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Hello everyone, welcome to this lecture, so the plan for this lecture is as follows: in this 

lecture, we will discuss about Fermat's little theorem, and we will see its application to 

primality testing, and we will also discuss about Carmichael numbers. 
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So let us begin with Fermat's little theorem so, the theorem says that, if p is a prime number 

and if a is an integer such that p does not divide a. So, this notation means does not divide : ∤, 

in other words, a is co-prime to p, then the theorem says that a
p - 1

 ≡ 1 modulo p. And this is 



true for every integer a, which is co-prime to p. So, that is the Fermat's little theorem 

attributed to Fermat. 

 

Why it is called little theorem because we want to distinguish this theorem from another 

interesting theorem attributed to Fermat's, which is also called as Fermat's last theorem. And 

this theorem also forms the basis for an interesting primality testing that we will see later on. 

So, this is the theorem statement but before going into the proof of the theorem statement, let 

us see an interesting corollary of this theorem statement.  

 

So assume for the moment that this theorem statement is true, let us see an interesting 

corollary. So, the corollary is a
p
 ≡ a modulo p for every integer a and prime p. And we can 

divide the proof into cases so, the corollary is for every integer it is not only for those integers 

a which are co-prime to p, whereas the Fermat's little theorem is strictly for those integers a 

which are co-prime to p. So, let us see the proof of the corollary first, so, we have 2 cases 

depending upon whether p│a or not.  

 

So, the first case is when p│a so, if you have an integer a such that p│a, then since a is 

divisible by p any multiple of a is also divisible by p. So hence, a
p
 is completely divisible by 

p. And that means I can say that a
p
 gives you the same remainder, which a gives you on 

getting divided by p namely the remainder 0 because both a as well as a
p
 will be completely 

divisible by p if a is divisible by p. So that proves that the corollary is true for case 1. 

 

Whereas if p ∤ a, then we can apply the Fermat's little theorem so if p ∤ a then that means the 

premise of the Fermat's little theorem is satisfied. That means I can say that a
p - 1

 ≡ 1 modulo 

p. And if that is the case, then if I multiply both sides by a, I get the conclusion that a
p
 ≡ a 

modulo p so that proves that the corollary is true even for the case when a is not divisible by 

p.  

(Refer Slide Time: 03:58) 



 
So now let us come back to Fermat's little theorem and we prove it. So, we want to prove that 

you take any integer a, which is co-prime to p, then a
p - 1

 ≡ 1 modulo p that is what we want to 

prove. So the proof is as follows: so, you consider the first p - 1 multiples of a, namely, 1 

times a, 2 times a, 3 times a like that p - 1 times a, all these are different multiples of a. The 

claim is that all these multiples of a namely 1 times a, 2 times a, 3 times a, p - 1 times a when 

getting divided by p will give you distinct, non 0 remainders.  

 

That means whatever is the remainder that you will obtain, by dividing 1 time a by p call that 

remainder is r1 whatever remainder you obtained by dividing 2 times a by p call that 

remainder as r2 and like that whatever remainder you obtain by dividing p - 1 times a by p 

called that remainder as rp-1, the claim is that none of these remainders are same and of 

course, all of them are non 0. So, the proof will be by contradiction, we will now prove this 

claim by contradiction.  

 

So, imagine you have 2 different multiples of a say r times and s times a where r and s 

belongs to the set 1 to p - 1 such that the remainder which you obtain by dividing r times a on 

dividing by p and the remainder that you obtain upon dividing s times a by p are same. The 

claim says that is not the case, but assume on contrary that you have 2 such different 

multiples, which gives you the same remainder. 

 

Now, if r times a and s times a are congruent modulo p, then as per the definition of 

congruence, I can say that r times a - s times a is completely divisible by p: (p│( ra – sa)) . 

That means p divides r - s times a:  (p│ a(r - s) ); that implies that p has to divide r – s :  (p │ 



(r – s) ), because as per the premise of my theorem statement GCD(p, a) is 1 as a is co-prime 

to p. So, this is the premise of my theorem statement you have a number p which is prime and 

p does not divide a that means the GCD (p, a) =  1.  

 

So now, you can recall one of the properties of divisibility that we had discussed in earlier 

lecture. If p is a prime, which divides the product of 2 numbers and one of the numbers in a 

product is not divisible by the prime that means the other number has to be definitely 

divisible by the prime. So you have 2 numbers,  A  B, so you can imagine r - s as  A and  a as 

B. So, we have p divides the product of  A and B, but p does not divide  B. So that is possible 

only if p divides  A,  A is r - s. 

 

So, we get the conclusion that p has to divide r - s or in other words, r and s are congruent 

modulo p. But if r and s are congruent modulo p and since both r and s are strictly less than p, 

then the only way it is possible that r is congruent to s modulo p is that r is exactly equal to s. 

Of course, if r and s would have been outside the range 1 to p - 1 then it might be possible 

that even though the value of r and value of s are different, but still they are congruent 

modulo p. 

 

But remember that r and s are strictly less than p and if they are congruent modulo p, then 

that is possible only when r = s. So, we arrive at a contradiction because we assumed that r 

and s were different. So, r times a and s times a were different multiples and that means r was 

different from s that was our assumption, but we come to the conclusion that r = s. So, that 

means, whatever contrary statement we assumed is incorrect that means this claim is true so, 

we have proved this claim.  
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Now, my claim is that if you multiply these p - 1 multiples of a, so, you have 1 time a, 2 

times a, 3 times a, p - 1 times a if you multiply them you will get one number. If you divide 

that number by p you will get the same remainder which you will obtain if you multiply the 

numbers 1, 2, 3 up to p - 1 and then divide the resultant value by p. That means call the value 

on your left hand side as X, call the value on your right hand side is Y I am saying here that 

X ≡ Y.  

 

And this follows from your claim that we had just proved this is because as per claim the 

various remainders which you obtained by dividing these p - 1 distinct multiples of a, call 

them as r1, r2, rp-1, we have proved that all these remainders are non 0 and they are distinct. 

That is what the claim we have just proved and all these remainders r1, r2, rp-1 they are the 

remainders obtained by dividing a value by p.  

 

So, the possible remainders that you can obtain could be 0 to p - 1. But 0 is not a possible 

remainder as per the claim statement we are not going to get a 0 remainder. That means the 

only remainders that I can obtain are 1 to p - 1 and at the same time, they are distinct. So that 

means definitely, out of this p - 1 remainders, one of the remainders is definitely 1, out of this 

p - 1 remainders that we are getting one of the remainders is definitely 2, out of this p - 1 

remainders that we are getting one of the remainders is definitely p - 1.  

 

So, that means, remember, the law of modular arithmetic says that if you want to multiply 

many numbers and then want to take modulo, you want to compute the remainder, then that is 

equivalent to saying that you reduce each of the numbers first modulo the same modulus and 



then multiply them. So I can say that the value of X modulo p will be the same as multiplying 

the remainders r1, r2, rp-1 and then taking modulo p.  

 

And I know that r1, r2, rp-1 are the values 1 to p - 1 in some order; r1 may not be exactly 1, r2 

may not be exactly 2, rp -1 may not be exactly p - 1. But I know that the remainders 1 to p - 1 

occurs exactly once among these p - 1 remainders. So that is why I can say that the product of 

these p - 1 remainders is congruent to the product of 1, 2, 3 up to p - 1 modulo p, which is Y.  

 

So that means now I can say the following, so if you see the expression X the value a is 

appearing p - 1 times, so I can take out a
p - 1

 outside. And then if I collect the product of 1, 2, 

up to p - 1, that will be (p – 1)!. Whereas in my right hand side, namely Y, I have (p – 1)!, 

because that is a product of 1, 2 up to p - 1. So that means I can say that a
p - 1

 times (p – 1)! ≡ 

(p – 1)! modulo p.  

 

Now, what I will do is the following, let me multiply both sides of this equation by the 

multiplicative inverse of (p – 1)! modulo p. Now, you might be wondering, what is the 

guarantee that the multiplicative inverse of (p – 1)! modulo p exists. So recall we discussed in 

one of our earlier lectures, that multiplicative inverse of a value modulo some modulus N 

exists if and only if that value is co-prime to the modulus. So that means (p – 1)! 

multiplicative inverse will exist only if this condition is true.  

 

Because your modulus is p, and this is the value X, whose inverse you want to find out; let us 

not call it X, because I have already used X for something else so call this value as Z. So my 

claim is that this is the value Z which is (p – 1)! is indeed co-prime to n. And it is very simple 

to prove that I am not going to prove that for you I leave that as exercise for you. So, since 

the multiplicative inverse of (p – 1)! exist, if I multiply both sides by the multiplicative 

inverse of (p – 1)!, then this (p – 1)!, when multiplied by its multiplicative inverse will give 

me 1 and 1 multiplied by a
p - 1

 will give me a
p - 1

 in the left hand side whereas in the right hand 

side, when I multiply (p – 1)! with its multiplicative inverse, I get 1. So I get the conclusion 

that a
p - 1

 ≡ 1 modulo p, which proves my Fermat's little theorem.  

(Refer Slide Time: 14:50) 



 
So this is the Fermat's little theorem, which says that every integer a which is co-prime to p 

satisfies the condition that a
p - 1

 ≡ 1 modulo p. And I have a corollary of this theorem that you 

take any integer a which need not be co-prime to a, it satisfies the property that a
p
 ≡ a modulo 

p. So, now let us see some of the applications of this theorem it has this Fermat's little 

theorem has got tremendous applications.  

 

So let us see how exactly we can use this theorem to compute the value of some expressions 

modulo some modulus which is a prime number. So, your modulo modulus p here is prime 

and say I want to compute the value of 7
222

 modulo 11 of course, you can write down a 

computer program and compute the value of 7
222

 modulo 11. But I want to do it very quickly 

using my paper and pen and using Fermat's little theorem.  

 

So what I can do here is the following, if I substitute a = 7 and p = 11 in Fermat's little 

theorem, then I see that the condition of the Fermat's little theorem is satisfied because indeed 

GCD(7, 11) is 1, namely 7 is co-prime to 11 because the GCD(7, 11)  is 1 and hence, I can 

say that 7
10

 ≡ 1 modulo 11 that means, if you divide 7
10

 by 11, you will get a remainder 1. 

 

Now I can rewrite 7
222

 as follows, I can treat it as 7
10

 modulo 11 multiplied by 7
10

 modulo 11 

multiplied by 7
10

 modulo 11 and then finally 7
2
 modulo 11 and then everything modulo 11. 

So, basically what I am doing here is that 222 can be rewritten as 220 + 2 and now, this 220 

can be written as 22 times 10 and then you have 2 anyhow, so this 7
222

 I have splitted it into 

many blocks of 7
10

, 7
10

, 7
10

 namely 22 blocks and then finally I will be left with 7
2
.  

 



And then since I have to do or I have to compute everything modulo 11 I can take modulo 11 

with each block of 7
10

. Again this comes from your rules of modular arithmetic. Now, I know 

that 7
10

 modulo 11 will give me 1 so, each block of 7
10

 modulo 11 will give me 1, 1, 1, 1, 1 

that means I will get 1 multiplied with itself 22 times which will be giving me again 1 and 

then that will be multiplied with 7
2
 modulo 11 and 7

2
 modulo 11 is 5 and then I can say that 1 

into 5 is 5, 5 modulo 11 is 5.  

 

So, you can now see that I do not need to write any complicated program or I do not need to 

do any sophisticated computation I can simply apply the Fermat's little theorem and so 

conveniently I can compute the value of 7
222

 modulo 11.  
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Now, as I said at the beginning of the lecture Fermat's little theorem also forms the basis of 

very interesting primality testing algorithm. We would not be seeing the full primality testing 

algorithm, but we will see a part of it. So, this is the statement of the Fermat's little theorem, 

which says that if you have a number p which is prime and an integer a; if you have an 

integer a which is co-prime to p, then for every such integer a, the value of a
p - 1

 ≡ 1 modulo 

p. 

 

So now the question is can I use the theorems statement to check whether a given number n is 

prime or not, of course, the number n has to be odd, because if I give you n = 2 you can easily 

verify, you can easily conclude that it is a prime number because that is the only even prime 

number. But other than that if at all n is a prime number it has to be odd. So now, you are 



given an odd prime number, it might be an arbitrary large prime number and you want to 

utilize Fermat's little theorem to verify whether the given number is prime or not. 

 

So the idea here will be that I will pick some arbitrary integer b such that b is co-prime to n 

and then I will check whether b
n - 1

 ≡ 1 modulo n or not, I do not know whether n is prime or 

composite, I have to check. So what I am saying is to verify whether the given n is prime, 

pick some random integer b, which is co-prime to n. And then check whether for the B that 

you have chosen b
n - 1

 ≡ 1 modulo the given n. Now, you will get either the answer yes or no. 

 

If you see that b
n - 1

 ≢ 1 modulo and then you can simply declare that the given number n is 

composite, because that comes from the contrapositive of your Fermat's theorem. So the 

Fermat's theorem states that if you have a number a which is co-prime to p. And if p would 

have been prime, and a
p - 1

 will give you 1 modulo p, so the contrapositive of that will be if 

you have a number a which is co-prime to p,  and if a
p - 1

 ≢ 1 modulo p, then that implies that 

p is not prime, even though a is co-prime to p, that is the contrapositive. And that is what 

precisely we are using here. But what if b
n - 1

 ≡ 1 modulo n can I declare my n to be a prime 

number, that is the problem with this primality testing. Even if b
n - 1

 ≡ 1 modulo the given n, 

you cannot necessarily declare your number n to be a prime number. 

 

So here is a counter example, so imagine you are given n is 341, which is an odd number, and 

which is not a prime, it is a composite number because the number 341 has factors 11, 31. 

Now suppose when you run this primality testing algorithm, for n = 341, you pick your b to 

be 2. So indeed, GCD of 2 and 341 is 1. And it also turns out that for the given b that you 

have chosen arbitrarily, b
n - 1

 ≡ 1 modulo the same n. 

 

So even though this condition is true, the condition of Fermat's little theorem is true, you 

cannot declare your n to be prime because the value n = 341 is indeed composite. So that is 

why this primality testing algorithm is not a robust algorithm; robust in the sense, you cannot 

trust the answer. If the answer is composite yes you can trust it. But you cannot trust answer 

that n is prime. It may be the case that even though your value n is not a prime number, the 

condition for Fermat's little theorem is satisfied.  

 

So now, you might be wondering that why cannot I do the following? It might be possible 

that I have chosen a bad b with respect to my given composite number n what if I choose a 



good b, which is coprime to n, and for which the Fermat's little theorem condition fails. In 

that case, I can declare that my n is not a prime number why cannot I do that.  
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However, it turns out that even if you do so, your primality testing algorithm will fail because 

there are some very interesting numbers which are called as pseudo primes and Carmichael 

numbers, which will cause your primality testing algorithm to fail for the case when your n is 

composite, but you are not able to detect that. So let us first define pseudo primes and then 

we will use it to define Carmichael numbers. So, imagine you are given positive integers b 

and n and say your n is composite.  

 

Now, if it turns out that b
n - 1

 ≡ 1 modulo n, then I will call my n to be a pseudo prime to the 

base b. Why I am calling it pseudo prime, because it is a false prime. In the sense even 

though my n is composite, it satisfies the condition of Fermat's little theorem with respect to 

the integer b. That is why I am calling it base b because b is appearing in the base and n - 1 is 

appearing in the exponent.  

 

So for instance, the counter example that we just saw in the previous slide shows us that a 

value n = 341 is a pseudo prime it is a false prime because it is actually a composite number, 

but still it satisfies the condition of your Fermat's little theorem with respect to your base b = 

2. So, now as I said earlier, you might try to run the primality testing algorithm with respect 

to several bases for a given number n with a hope that indeed if your value n is composite 

you hit upon some base for which the condition or the conclusion of Fermat's little theorem is 

not satisfied. So, what we are doing here is we are now proposing a modified primality 



testing algorithm where instead of picking 1 base b, which we had done earlier. We are now 

randomly picking many bases say m number of bases b1 to bm each of which is co-prime to 

your given number n you want to check whether the number n is prime or composite.  

 

And now, you check whether the condition of Fermat's little theorem holds for each of the bi, 

and given n namely you check whether b1
n – 1

 ≡ 1 or not b2
n - 1

 ≡ 1 or not and bm
n - 1

 ≡ 1 or not. 

Even if for one of the basis bi, the condition of the Fermat's little theorem does not hold, you 

can very confidently declare that your number n is composite. 

 

But what it so happened that for each of the m bases which you have randomly chosen, the 

condition of the Fermat's little theorem is satisfied, can you declare your given n to be a 

prime? Unfortunately, we cannot do that and there are some wonderful numbers very 

interesting numbers which are called as Carmichael numbers, which will actually cause your 

modified primality testing algorithm to fail.  

 

So, what exactly are Carmichael numbers, so, they are composite numbers, which are pseudo 

primes with respect to every base that you can think of. So, you pick any base b or any 

integer b, which is co-prime to your number n still, the condition of Fermat's little theorem 

will be satisfied; that means b
n - 1

 ≡ 1 modulo n, it does not matter whether your base b is b1, 

b2 you pick any base, that base power n - 1 will be congruent to 1 modulo n.  

 

Namely, your n will be a pseudo prime with respect to every base that you can think of. So 

that tells you that if you now input a number n, which is a Carmichael number, then definitely 

this primality testing algorithm will fail because it does not matter how many bases you pick, 

each of them may be co-prime to your n fine, but still, this condition will hold. And then you 

will be in a dilemma whether I should safely declare n to be a prime or not.  

 

If you declare n to be prime, then that is a false conclusion because actually your number n is 

composite. So that is why primality testing algorithm based on Fermat's little theorem is not a 

fool proof test. And we need to make additional tests in the modified primality testing 

algorithm to get a fool proof primality testing algorithm whose details I am not going to 

discuss. 
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So now, you might be wondering, do Carmichael numbers indeed exist? And if they exist, are 

they finite? Or are they infinite in number? So, indeed, it turns out that we have lots of 

Carmichael numbers. In fact, the study of Carmichael numbers itself is a very interesting 

research topic in number theory. So, let me give you an example of a Carmichael number. So, 

my claim is that 561 is a Carmichael number. So, you can see that 561 is not a prime number.  

Because I have written down its prime power factorization, namely, you have 3 factors p1, p2 

and p3 : (3, 11, 17) for the value n = 561. Now, I want to prove that the value 561 is indeed a 

Carmichael number for that I have to prove that it is a pseudo prime with respect to every 

base, you take, think of any base b, which is co-prime to your n. I will show that b
n - 1

 ≡ 1. So 

that is this is my goal I am not focusing on the value of the base b, the only thing that I know 

is that it is co-prime to your n namely 561. 

 

So, how do I prove that b
560

 will be indeed 1 so, since I know that the GCD of b and 561 is 1, 

I can imply that individually b is co-prime to each of the prime factors of my n. So, b will be 

co-prime to 3, b will be co-prime to 11 and b will be co-prime to 17 it is very easy to prove 

this implication, because, if any of these implications is false say for instance, if GCD of b 

and 3 is not 1 that means, there is some common factor for b as well as 3.  

 

So, then I can come to a contradiction that GCD of b and 561 is not 1, that is as simple as 

that. Now, since b is co-prime to 3, b is co-prime to 11 and b is co-prime to 17 I can do the 

following: I can rewrite b
560

 and my goal was to show that b
560 

≡ 1,  so b
560

 I can rewrite as b
2
 

and then whole raise to power 280 and b
560

 ≡ 1 modulo 3 why so? 

 



Because b
560

 modulo 3 is same as b
2
 whole raise to power 280 modulo 3, but I know that 

since b is co-prime to 3, I can apply the condition of Fermat's little theorem, so, I have I can 

treat 3 to be my prime p and I can treat b to be a number which is co-prime to 3. So, that 

gives me that b
3 - 1

 namely b
2
 ≡ 1 modulo 3. So, now if b

2
 gives me the remainder 1 modulo 3, 

then b
560

 will give me this much remainder.  

 

So, I have basically divided b
560

 into several blocks of b
2
, b

2
, b

2
 namely 280 blocks and each 

block of b
2
 gives me the remainder 1 modulo 3. So, basically, I get 1 multiplied to itself 280 

times which will be 1 modulo 3. In the same way b
560

 ≡ 1 modulo 11 and this is again 

because 11 is a prime number and b is co-prime to 11.  

 

So, I can say that from Fermat's little theorem b
11 - 1

 which is b
10

 ≡ 1 modulo 11 and hence 

b
560

 can be rewritten as 56 blocks of b
10

 modulo 11 each block of b
10

 modulo 11 will give me 

1 as the remainder and 1 multiplied to itself 56 times will give me the remainder 1 and in the 

same way b
560

 ≡ 1 modulo 17. 

 

Because again I can apply the Fermat's little theorem here 17 is a prime number b is co-prime 

to 17. So, from Fermat's little theorem b
17 - 1

  namely b
16

 will be co-prime to 1 modulo 17. So, 

I can rewrite b
560

 as 35 blocks of b
16

 modulo 17 each block of b
16

 modulo 17 will give me 

remainder 1 and hence I will get 1 multiplied to itself 35 times which will give me the 

remainder 17. 

 

So that means b
560

 ≡ 1 modulo 3, b
560

 ≡ 1 modulo 11 and b
560

 ≡ 1 modulo 17. So recall the 

CRT helping lemma so let me rewrite the CRT helping lemma so there you had n modulus. 

Where n number of modulus, which are pairwise co-prime, and you have 2 values a and b, 

which are congruent to each other, with respect to all the modulus, so you have a ≡ b modulo 

m1, a ≡ b modulo m2 and like that, a ≡ b modulo mn. 

 

And it is given that all these n modulus, they are pairwise co-prime, then the conclusion is 

that a ≡ b even modulo the bigger modulus, which is the product of all the individual 

modulus so, that was the CRT helping lemma. So, now I can treat my  A to be b
560

 I can treat 

my  B to be 1 and I have 3 modulus here, m1 being 3, m2 being 11 and m3 being 17.  

 



So, A ≡ B modulo m1, A ≡ B modulo m2, A ≡ B modulo m3 and hence, I can say that A ≡ B 

modulo the product of m1, m2, m3. The product of m1, m2, m3 is nothing but 561. A is anyhow 

b
560

 and B is 1. So, I have shown that b
560

 ≡ 1 modulo 561 without even knowing the value of 

b, so, b was an arbitrarily chosen base such that it was co-prime to your number n. So, that 

shows that the value 561 is indeed a Carmichael number. 
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So, that brings me to the end of today's lecture and with that I also finish my discussion 

regarding the number theory. As I said earlier, that number theory in itself is a very 

interesting subject and we can have a full-fledged course just on number theory. But we want 

to get just a flavour of number theory that is required in the context of discrete maths and 

computer science. Thank you. 


