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Hello everyone, welcome to this lecture. The plan for this lecture is as follows.  In this 

lecture, we will discuss finite fields and their properties specifically we will discuss the 

characteristic of a field. 
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So, let us do some warmup and see how exactly we construct finite fields. So we will see a 

construction of a finite field with 9 elements. I denote set F9 which is a collection of these 

polynomials. So, these are basically polynomials of degree 0 and degree 1 where the 



coefficients are from ℤ3 and remember ℤ3 is the set { 0, 1, 2 }. So, you can see that, if I 

consider the operation of polynomial addition over the set ℤ3[x], then it satisfies the closure 

property namely, you take any 2 polynomials from this collection and add them you will get 

again a polynomial in the same set F9 but it turns out that with respect to the operation of 

polynomial multiplication, the closure properties not satisfied namely, suppose I take these 2 

polynomials (x + 2) (2x + 1) and if I multiply them, then remember that when I multiply 

polynomials over fields where my field is ℤ3, then the degree of the product polynomial will 

be the sum of the degrees of the individual polynomials. So, I have degree 1 polynomial here 

degree 1 polynomial here, so that is why the sum of the product polynomial will be 2 and this 

polynomial is not a member of the set F9.   So, that is why now, what I am going to do is I am 

going to define a modified addition and multiplication operation, where I will be doing all the 

addition and multiplication of the polynomial as I was doing earlier, but my resultant answer 

will be computed modulo this polynomial (x
2
 + 1) and if you see closely here this is an 

irreducible polynomial; irreducible monic polynomial actually. So, the modified operation 

namely addition and multiplication is the following: I first do the usual addition and 

multiplication over ℤ3[x]. 

 

And then I do a modulo x
2
 + 1 and that will be my resultant answer. So, for instance, if I 

again perform the multiplication of these 2 polynomials over ℤ3[x] as I said, I will obtain this 

polynomial (2x
2
 + 1), but now what I am going to do is I am going to divide this polynomial 

by my x
2
 + 1 and focus on the remainder. So, if you see 2x

2
 + 1, I can express as 2 times x

2
 + 

1 + 2. 

 

So, 2 will be the remainder polynomial, namely the constant polynomial and hence as per the 

modified multiplication operation the product of these 2 polynomials will be 2 which is now 

a member of the set F9. So, it turns out that with respect to the modified addition and 

multiplication operation namely addition and multiplication modulo this irreducible 

polynomial the collection F9 satisfies my ring axioms. 
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Now, I would be interested to check whether this collection F9 indeed satisfies the axioms of 

field as well, with respect to the addition and multiplication operation modulo this irreducible 

polynomial. And for field axioms we need that each non-zero element should have a 

multiplicative inverse. So I have to check whether every element of this set F9 except the 

element 0 whether it has a multiplicative inverse. 

 

And it turns out that indeed each non-zero element of this set F9 has a multiplicative inverse. 

So, for instance the multiplicative inverse of 1 is 1 because if you multiply 1 with 1, you get 1 

and then if you do a modulo x
2
 + 1 you will get 1 in the same way, inverse of 2 is 2 because 2 

into 2 is 4 and 4 you will first reduce over ℤ3 you will get 1 and then if you reduce 1 modulo 

x
2
 + 1 you will get 1. 

 

If you do the product of x and 2x you will get 2x
2
. Now, the coefficient 2 when reduced 

within ℤ3 will give you coefficient 2 itself and now if you reduce 2x
2
 modulo x

2
 + 1 so, you 

will first multiply with 2; you will get this (2x
2
 + 2) and now, if you do a subtraction you will 

get -2 but -2 over ℤ3 is actually plus 1 which is the identity element; multiplicative identity. 

 

So, like that you can verify easily that under each element I have written down its 

corresponding inverse element and each of the inverse element is actually a member of the 

collection F9. So, that means each of the non-zero element here indeed has a multiplicative 

inverse. So, now I want to show you some another interesting property of this field F9. 

So, we have already proved now that this collection F9 satisfies the field axioms with respect 

to the addition and multiplication operation modulo this irreducible polynomial, I have not 



shown you the distributive property namely, addition distributes over multiplication. But it is 

easy to verify that, but I would like to show you another interesting property of this field. So, 

here I am going to focus on all the non-zero elements of this set F9. 

 

And now, what I have computed here is the following I have computed various powers of this 

element 2x + 1, of course, modulo the irreducible polynomial. So, the polynomial 2x + 1 

power 1 will give you the same element (2x + 1)
2
 modulo x

2
 + 1 will give you what x so, if 

you want to verify that let us do that. So, you have (2x + 1)
2
 so, you will first expand it so, 

you will get 4x
2
 + 4x + 1. 

 

But each of the coefficients has to be first reduced over ℤ3 so 4 becomes 1. So, you get x
2
, 4 

becomes 1 again. So, you get x and then you get  +1 and now, you have to reduce x
2
 + x + 1 

modulo x
2
 + 1 that is the way we have defined our modified multiplication operation. So, you 

will get x
2
 + 1 and now, if you subtract you get x;  1 and 1 cancels out. 

 

Now, you cannot further divide x by x
2
 + 1 because the degree is less. So, x will be the 

remainder.  In the same way (2x + 1)
3
 will give you x + 1 and so, on. So, what I have shown 

here is if you take the various powers of 2x + 1 and compute the powers as per the modified 

multiplication operation, then you get basically all the non-zero elements of this collection 

F9. 

 

That means, I can treat this element 2x + 1 as a generator which can generate all the non-zero 

elements of this collection F9 and as per our notation of generators and cyclic group I can 

basically say here that if I consider the field F9 and focus on the multiplication operation 

modulo x
2
 + 1 then it is actually a cyclic group where 2x + 1 is a generator. I will touch upon 

this fact later. 

(Refer Slide Time: 09:05) 



 
But this was just for your demonstration. So, now next we want to define what we call as 

characteristic of a field. So, imagine you are given an abstract field. So, this is your abstract 

plus operation and abstract dot operation; need not be your integer plus and integer dot 

operation and my elements 0 and 1 are the additive and multiplicative identity respectively. 

Again they are they need not be the numeric 0 and 1. 

 

They are the representation of your additive and multiplicative identity element. Now, what I 

am going to focus on is the following. I will see what are the various elements I can generate 

as per the dot operation from this multiplicative identity element 1. I will be focusing on the 

cyclic subgroup as per the addition operation. So basically, I am going to add 1, 0 times, 

which will give me the element 0, so 0 times 1 will give me 0, 1 times 1 will give me 1 and 1 

+ 1 which is same as 2 times 1 will give me 2, 1 + 1 + 1 3 times will give me 3 times 1 which 

is same as 3 and so on. Again I am using; I am denoting 2, 3 as results but this may not be the 

element numeric 2, numeric 3 they are basically representation of the result of adding the 

multiplicative identity 1 to itself. 

 

So, if I focus on the cyclic subgroup namely the various elements which I can generate by 

adding the element 1 to itself several times then that will be a subgroup of my original group. 

So remember, this collection F with respect to the plus operation constitutes a group, because 

that is one of the axioms of the field and since, I am taking an element 1 belonging to the set 

F and computing the various powers. 

Then as per the rules of group theory, this will be considered as a subgroup and it will be a 

cyclic group where 1 is the generator. So, the characteristic of the field is the smallest 



positive integer m such that 1 the multiplicative identity, 1 is added m times I get the element 

0. So, why I am focusing on the positive integer and why not 0 is allowed here? because as 

per the definition here, 0 times 1 will of course, give you the element 0. 

 

So, that is why I am interested in the smallest positive integer. So, it turns out that as per the 

definition of our characteristic, if your field F is a finite field then of course the subgroup; the 

cyclic subgroup generated by the element 1 also will be finite and in that case, what I can say 

is that the characteristic of the field is nothing but the order of the cyclic group generated by 

the element 1. 

 

Because, whatever is the number of elements generated by this element 1 say if there are m 

number of elements that means, starting from the 0th power to the (m – 1)th power, I can 

generate all the elements and then as soon as I take the mth power, I will get back the identity 

element namely 0.  Whereas, if the field F itself is infinite and the characteristic of F may not 

be well defined. So, typically we will be interested in the characteristic of a field when our 

field is a finite field. 
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So, let us see some examples of characteristic of a field. So, let us first take this example, 

namely the field consisting of the elements 0 to p - 1 that is my set ℤp and my plus operation 

is addition modulo p and my multiplication operation is multiplication modulo p and here the 

identity elements are indeed the numeric 0 and 1 respectively, the additive and multiplicative 

identity elements. 

 



So, now let us try to find out the characteristic of a field. So, for that we have to focus on the 

size or the order of this subgroup namely the subgroup generated by the element 1 and if I 

consider the subgroup generated by the element 1 it will be the entire ℤp because 0 times 1 

will give you 0, 1 added to itself only once we are going to give you the element 1. 1 added to 

itself again we will give you 2 and so on. So basically the characteristic here will be p 

because if I add 1 to itself p times and remember by add I mean addition modulo p. So, if I 

add 1 to itself p times the result will be p and p modulo p as per the plus modulo p operation 

will give me the element 0. So that is why the characteristic of this field will be p. Now let us 

consider the field that we had constructed at the beginning of this presentation, this lecture, 

this was the field consisting of 9 polynomials of degree 0 and 1 over ℤ3 and all my operations 

are modulo x
2
 + 1 then here the additive identity is the numeric 0 or the constant polynomial 

0 and the multiplicative identity is the constant polynomial 1. Now if I want to find out 

characteristic of the field F9 basically I have to find out the size of the cyclic subgroup 

generated by the element 1. 

 

And it is easy to see that subgroup generated by the element 1 will be the constant 

polynomial 0, polynomial 1, and polynomial 2. So there are 3 elements that is why the 

characteristic will be 3 indeed if you add 1 to itself thrice you will get 3. Now if you reduce 3 

modulo 3 you will get 0 and now if you 0 modulo x
2
 + 1 you will get the element 0. That is 

why the characteristic of this field is 3. 

 

Let us consider an abstract field F4 where my elements are letters here w, y, z and t.  And 

now I define an addition and multiplication operation as per this table. So this table basically 

tells you the result of performing the plus operation and multiplication operation. So for 

instance if I consider this entry.  This entry basically means that if I add y and z then my 

result is t.  In the same way as per the multiplication table, the interpretation here is that if I 

multiply ℤ with the w my result is w and so on. That is the definition. That is my definition of 

the plus operation and the dot operation here and it is easy to verify that all the field axioms 

are satisfied: the closure property with respect to the plus is satisfied because you take any 2 

elements of this collection F4 and add them you will get again an element of the collection 

F4. 

 



Similarly dot or multiplication is closed. And you have the identity elements here. Let us 

identify the additive identity element 0, what exactly is the element 0 here the element 0 here 

is actually the element w, because you add w to any element you get the same element back 

so you add w with w you get w you add w to y you get y and so on. So even though w is 

additive identity whenever I want to refer to additive identity instead of saying w I will use 

the notation 0. 

 

In the same way the multiplicative identity here is y because if you see the column under y in 

the multiplication table each element when multiplied with y gives you back the same 

element. So now what will be the characteristic of this field so finding the characteristic of 

this field; since the field is finite I will basically focus on the cyclic subgroup generated by 

this multiplicative identity element namely the elements generated by various powers of y. 

 

So 0th power of y will give me the element y itself and y added to itself as per the additive 

table gives me the element w and that is all after that I cannot generate any new element. So 

that is why since there are 2 elements here the characteristic of this field is 2 and indeed you 

can check here that y additive to itself will give you the element w which is my 0 element.  
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So that is the definition of characteristic of a field. So we have seen examples of 3 fields in 

this lecture, the field ℤp, the field F9 and the field F4 and the characteristic of each of these 

fields is a prime number. Now, you might be wondering, is it accidental, or is it in general 

always a case. So it turns out that this is not accidental and indeed, this is the case for every 



finite field. So we can prove the following. That if you take any finite field F with an abstract 

plus and dot operation. 

 

Then it’s characteristic is always a prime number. It cannot be a composite number and at 

least the theorem is true with respect to the examples that we had seen already in this lecture. 

So now let us try to prove this theorem. So the proof will be by contradiction. So the theorem 

says that the characteristic should prime number but as per the proof by contradiction 

strategy, I will assume the contrary and I will assume that the characteristic is not a prime 

number.  If it is not a prime number; so it is not a prime value then it will be composite. So let 

characteristic be m and suppose it is a composite value.  Since it is a composite value it will 

have prime factors or some factors. So let m1 and m2 be the factors here and none of them is 

actually m because that is the definition of a composite number. 

 

Now since the characteristic is m where m is the product of m1 and m2 that means in the field 

F, the element 1 when added m1 m2 times will give you the additive identity is 0. That is that 

comes from the definition. Now if this is the case then I am going to prove that either the 

element 1 added m1 times will give you the element 0 or the element 1 added to itself m2 

times will give you the element 0. 

 

That is what I am going to show next. Assuming that this claim is true then this goes against 

the assumption that the characteristic of the field was m1 times m2 because if 1 added to itself 

m1 times gives you the element 0 then it implies that the characteristic is m1 or if 1 added to 

itself m2 times gives you the element 0 then that means the characteristic is m2 and both m1 as 

well as m2 are individually less than m. 

 

So that goes against the assumption that the characteristic of the field was m1 times m2 at the 

first place. So everything now boils down to proving this claim.  That means assuming that 1 

added to itself m1 m2 times gives you 0, I have to show that either this statement is true or this 

statement is true.  And again I will use a proof by contradiction to prove this claim. So my 

goal is to show that 1 added to itself m1 times or 1 added to itself m2 times gives you 0 but on 

contrary assume that 1 added to itself m1 times gives you a non-zero element a. 

 



And 1 added to itself m2 times gives you another non-zero element say b. Now if that is the 

case I have to arrive at a contradiction somehow and how do I arrive at a contradiction, so I 

utilize the fact that 1 added to itself m1 m2 times can be splitted as follows: I can say that let 

me add 1 to itself and m1 times and then again let me add 1 to itself and m1 times and then 

again let me add 1 to itself m1 times. 

 

And like that if I do this operation of adding 1 to itself m1 times total m2 times that will give 

me the effect of as if I have added element 1 to itself m1 m2 times. Now as per my assumption 

1 added to itself m1 times will give me a non-zero value a. In the same way the next operation 

of element 1 added to itself m1 times will give me again element a and in the same way the 

last operation of performing the addition operation over the element 1 m1 times will also give 

me the element a. 

 

So what I can say is that the result of adding 1 to itself m1 m2 times is equivalent to adding 

this non-zero element a to itself m2 times. Now what I can say is the following since the 

element a is a non-zero element I can say that as per the definition of multiplicative identity if 

I multiply the element a with the multiplicative identity namely the element 1 I will get the 

element a itself.  So I can write a as dot of 1 and a and like that each of the a I can replace by 

1 dot a and how many times I can do that: m2 times. Now remember I am considering right 

now a field and over a field the plus and the dot operation satisfies the distributive property. 

So what I can say is the following I can take out this dot outside and distribute; inside I can 

collect all the plus.  

 

And how many plus I have inside?  m2 because this whole operation of 1 dot a was performed 

m2 times. Now I utilize the fact that 1 added to itself m2 times will give me the non-zero 

element b that means this value is nothing but b and overall I get the conclusion that 1 added 

to itself m1 m2 times gives me the element b dot a and b dot a will not be 0 because as per my 

assumption a is not equal to 0, b is not equal to 0 and recall in a field if you have 2 nonzero 

elements then their dot is also not 0. So since b dot a is not 0,  I get a contradiction that the 

characteristic of the field is m1 m2 because if the characteristic of the field was m1 m2 then the 

result of 1 added to itself m1 m2 times should give me the element 0. But what I have shown 

here is that 1 added to itself m1 m2 times is not 0. So I get a contradiction and that shows that 

my claim is correct and since my claim is correct, then that contradicts the assumption that I 

made here namely the characteristic is a composite number. That is an incorrect statement 



that means the characteristic m was actually a prime number. So with that I conclude today’s 

lecture: just to summarize in today’s lecture we discussed about the characteristic of a field 

and we proved that if your field is a finite field then its characteristic is always a prime 

number. 


