes from the definition of the characteristic of a field. In the same way if I take any 

abstract element, an arbitrary element f from the field and add f to itself n number of times, I 

can obtain the same result by saying that each of these f s can be replaced by the product of 1 



and f because 1 is the multiplicative identity and this I am doing n number of times and then I 

can distribute the + over dot. 

 

And 1 added to itself n number of times as per my notation is n, which is an element from 

the field and that element multiplied with f will be the overall result. So, now let us go into 

the proof of this theorem; the proof is very interesting here. So, you consider any element of 

the field and any multiple n from the set of natural numbers, my claim is that the operation or 

the result of adding f to itself n number of times, which will give me this element (n ∙f) is 

also an element of F and that comes from your closure property. So, as per our notation; as 

per our definition the element n added it to itself f will give me this element (n∙f) and as per 

the closure property this element will be an element of the field itself. Now, what are the 

relevant values of n; relevant in the sense which will give me nonzero elements. 

 

So, the relevant values are 0 to p - 1, by relevant I mean only those multiples which will give 

me distinct elements. So, 0 times f will of course, give me the element 0 as per the definition. 

Now f added to itself, or 1 times f actually, to be more precise is just element f. Now, f + f 

will give me some element from the field. So, I can call it as two times f; this is not the 

numeric 2. But some 1 added to itself two number of times that is a representation here and 

like that if I continue, then I can say that f added to itself (p – 1) number of times will give 

me (p – 1) ∙f and after that if I add f to itself once more I will get the element 0 because p is 

the characteristic of the field.  In that sense the only relevant multiples of f are 0 to p - 1 

because after that you take the higher order multiples of the element f you will start getting 

the same elements which you could have generated by taking the multiples of f in the range 0 

to p - 1.  

 

Next let me define what I call as the span of the field. So, a collection of k elements, so, here 

is your field F which is finite and which has some number of elements. So, if I focus on a 

collection of values which are called as f1 f2 fi fk I will call the collection of these elements as 

the span of the field if the following hold. You take any element x from the field that can be 

expressed as a linear combination of the elements from your collection f1 to fk, where the 

linear combiners are from set 0 to p – 1. Why I am focusing on the linear combiners which 

are in the range 0 to p - 1 because as I said here, the relevant multiples of any element from 

the field are where when you take the multiples to be in the range 0 to p - 1. So, basically 



span means that it is actually the subset of those elements from the field in terms of which 

you can express any element of the field, by taking various linear combinations. And when 

you say linear combination by that I mean that I am doing the plus operation and the dot 

operation as per the field. So it is easy to see that a trivial span of the field is the entire field 

itself. You take any element x from the field that can be always represented as 1 times x + all 

other elements from the field being multiplied with 0.  

 

So 0 times the first element and so on.  That is why the entire field is of course a span of 

itself. Now let me next define what we call as the minimal spanning set of the field. So the 

minimal spanning set of the field is the collection of elements from the field which is minimal 

in the sense that you cannot remove any element from this collection.  

 

If you remove any element from this collection then it is no longer the case that reduced 

collection still spans the entire field. That means no proper subset of this collection spans the 

entire field F in that sense it is minimal it is essential collection. And there could be multiple 

minimal sets spanning your field, it is not the case that it is always unique. It may be possible 

that a collection of first 3 elements from the field constitutes a minimal set spanning the field 

or say the last 2 elements from the field they are the essential elements and so on.  

 

Now why I am focusing on value r here because remember our goal is to show that the order 

of the field is of the form p
r 
 that is why I am taking r here. So I am basically saying that a 

collection of r elements from your field f will be considered as a minimal set spanning the 

field if it is the bare minimal collection elements whose presence is required to express every 

element from your field as a linear combination.  

 

Now, what I am going to define is the following: I am going to now define a mapping g from 

the ℤp
r
 to the field F. Now, what is the ℤp

r
 ? so as per the definition of Cartesian product, ℤp

r
 

is nothing but the Cartesian product of ℤp which itself r times. That means if I consider an r 

tuple present in ℤp
r
 then by that I mean that I am talking about r elements where each of the 

elements are from set  ℤp.  

 

Now how exactly this mapping g is defined? So if you want to map an r tuple as per the 

mapping g then what basically you have to do is the following, you have to take a linear 



combination of the elements in your minimal spanning set as per the linear combiners in your 

r tuple. That is the way I have defined my mapping g. Right now I am not making any claim 

about this mapping g whether it is injective, bijective, surjective.  

 

It is just a function right now, I am just giving you the definition of the function that 

definition is you give me any r tuple then I will match that r tuple to a finite field where the 

mapping is obtained or where the image is obtained by taking a linear combination of the 

elements in the minimal spanning set as per the linear combiners in my r tuple.  Now I am 

going to make certain claims about this function g.  

 

I am going to prove that this function g is a bijection and if it is a bijection then as per the 

rules of cardinality it shows that the cardinality of F is same as the cardinality of ℤp
r
 and what 

is the cardinality of ℤp
r
 ?  The cardinality of ℤp

r
 is nothing but p

r 
 because as I said the 

definition of ℤp
r
 is you take the Cartesian product of ℤp  r times. So there are p

r 
 possible 

elements or p
r
  number of r tuples present in the Cartesian product of ℤp  r times.  

 

And assuming that g is a bijection which I am going to show assuming that this statement is 

true, it shows that the cardinality of F is same as the cardinality of ℤp
r
 and hence it shows that 

the number of elements in my field F is some p
r
 so that is the proof strategy here. Now 

everything boils down to proving that my mapping g is indeed a bijection and as per the 

definition of a bijection I have to prove that the mapping g is a surjection and it is an 

injection. 

Well, proving that g is a surjection is trivial. That comes from the definition of your spanning 

set. Since as per my definition, the collection of f1 to fr is a spanning set. That means you give 

me any element x it will have a pre-image. Why? Because as per the definition of a spanning 

set this element x can be expressed in terms of these r elements as per a linear combination.  

 

Where the linear combiners will be from ℤp and how many such linear combiners I will need? 

I will need r such linear combiners and if each of them is an element of ℤp basically the 

collection of the corresponding linear combiners is going to be an r tuple from this ℤp
r
. So, 

that trivially proved that is function g is a surjective function. Now, I want to prove that this 

function g is also an injective function and that I will prove by contradiction.  

 



So as per the contradiction assume that the mapping g is not injective.  That means imagine 

you have 2 different r tuples so you have an r tuple say n1, n2, nr. So, let me write down this 

different r tuple here itself because I will need the space. So, imagine you have 2 different r 

tuple n1 up to nr and another r tuple m1 up to mr and say both of them gets mapped to the 

same element x as per the mapping g. 

 

What does that mean? It means that you take the linear combination of the elements of your  

spanning set as per the combiners n1 to nr and if you take the linear combination of the 

elements of your spanning set as per the linear combiners m1 to mr you get the same element 

same field element that is what it means when I say the mapping g is not injective. 

 

If this is the case, I have to arrive at a contradiction.  Basically, I will try to arrive at a 

contradiction that the collection of r elements, which you assumed to be the minimal 

spanning set is actually not a minimal spanning set that means there are some unnecessary 

redundant elements which have been added unnecessarily in this collection which can be 

simply removed. 

 

I will arrive at that contradiction. How do I arrive at that contradiction? Well what I can; what 

I know about this r tuples is that they are different. That does not mean that the entire set of 

the r values in the first r tuple and all the r values in the second r tuple they are different; 

there might be some of them which are same. So it might be the case that, say, the first r 

elements in both the r tuples are same. 

 

So you have say n1 n1 and n2 n2 occuring. But suppose i is the first index where in the first r 

tuple you have the value ni and in the second r tuple you have the value mi where ni and mi 

are different but the first i - 1 components in both r tuples suppose they are the same. So, I am 

focusing on the first index i where the r tuple n and r tuple m they are different; that index i 

could be any index in the range 1 to r. 

 

And there definitely is one such index i because as per my assumption the entire n tuple and 

the entire m tuple they are different. So, if they are completely different definitely there must 

be some component, some index i where the component in the n tuple component and the 

component in the m tuple, they are different.  I do not know what exactly is that index, but 



that index i definitely exists. So, I am focusing on that index i and assuming that the first i - 1 

components they are same in both the n tuple and m tuple. 

 

Then I can cancel them out both from the LHS and RHS because if I have n1 times f1 

occurring in the LHS and imagine m1 is same as n1 then I can cancel out n1 f1 from both 

sides.  In the same way if n2 is same as m2 I can cancel out into n2 times f2 both from LHS 

and RHS and so on. But then when I come to the ith term what I have done here is I take the 

term mi times fi here to the LHS here.  

 

And whatever is the remaining part of the expression in the LHS part I took it and bring it 

into RHS.  I have simply arranged the terms here. Now, if this is the case, if I get this 

equation what I can say is the following: if I multiply both sides of the equation by the 

multiplicative inverse of this element and the multiplicative inverse of the element ni – mi 

exist because as per the definition and ni is not equal mi, that means ni – mi is not 0.  

 

And if it is not 0 then as per the definition of a field, I do have a multiplicative inverse of this 

element that means, I do have an element which I can denote by this notation (ni – mi)
-1

, 

which when multiplied with the difference of ni and mi will give me the multiplicative 

identity namely 1. So, if I multiply with the multiplicative inverse on both the sides, I 

basically get the fact that fi can be expressed in terms of fi + 1, fi + 2 ...  f r.  

 

That means, it shows that I can remove fi safely from my supposedly minimal spanning set of 

f, it is not necessary to keep fi in this collection, because I can express fi in terms of the 

remaining elements in this spanning set which spans the finite field F and that goes against 

my assumption that this collection of r elements f1 to fr was the minimal spanning set of the 

finite field and why I came to this contradiction.  Because I assumed that my function g is not 

an injective mapping. So, that means, whatever I assumed about g is incorrect and that shows 

that indeed my mapping g is an injective mapping and that shows that my function g is a 

bijection that means the cardinality of ℤp
r
 and the finite field are same and that proves this 

theorem. 
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So, we have proved that you give me any finite field with characteristic p it will have p

r
 

number of elements. Now, let us see how exactly we can construct finite fields for any given 

p
r 
 where p is a prime number and this is very interesting because it says the following you 

give me any prime number p, I will show the existence of a finite field whose characteristic 

will be that prime number p. 

 

And the number of elements in the field will be p
r 
 and how exactly we construct such a field. 

So, for constructing such a field we will take the help of some irreducible monic polynomial 

where the coefficients are over ℤp and the degree of the polynomial will be r. Why r? Because 

r is also given as part of your input. So you are given a prime number p and value r, my goal 

is to show the existence of a finite field with characteristic p and with p
r 
 number of elements. 

 

So, to do that I am basically taking a monic irreducible polynomial with coefficients over ℤp 

whose degree is r, if you are wondering whether indeed such polynomials always exist for 

any given r and p, the answer is yes. Such polynomial always exists for every r and p and 

there are some standard methods for doing that; getting such polynomials but for some well 

known values of p and r such polynomials are publicly available. 

 

Now, my goal is to construct a field F, so, my set F will be the set of all polynomials with 

coefficients over ℤp modulo k(x). In other words, basically the set F is the collection of all 

polynomials of degree 0, degree 1, degree 2, degree 3 and up to degree r - 1 where the 

coefficients of the polynomial are from ℤp. So in general, I can say that F is the collection of 

all polynomials of degree at most r - 1. 



 

So this means degree is at most r - 1 where the coefficients are allowed from the set ℤp, why I 

am saying it is at most r - 1, because since each of the coefficients are from the set ℤp and my 

ℤp have the elements from 0 to p – 1 that means I can have a polynomial where all the 

coefficients are 0 that means I can also have a polynomial which is the 0 polynomial. So it is 

not necessarily the case that ar - 1, namely the coefficient of the r - 1 th power of x is always 

supposed to be there, it can also be 0, 

 

So, it turns out that how many elements I can have; how many such polynomials I can have 

in my collection F.  Since I can have each of the coefficients taken from the set ℤp. Namely 

each of the coefficients can take p possible values and each of them are picked independently 

that means it is not the case that the coefficient a1 depends on the coefficient is a0, it is not the 

case that the coefficient a2 depends on the coefficient is a0 and a1 they are picked 

independently. 

 

So, I can say that from the product rule of counting there are p
r
 number of possible 

polynomials in my collection F.  So I have defined my collection F.  Now I have to give the 

definition of the abstract plus operation and abstract dot operation. So, my plus operation here 

is defined to be the addition of polynomials where the coefficients are added as per ℤp namely 

addition modulo p and then I take the resultant polynomial modulo the irreducible 

polynomial. 

 

So that will ensure that my resultant polynomial will have coefficients over ℤp and its degree 

will be at most r - 1, because the degree of k(x) is r. To begin with my a(x) and b(x) 

polynomials both those polynomials will have degree r - 1 and if I add any 2 polynomials of 

degree r - 1, at most I will still obtain a polynomial of degree at most r - 1. 

 

So in fact, I do not need to take a modulo k(x), because in the sense, the effect of modulo k(x) 

would not take place.  And my multiplication operation is defined to be the product of 2 

polynomials, the corresponding 2 polynomials, where the coefficients are multiplied with 

respect to ℤp and if the degree becomes more than r, I take modulo k(x). That is my definition 

of the abstract plus operation and abstract dot operation. 

 



And my claim is that the way I have constructed my F and the way I have defined my plus 

operation and  dot operation they satisfy the properties or they satisfy the field axioms, it can 

be verified easily. To check, specifically I want to show you that any non-zero polynomial 

here will have a corresponding multiplicative inverse. Otherwise, remaining properties are 

easy to verify: the closure, associative, distributive law, existence of identity elements and so 

on. 

 

The additive identity element will be the 0 polynomial, the multiplicative identity element 

will be the constant polynomial 1 and so on. Let us see the existence of multiplicative 

inverse. So, imagine you are given a non empty, non empty means non-zero, a non-zero 

polynomial.  I want to show it has a multiplicative inverse and the multiplicative inverse is 

guaranteed because of the following: since I am taking k(x) to be an irreducible polynomial, 

so till now you must have been wondering that why I am taking k(x) to be irreducible why 

cannot I take k(x) to be any polynomial of degree r, there is a reason. If I take k(x) to be 

irreducible then I know that the only monic GCD of a(x) and k(x) will be the constant 

polynomial 1. Why so because since k(x) is irreducible, I cannot factorise out k(x). That 

means I do not have non constant factors of k(x) and hence the only possible monic GCD, the 

common divisor of a(x) and b(x) could be a constant polynomial 1. That means I can say that 

I can now apply the Euclidean GCD theorem and as per the Euclidean GCD theorem, the 

GCD can be expressed in terms of the individual polynomials itself.  

 

So my individual polynomials are a(x) and k(x), then as per the Euclidean theorem I can find 

out “linear combiners”, they are actually not linear combiners they are some polynomials 

when multiplied with a(x) and k(x) respectively and added will give me the GCD where the 

GCD in this case is 1 and what can I say about this multiplier polynomials f(x) and g(x)?  

Each of them are actually polynomials over the fields ℤp of some degree, need not be of 

degree at most r - 1. Now, if this is the case, if this equation holds then if I take modulo k(x) 

on both LHS and RHS, then in my RHS  1 modulo k(x) will give me the polynomial 1 itself. 

Whereas in my LHS if I divide the LHS by k(x) the effect of k(x) and k(x) cancels out k(x) is 

completely divisible by k(x). So, overall I get that the product of a(x) f(x) modulo k(x) will 

give me the constant polynomial 1 and in other words, I have found here 2 polynomials 

which when multiplied modulo k(x) will give me 1. 

 



So, I can say that f(x) can be treated as the multiplicative inverse of a(x). Now, if f(x) has 

degree up to r – 1, at most r – 1, well and good.  But if that is not the case I can reduce f(x) 

modulo k(x) and that will give me a polynomial of degree at most r - 1 which when 

multiplied with a(x) will give me the identity element 1. So, if you see here closely the way I 

have argued about the existence of multiplicative inverse for a(x) polynomial is precisely the 

same in which where actually when I showed that if GCD of 2 numbers a and n is 1, then we 

can find out multiplicative inverse of a and there we argued that as per the Bezout’s theorem I 

can express the GCD of a and n in terms of linear their combination. So, say s and t are 

Bezout coefficients and then I do modulo n on both sides and I get s times a modulo n is 1 

and then I say that a inverse is actually s modulo n. That is what we did in our number theory. 

The same thing we have generalised in the context of polynomials. 
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So, that is a general template for constructing a finite field for any given p and r where the 

order is p
r
. Now let us see how exactly this framework can be applied to construct fields of 

various fields of order p
r
 for some given values of p and r. So, imagine I take p to be 3 and r 

to be 2. So, I need a irreducible polynomial of degree 2. 

 

So, this is an irreducible polynomial (x
2
 + 1) and my collection F9 will have all the 

polynomials over ℤ3 namely the coefficients are from ℤ3 and the degree of the polynomials 

can be 0 or 1. So, I get total 9 such polynomials: {0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2} 

and my plus operation and multiplication operation will be defined modulo x
2
 + 1.  If I want 

to construct a finite field of order 4 so characteristic should be 2. 

 



So I will take a irreducible polynomial of degree 2, so if you take this irreducible polynomial 

(x
2
 + x + 1) and this to be your F4 set {0, 1, x, x+1} and my plus and dot operation will be 

defined modulo this irreducible polynomial and so. So with that I conclude today’s lecture. 

Just to summarise in this lecture we continued our discussion regarding the properties of 

finite fields and we proved a very nice property about order of a finite field. 

 

We showed that the order of a finite field is always of the form some prime number raised to 

the power r where the prime number is actually the characteristic of that field. Thank you. 


