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Hello everyone, welcome to this lecture. So, the plan for this lecture is as follows. In this 

lecture, we will introduce the definition of subgroups and we will see some properties of 

subgroups. And then we will discuss about Lagrange’s theorem in the context of subgroups 

and its applications. 
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So, let us start with the definition of a subgroup. So, imagine you are given an abstract group 

𝐺 with operation ∘, it may or may not be finite. And imagine I take a subset 𝐻 for the set 𝐺. 
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Again it may or may not be finite. Of course, if 𝐺 is finite any subset will be finite, but if 𝐺 is 

infinite then I may take a finite subset or infinite subset. Now, if the subset 𝐻 with the same 

operation ∘ satisfies the group axioms namely 𝐺!, 𝐺", 𝐺#, 𝐺$ then I will call H along with the 

operation ∘ to be a subgroup of the original group. 

 

So, an example of a subgroup will be the following. So, let group 𝐺 be the set of real numbers 

with the operation integer addition then if I take the set of integers then that will be of course, 

a subset of the real numbers. So, my real number was the bigger set and my integer is a subset 

of the set of real numbers and I take the same operation plus here. So, it is easy to see that the 

set of integers is indeed a group, it satisfies the group axioms with respect to the integer addition 

and hence, I can say that this is a subgroup of the group of real numbers with integer addition.  

 

Whereas, if I take the set of integers as my main group or the bigger group with the integer 

addition operation and now, if I take the subset namely the subset of non-negative integers with 

the plus operation then it does not constitute a subgroup. Because the set of non-negative 

integers does not satisfy all group axioms. Namely, the additive inverse is negative and it will 

not belong to the set of non-negative integers. 

 

So now, an interesting question is, imagine you are given an abstract group and now, I give 

you a subset, how do I check whether it is a subgroup or not? There are 2 options, option one 

that you manually check whether all the group axioms are satisfied for the subset 𝐻 that you 

are given. But that is not what we will prefer because if my subset 𝐻 is very large then it might 

become very difficult to verify whether all the group axioms are satisfied or not. 

 

Instead, what we are looking now, here, is the following. We are looking for a characterization, 

some kind of condition which should be sufficient to check and declare whether the given 

subset 𝐻 satisfies the group axioms or not with respect to the operation. 

(Refer Slide Time: 03:35) 
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So, here is a very interesting characterization for subgroups. So, you are given a subset 𝐻, of 

course, a subset 𝐻 has to be non-empty because if it is empty, it can never be a group because 

you need the identity element to be present at least in your group. So, definitely 𝐻 cannot be 

empty; it has to be a non-empty subset. So, imagine you are given a non-empty subset, the 

characterization is the following. 

 

You just verify whether the 2 properties 𝑆! and 𝑆" are satisfied. And if they are satisfied then 

you can declare that the subset 𝐻 indeed constitutes a subgroup of the original group. Note that 

I am using the multiplicative notation here. So, what are these 2 conditions? The condition 𝑆! 

demands that, the closure property should be satisfied. 

 

That means, you take any 𝑥, 𝑦 value from your subset 𝐻, the result of the group operation 

should be a member of the subset 𝐻 itself. And the second property here is that every element 

in the subset 𝐻 should have multiplicative inverse present in the subset 𝐻 itself. So, the claim 

here is that if these 2 properties are satisfied, that automatically ensures that all the group 

axioms are satisfied. 

 

That means I do not need to check separately for the existence of the identity element. And I 

do not have to check for the associative property. So, let us see the proof of this 

characterization. So, I have to prove that, if indeed 𝑆! and 𝑆" are satisfied then all the group 

axioms are satisfied in my subset 𝐻. We observe that the closure property follows directly from 

𝑆!. 
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So, if indeed 𝑆! condition is satisfied that means, the closure property is satisfied. The operation 

dot or abstract operation ∘ was indeed associative in the 𝐺 itself because 𝐺 satisfies the group 

axioms. So, it will be associative in 𝐻 as well because the elements of 𝐻 are nothing but 

elements of 𝐺. And closure property is anyhow satisfied guaranteed in 𝐻, so that means, the 

operation ∘ or the operation dot will be associative in 𝐻 as well. 

 

The axiom number 𝑆" guarantees you that every element in 𝐻 has its inverse in 𝐻 present. And 

now, I have to show that identity element is also a part of my subset 𝐻, if the condition 𝑆! and 

𝑆" are satisfied. So, for that, consider an arbitrary element 𝑥 belonging to your subset 𝐻. I can 

apply the axiom number 𝑆" and claim that 𝑥%! is also present in 𝐻. 

 

And from the first axiom 𝑆!, I know that the result of 𝑥 operation 𝑥%! will be an element of 𝐻 

because the axiom number 𝑆!, says that the closure property is satisfied. So, 𝑥 is an element of 

𝐻, 𝑥%! is also an element of 𝐻. So, the result of group operation of 𝑥 and 𝑥%! should be also a 

member of 𝐻. But what is the result of group operation being performed on 𝑥 and 𝑥%!? It will 

be the identity element and this shows that identity element is guaranteed to be present in my 

subset 𝐻. So that shows that if 𝑆! and 𝑆" are satisfied, all the group axioms are satisfied. 

(Refer Slide Time: 07:23) 

 
So that is a very nice characterization. Now, an interesting corollary here, is the following. The 

corollary says that, if your original group 𝐺 is finite then no need to check even for the second 

axiom; just check whether the first axiom is satisfied or not. Namely, just check whether the 

closure property is satisfied or not in your subset 𝐻. If the closure property is satisfied in the 
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subset 𝐻 that automatically guarantees you that all the remaining group axioms are also 

satisfied in your subset 𝐻. 

 

So, the proof for this corollary will be the following. We have to show that if your bigger group 

𝐺 is finite and if your condition 𝑆! is satisfied in 𝐻, I have to show that, condition 𝑆" is also 

satisfied in 𝐻 because we had already proved that if both 𝑆! and 𝑆" are satisfied in 𝐻 then all 

the 4 properties of group hold in 𝐻. Right now, it is not given to me whether 𝑆" is satisfied or 

not, it is just given to me that 𝐺 is finite and 𝑆! is satisfied in 𝐻. 

 

I will show that if 𝐺 is finite and 𝑆! is satisfied in 𝐻, I can draw the conclusion that even 𝑆" is 

satisfied for my 𝐻. And now if 𝑆! and 𝑆" are satisfied for my 𝐻, I had already proved that all 

the group axioms will hold for 𝐻 as well. So, everything boils down to this proof. So, the proof 

will be divided into 2 cases depending upon what is the cardinality of the subset 𝐻. If the subset 

𝐻 is a singleton set then it only has the identity element. 

 

So, consider the case when indeed the subset 𝐻 is singleton and it has the identity element then 

I do not have to check 𝑆! holds, 𝑆" holds or not. Indeed, they hold because the subset H which 

has only the identity element present in it along with the group operation is indeed a subgroup. 

The closure property is satisfied because if you perform the group operation on the identity 

element with itself, you will obtain the identity element which is again a member of 𝐻. 

 

The operation ∘ will be associative anyhow in 𝐻, the inverse element of the identity element 

will be the identity element itself and anyhow the identity element is present in 𝐻. So, it trivially 

constitutes a subgroup, I do not have to check about 𝑆!, 𝑆". On the other hand, imagine that 

your subset 𝐻 is not a singleton set. So, imagine that it has some other elements and consider 

one such element 𝑥 which is different from your identity element. Now, since 𝑥 is a member 

of 𝐻, 𝑥 is a member of 𝐺 as well. 

 

So, let the order of 𝑥 be 𝑚. And when I say order of 𝑥, it means, order of 𝑥 in the context of 

the group 𝐺. That means, if the order of 𝑥 is 𝑚 that means, 𝑚 is the smallest positive integer 

such that, 𝑥& is the identity element. Now, if 𝑥& is the identity element, if I multiply both sides 

of this equation with 𝑥%! and again 𝑥%! is a group element as per my definition of the group 
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exponentiation. If I multiply both sides of this equation with 𝑥%! then the identity element 

operated with 𝑥%! will give me 𝑥%! only. 

 

That means, I can say that 𝑥%(&–!) is same as 𝑥%!. Now, what is my goal? My goal is to show 

that, if 𝑆! holds in my subset 𝐻 then, 𝑆" also holds. So that is what I am trying to do here. I 

have taken an arbitrary 𝑥 here, different from the identity element whose order is 𝑚 and right 

now, I have derived that 𝑥%! is same as 𝑥&–!. My goal is to show that 𝑥%! indeed belongs to 

the subset 𝐻. 

 

So, to show that 𝑥%! indeed belongs to the subset 𝐻, I have to equivalently show that 𝑥&–! 

belongs to the subset 𝐻 because, I have already proved here that 𝑥%! is same as 𝑥&–!. And 

now, how do I prove that 𝑥&–! is a member of this subset 𝐻? I can repeatedly apply the fact 

that axiom 𝑆! holds in my subset 𝐻 on the element 𝑥. 

 

So, remember 𝑥 is a member of the subset 𝐻 and if 𝑆! holds, it holds for 𝑥 as well. So, 𝑥" will 

be a member of 𝐻, 𝑥# will be a member of 𝐻, 𝑥$ will be a member of 𝐻 and hence 𝑥&–! also 

will be a member of 𝐻 and 𝑥&–! is nothing but 𝑥%! and that shows that 𝑥%! is automatically 

guaranteed to be present in 𝐻, if the axiom number 𝑆! is satisfied. 

 

So now, you might be wondering where exactly the fact that 𝐺 is finite is used here. Well, the 

fact that 𝐺 is finite is used here is when I use the fact that the order of 𝑥 is 𝑚. Because if 𝐺 is 

infinite and I cannot say necessarily what exactly is the order of 𝑥, it may not be defined at the 

first place. So that is why this proof holds only for the case when my group 𝐺 is a finite group. 

So that means, if I am given a finite group 𝐺 and a subset of 𝐺 then to check whether the subset 

𝐻 constitutes a subgroup or not it is just sufficient to check the closure property. 

 

Just check whether the closure property holds in the subset or not, if it holds then you can 

conclude that all the remaining group axioms will also hold, a very nice characterization. 

(Refer Slide Time: 14:02) 
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So, now, based on this we will generate various cyclic subgroups of a group. So, you might be 

given a group which need not be a cyclic group but by using the previous result I will try to 

now derive cyclic subgroups of my original group. So, I have retained the result that I have just 

proved. Namely, the characterization for the existence of a subgroup. That means, if you are 

given a non-empty subset, how do you check whether that non-empty subset is a subgroup or 

not. 

 

So, now, imagine you are given a group 𝐺 and an element 𝑥, whose order is 𝑚. Its order is 𝑚 

means 𝑥& is the identity element; that means 𝑚 is the smallest positive integer such that 𝑥& 

gives you the identity element. 

 

Now, let me define subset 𝐻 which is obtained by raising or by computing 𝑚 distinct powers 

of 𝑥 namely, 𝑥*, 𝑥!, … , 𝑥&–!. So, these 𝑚 elements are distinct; we had already proved that in 

one of our earlier lectures. Now, my claim is that this subset 𝐻 is a cyclic group, whose 

generator is 𝑥. And it is a cyclic subgroup of your original group. So, how do we prove? First 

of all 𝑥 is a generator; that is easy to see because all the elements of 𝐻 are generated by different 

powers of 𝑥. So, indeed, 𝑥 is a generator. Now, I have to prove that indeed, the group axioms 

are satisfied for my subset 𝐻. 

 

And for that, I have to show that both property 𝑆! as well as property 𝑆" holds for 𝐻. If I can 

prove 𝑆! and 𝑆" holds for my subset 𝐻 that I have computed like this then that shows that it is 

indeed a cyclic subgroup. So, let us first prove the closure property. So, let us take 2 different 
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elements from the set 𝐻. Since they are 2 different elements of 𝐻, they are basically some 

distinct powers of the generator 𝑥, say the i-th power and the j-th power. 

 

Then I have to show that the group operation performed on 𝑥+ and 𝑥, will also give me an 

element of 𝐻. And that is very trivial to prove because the group operation performed on 𝑥+ 

and 𝑥, will give me an element 𝑥+-,. Now, this 𝑥+-, is same as 𝑥(+-,)mod	&. Why so? Because, 

since the order of 𝑥 is 𝑚, that means 𝑥& = 1, so I can rewrite 𝑥+-, as several blocks of 𝑥&; 

and the last block which may not be a full block of 𝑥& but rather it will be 𝑥(+-,)	mod	&.  

 

Now, I know that each block of 𝑥& will give me the identity element and the last block which 

has 𝑥(+-,)	mod	& that will remain. Now, the identity element being multiplied to itself several 

times will give me the identity element. So, this will be same as identity element being 

multiplied with 𝑥(+-,)	mod	&. 

 

And hence the result of 𝑥+-, is same as the result of 𝑥(+-,)	mod	&. But then (𝑖 + 𝑗)	mod	𝑚 will 

give you a remainder in the range 0 to 𝑚	 − 	1. So, this will be a value in the range 0 to 𝑚	 − 	1 

because the possible remainders that you can obtain by dividing 𝑖	 + 	𝑗 by 𝑚 will be either 0, 

1, … ,𝑚	– 	1. That means this is nothing but some power of x in the range where the exponent 

is in the range 0 to 𝑚	 − 	1 and that will be definitely an element of 𝐻 because any power of 𝑥 

where in the exponent you have something in the range 0 to 𝑚	 − 	1 will give you an element 

of 𝐻. So that shows the closure property or 𝑆! is satisfied.  

 

Now, I have to prove the 𝑆" property. That means if I take any arbitrary element from the subset 

𝐻 that I have computed, it has an inverse present in the subset 𝐻 as well. So, I take some 

arbitrary element where the arbitrary element is 𝑥+ and 𝑖	 > 	0. Why greater than 0? Because if 

𝑖	 = 	0 then 𝑥+ is nothing but the identity element and the inverse of the identity element will 

be the identity element only. So, 𝑆" will be of course, satisfied for the identity element. I want 

to prove that it is satisfied for any other non-identity element as well. So that is why I am taking 

𝑥+ where 𝑖 is not zero. And I have to show that for this 𝑥+ element, the corresponding inverse 

is also present in 𝐻. 

 

So, my claim is the following. That, 𝑥&–+ which is also an element of the subset 𝐻 constitutes 

the inverse of 𝑥+. So, it is easy to see that indeed 𝑥&–+ belongs to 𝐻. Why? Because 𝑖 is some 
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power, of course, 𝑖 is greater than 0 but 𝑖 is also less than equal to 𝑚	 − 	1.That means, 𝑚	 − 	𝑖 

will also be now a power in the range 0 to 𝑚	 − 	1. So that is why it is a member of 𝐻. And 

what will be the result of performing the group operation on 𝑥+ and element 𝑥&–+? Well, it will 

be the same as identity element.  

 

So that is why I can now conclude that you take any non-identity element in the subset 𝐻, its 

corresponding inverse is also present in the subset 𝐻. And since 𝑆! and 𝑆" is satisfied for the 

𝐻 that I have built that means, 𝐻 indeed constitutes a group. And it is cyclic because its 

generator is 𝑥. By the way, you might be wondering that why I am verifying both 𝑆! and 𝑆" 

here for the subset 𝐻. Why cannot I just verify 𝑆!? Because I just proved some time back that 

it might be sufficient to just check the condition 𝑆!. 

 

Well that is the case when your group 𝐺 would have been a finite group but here I am proving 

the property for a group 𝐺 which may or may not be finite. So, if your group 𝐺 is not finite 

then I have to check for both condition 𝑆! as well as condition 𝑆". That is why I am checking 

for both 𝑆! and 𝑆". 

(Refer Slide Time: 21:21) 

 
Now, let us next define what we call as left and right coset of our subgroup. And this notion of 

cosets is very important when we perform error correction in coding theory. Of course, we 

would not be discussing coding theory this course, but people who are familiar with error 

correcting codes they might be knowing that when we perform error correction then we use 

this concept of left and right cosets. So, let us define what exactly is coset.  

 

894



So, imagine you are given a group and a subgroup for the group. Again, they may be finite, 

infinite and so on because the definition does not put any restriction. And imagine you are 

given a group element 𝑔 from the bigger group. The cosets are defined with respect to your 

subgroups. But they are defined with respect to elements which are chosen from the bigger 

group. 

 

So, it might be the case that element is 𝑔 may not be a member of 𝐻; it may be present in 𝐺 

but not in 𝐻. So, definition does not put any restriction that element is 𝑔 should present in the 

set 𝐻; it may or may not be present. But the cosets are defined with respect to your subgroups. 

So, the left coset of the subgroup 𝐻 is denoted by 𝑔𝐻. And it is basically the collection of all 

group elements which I obtained by performing the group operation between the 𝑔 that I have 

chosen here and all the elements of my subgroup 𝐻.  

 

Let the elements of 𝐻 be denoted by {ℎ!, … , }. Note that it might have infinite number of 

elements. So, you perform 𝑔 ⋅ ℎ!, 𝑔 ⋅ ℎ", … , 𝑔 ⋅ ℎ+; you perform g operation every element of 

subgroup 𝐻. Of course, from the closure property you will obtain group elements. The 

collection of those group elements is your left coset.  

 

Why left coset? Because 𝑔 is the left operand and the elements of the subgroup 𝐻 are occurring 

as your right operands. Whereas the right coset is defined similarly but what you now do is the 

elements of subgroup 𝐻 will occur as your left operand and each of them will be operated with 

𝑔. That will be your right coset and our notation for that will be 𝐻𝑔. 

 

Now, if you change your element 𝑔 that will give you a different left coset and a different right 

coset. So it is not the case that you will obtain the same left coset and right coset every time, it 

depends on 𝑔. 

 

So, the first thing that we can prove here is the following. If 𝐻 is a finite subgroup then you 

take any element from the bigger group, the corresponding left coset, right coset they have the 

same cardinality as the cardinality of your finite subgroup. And the proof is very simple. So, 

imagine your finite subgroup 𝐻 has 𝑛 number of elements and the left coset will have the 

elements {𝑔 ⋅ ℎ!, 𝑔 ⋅ ℎ", … , 𝑔 ⋅ ℎ2}; where we are using the multiplicative notation for the 

group. 
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From the right cancellation rule, all this elements 𝑔 ⋅ ℎ!, 𝑔 ⋅ ℎ", … , 𝑔 ⋅ ℎ2 are distinct. Namely, 

you cannot have 𝑔 ⋅ ℎ+ = 𝑔 ⋅ ℎ, where ℎ+ and ℎ, are distinct because if that is the case, you can 

apply the left cancellation rule and come to the conclusion that ℎ+ = ℎ,, which is a 

contradiction. 

 

So that is a trivial proof. Now, let us see a very nice property here, regarding the coset. So, let 

me first demonstrate the property and then we will prove it for any general group and general 

coset. So, let me take this group 𝐺 which is the set ℤ!!*  and remember the set ℤ!!*  will have all 

the integers in the range 0 to 10 which are co-prime to my modulus 11. So basically, you will 

have all the integers 1 to 10, except 0 because 0 is not co prime to 11. 

 

And my operation is ⋅!!; multiplication modulo 11. That is my concrete group operation. And 

suppose I take the subgroup consisting just of elements {1, 10}. If you are wondering whether 

this is a subgroup or not, well, you can apply your characterization 𝑆! on this subset 𝐻 and then 

you can verify that indeed the property 𝑆! holds for this subset 𝐻. Now, let us compute the 

various left cosets of this 𝐻.  

 

By various left cosets mean, I will keep on changing my 𝑔. I will take 𝑔 to be 1 first, and then 

I will take 𝑔 to be 2 next, and then finally I will take g to be 10. So, the left coset of 𝐻 with 

respect to 1 will be {1, 10}. The left coset of 𝐻 with respect to the group element 2 will be 

{2, 9}. Why? So, this will be because of the following reason. So, if I take g to be 2 then 𝑔𝐻 

will be basically 2 ⋅ 1	mod	11 = 2 and 2 ⋅ 10	mod	11 = 9 because my operation is 

multiplication modulo 11. 

 

So that is why this left coset is consisting of the elements {2, 9}. In the same way, you can 

compute the left coset with respect to the element 𝑔	 = 	3, 𝑔	 = 	4. So, you will have 10 cosets. 

Because you have 10 possible values of 𝑔. But now you can see here, it is not the case that all 

my 10 cosets that I have obtained here they are all distinct. 

 

Some of them are same completely or otherwise they are completely disjoint. So, for instance, 

the left coset of 𝐻 with respect to the element 1 and the left coset of the same 𝐻 with respect 

to the element 10 are same. Whereas, if I consider the left coset of H with respect to element 1 
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and a left coset of H with respect to 2 they are completely disjoint, they have nothing common. 

So, now, you might be tempting to prove whether this is the case with respect to any coset or 

not, or is it the case that it is happening only for this 𝐺 and only this subgroup? 

(Refer Slide Time: 29:11) 

 
Well that is not the case, we will prove that this is a general result. So, what we are going to 

prove here is the following. If you are given any group and its subgroup then you take any 2 

elements from the parent group, call it 𝑔!, 𝑔" then the left coset of 𝐻 with respect to the 

elements 𝑔!, 𝑔" will be either completely same or they will be completely disjoint. That is a 

statement here.  

 

And before going into the proof idea, let us try to recall a concept that we had earlier seen in 

our course where we come across a similar situation. Where we proved something of the 

following form that you have many subsets and either 2 subsets are exactly same or they are 

completely disjoint. Namely, we proved that result in the context of equivalence classes. So, if 

we have an equivalence relation and we formed a corresponding equivalence classes then we 

know that 2 equivalence classes will be either completely same or they will be completely 

disjoint. 

 

Something similar is happening here. So that is why we are now going to prove this result by 

defining an equivalence relation and proving that left cosets are nothing but equivalence classes 

with respect to that equivalence relation that we will define. So, my equivalence relation that I 

am defining here is the following. I say that element 𝑥 is related to the element 𝑦, if the element 

𝑦 is present in the left coset with respect to the element 𝑥. 
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If that is the case, I will say 𝑥 is related to 𝑦, otherwise 𝑥 is not related to 𝑦. And I will prove 

very soon that indeed this relation is an equivalence relation. Namely, it satisfies the reflexive 

property, symmetric property and transitive property. Assume for the moment that it is indeed 

the case, that means, this relation is an equivalence relation. Then what can I say about the 

equivalence classes of this relation? 

 

Well, I can use the property that equivalence classes constitute a partition of the original set. 

So, the original set over which the relation is defined is the set 𝐺. Because 𝑥 and 𝑦 are elements 

of 𝐺, I have defined a relation over the elements of the group G. I say element 𝑥 and element 

𝑦 of the group 𝐺 are related if 𝑦 is present in the left coset of 𝑥. So, if at all this relation is an 

equivalence relation then the equivalence classes will constitute a partition of this group 𝐺. 

 

And it is easy to see that the equivalence classes here are nothing but the cosets. Because that 

is how I have defined the relation. And that automatically proves that the theorem statement 

holds; that means, either 2 cosets will be completely different or they would not have any 

overlap and will be identical because they constitute your equivalence classes. So, now proof 

boils down to proving that this relation is indeed an equivalence relation. 

 

So, let us prove that this relation is an equivalence relation by proving the reflexive, symmetric, 

and transitive properties. So, let us first prove that the relation 𝑅 is reflexive. That means, we 

have to prove that every 𝑥 is related to itself. That means, we have to prove that every 𝑥 is 

always present in its left coset where 𝑥 is a element of your parent group. So, this simply 

follows from the fact that 𝑥 is always the result of group operation being performed on 𝑥 and 

the identity element. 

 

And this identity element is of course, an element of your subset 𝐻 because 𝐻 is a subgroup. 

So that means when I will be forming the left coset of 𝑥, I will be encountering the element 𝑥 

operated with identity element and that will give me the element 𝑥 itself. Hence, I get the 

conclusion that 𝑥 is related to 𝑥 showing that my relation is reflexive.  

 

Now, let us prove my relation is symmetric. So, imagine 𝑥 is related to 𝑦. 𝑥 is related to 𝑦 

means when I operated 𝑥 with all the elements of 𝐻, I must have encountered some ℎ! such 
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that 𝑥 ⋅ ℎ! = 𝑦. Now, upon multiplying both sides by ℎ!%! we get 𝑥 = 𝑦 ⋅ ℎ!%!. Note that since 

ℎ! is a member of subgroup 𝐻, ℎ!%! also will be a member of subgroup 𝐻. 

 

That means 𝑥 is nothing but 𝑦 operated with some element of the subgroup 𝐻, say, ℎ" i.e., let 

ℎ!%! = ℎ". But 𝑦 ⋅ ℎ" is a member of the left coset of 𝑦 by definition. So, what I have shown 

here is that, the element 𝑥 belongs to the left coset of 𝑦. And if element 𝑥 belongs to the left 

coset of 𝑦 then that is equivalent to showing that 𝑦 is related to 𝑥, as per my definition of 

relation 𝑅. So, I have proved that my relation is symmetric as well, and in the same way I can 

prove it, it is transitive. 

 

So, imagine 𝑥 is related to 𝑦 and 𝑦 is related to 𝑧. I have to show that 𝑥 is related to 𝑧. So, if 𝑥 

is related to 𝑦 that means, 𝑦 is a member of left coset of 𝑥. That means, 𝑦 is 𝑥 ⋅ ℎ! where ℎ! is 

a member of the subgroup 𝐻. And if 𝑦 is related to 𝑧 that means, 𝑧 is a member of left coset of 

𝑦 and 𝑧 = 𝑦 ⋅ ℎ" where ℎ" is a member of my subgroup. 

 

Substituting the value of 𝑦 in the second equation gives 𝑧 = 𝑥 ⋅ ℎ! ⋅ ℎ". Since both ℎ! and ℎ" 

are members of 𝐻, we can apply the closure property and say that ℎ! ⋅ ℎ" = ℎ  is some other 

element of the subgroup H. Hence, 𝑧	 = 	𝑥	 ⋅ ℎ will be a member of my left coset of x. That 

means, 𝑥 is related to 𝑧 as well. So that shows my relation 𝑅 is transitive as well. 

(Refer Slide Time: 36:32) 

 
So, now, given the definitions of cosets we will give a very nice theorem which we call 

Lagrange’s theorem which will be useful later on. The Lagrange’s theorem in the context of 

group is the following. If you are given a finite group whose order is 𝑛, namely there are 𝑛 
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elements in the group 𝐺. And say 𝐻 is a subgroup, of course, it has to be finite because my 

parent group is finite. 

 

And say the order of the subgroup is 𝑚. Namely, there are 𝑚 number of elements in my 

subgroup 𝐻. Then the Lagrange’s theorem says that 𝑚 divides 𝑛. Why this theorem is for finite 

group? Because if it is not for finite group, I cannot say anything how many elements are there 

in 𝐺 and my 𝐻 also could be an infinite subgroup. So, basically Lagrange’s theorem says that, 

the order of any subgroup divides the order of parent group if your parent group is finite order. 

 

And the proof is very simple assuming that we have already proved our result regarding our 

cosets. Now, since my subgroup size is 𝑚; that means, the cardinality of 𝐻 is 𝑚, the size of 

each coset will be 𝑚. Because, we proved already that the size of each left coset is same as the 

size of your subgroup and since the size of subgroup is 𝑚, the size of each coset will be 𝑚 and 

we had already proved that the cosets constitute a partition as per the relation that I have defined 

here. 

 

So, now, if there are 𝑘 distinct cosets which you can form all together. So, your 𝐺 will have 𝑛 

number of elements; so, called elements as 𝑔!, 𝑔", … , 𝑔2 and you may form the coset 

𝑔!𝐻, 𝑔"𝐻,… , 𝑔2𝐻. It may not be the case that you obtain 𝑛 distinct cosets, some of them may 

be repeated, but they might be same or it might be the case and or otherwise the 2 cosets will 

be completely different. 

 

So, imagine that all together they constitute 𝑘 distinct cosets. Now, in each coset you have 𝑚 

number of elements and if you have all together 𝑘 distinct cosets, since the union of all the 

coset, distinct cosets, will give you the parent group 𝐺, I can say that 𝑘𝑚 is nothing but the 

number of elements in your parent group 𝑛. And that shows that 𝑚 divides 𝑛. A very simple 

proof. There are other ways of proving the Lagrange’s theorem but they might be slightly long. 

 

But once we have proved the general result regarding cosets, the proof is just 2 line argument 

here. Now, let us see some interesting conclusions of this theorem. So, imagine if your G is a 

finite group of order 𝑛 and if you take any element from the group then the order of that element 

𝐺 will divide order of the group namely 𝑛. The second conclusion here is that 𝑔2 is also the 

identity element. 
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And the proof again is very simple. So, imagine we construct a cyclic subgroup 𝐻 by taking 

different powers of the element 𝑔. Why it will be cyclic subgroup? We already proved few 

slides back that if you take any group element from the parent group and compute different 

powers of that element, it will give you a cyclic group. So, imagine I constitute the subgroup 

𝐻 by taking different powers of the element 𝑔, that will give me a subgroup. And say the order 

of the element is 𝑔 is 𝑚. 

 

Well, if the order of the element 𝑔 is 𝑚 then the number of elements in the subgroup 𝐻 that I 

have constructed will also be 𝑚. Because I have constructed 𝐻 by computing 𝑔* up to 𝑔&–!; 

that is my cyclic subgroup that I have constructed. But what exactly the Lagrange’s theorem 

says? If you have finite group and a subgroup of that then the order of the subgroup always 

divides the order of the parent group. 

 

So, what is the order of the subgroup? I have 𝑚. And what is the order of the parent group? I 

have 𝑛. So, from the Lagrange’s theorem I obtain that 𝑛 is completely divisible by 𝑚. And that 

shows that the order of my element 𝑔 has to divide the order of the bigger group. Now, the 

order of the element 𝑔 might be 𝑚 where 𝑚 can be strictly less than 𝑛 but the second result 

that we want to prove here is that, 𝑔 to the power order of the group will give you the identity 

element. 

 

And once we have derived this fact it is very easy to prove that. So, let us see what exactly we 

will obtain if I compute 𝑔2. 𝑔2 will be nothing but 𝑔4& and since the order of the element is 

𝑔 is 𝑚, I note that 𝑔& will give me the identity element and identity element raised to power 

𝑘 will give me the identity element. So that is an implication of the Lagrange theorem. 

 

And if I apply this implication in the context of a prime order group, namely a group where I 

have prime number of elements then I get the fact that it will be cyclic and every element except 

the identity element will be a generator for that cyclic group, if my group 𝐺 is a prime order. 

Why so? Because if my group 𝐺 has prime number of elements, and if I consider and arbitrary 

element 𝑥 and try to generate the subgroup through that element 𝑥, the order of that subgroup 

has to divide the order of the parent group. 
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But the parent group has order 𝑝 which is a prime value and the only divisors of a prime number 

are 1 or 𝑝 but since the 𝑥 that I have chosen is not the identity element, the only option that is 

left is the order of the 𝑥 is the prime number 𝑝 itself. And if the order of the 𝑥 is the prime 

number 𝑝 itself that means the subgroup that I have generated through 𝑥 is nothing but the 

whole parent group. 

 

Because if the order of 𝑥 is prime number 𝑝 and the parent groups order is also prime 𝑝 that 

means, through 𝑥 I have generated all the 𝑝 distinct elements of my group. So that is a very 

powerful result that means, if you want a cyclic group where you do not want to worry about 

searching for the generators then try for a group which has a prime order. 

(Refer Slide Time: 43:56) 

 
So, with that I end today’s lecture. These are the references just to summarize in today’s lecture. 

We discussed about left cosets, right cosets, we derived several properties for the cosets. And 

we also discussed about subgroups. We gave a characterization for subgroup. And we also 

discussed properties regarding the order of the subgroup, namely, the Lagrange’s theorem. 

Thank you. 
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