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Hello everyone, welcome to this lecture, so, in this lecture we will continue our discussion 

regarding solving linear congruences using CRT. And specifically we will focus on the 

uniqueness part of the solution. So, we want to prove that there exists a unique solution in the 

range 0 to M - 1 satisfying the system of linear congruence.  
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So, we start with some basic properties of divisibility, so the first property is the following 

imagine you are given 3 positive integers a, b, c and it is given to you that a divides the 

product of b and c but a is co-prime to b. Then I can conclude that a divides c that means, if a 



divides the product of b and c but a is co prime to b then it must be the case that a divides c 

and the proof is as follows.  

 

So, we know that as per the Bezout’s theorem, we have integer linear combiners s and t, such 

that I can write the GCD(a,b) which is 1 as per my premise as s times a + b times t. Now, if I 

multiply both the sides of this equation by c, I get this equation: 𝑎𝑠𝑐 + 𝑏𝑡𝑐 = 𝑐, now I know 

that it is given to me a divides the product of b and c and hence it divides any multiple of b 

times c. So, it divides t times bc as well and any how a divides any multiple of a, so it will 

divide s times c times a. 

 

And now if I know that a divides 2 numbers, it divides the summation of those 2 numbers as 

well, but the summation of the 2 numbers that I am taking here is nothing but the value c. 

That is the proof of this fact, very simple fact but useful. 
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Now we prove another property which we often call as the Euclid’s Lemma, which is also 

very useful while proving the uniqueness part of the CRT theorem. So, the Euclid’s Lemma, 

is as follows, it says that if p is a prime number and if it is given that p divides the product of 

n numbers. Then definitely, it has to be the case that p divides at least one of those n 

numbers, it cannot be the case that p is a prime number and p does not divide a1 it does not 

divide a2 it does not divide an.  

 

But still it automatically divides the product of those n numbers; and there are again multiple 

ways to prove this. I will prove it using induction because it is convenient to prove it using 



induction, since it is a universally quantified statement for all. So, the base case will be for n 

= 1 and which is trivial, because if it is given to you that p divides a1 that means p divides a1. 

Now assume that the inductive hypothesis is true that means assume that if p divides the 

product of k numbers where p is a prime, then there is at least one of those k numbers which 

is divisible by p, I do not know which one but it is there.  Assume this statement is true for 

every k and every k numbers. Now let us do the inductive step and take a new number which 

is the product of k + 1 number and imagine you have a prime number p which divides the 

product of those k + 1 number. My goal is to show that there is at least 1 number out of this k 

+ 1 number which is completely divisible by p. 

 

So, the first thing to observe here is that since p is a prime number, what can I say about the 

greatest common divisor of p and this bigger number.  So let me call this bigger number as X, 

so what can I say about the GCD(p, X)? The GCD will be either one or p because the only 

divisor of p are 1 and the number p itself there cannot be any other third value of GCD. So, 

there are 2 possible cases so let us analyse those 2 cases.  

 

Now if the GCD of p and the product of the first k numbers is 1, then from the previous result 

means in the previous slide I showed that if a divides bc and if GCD(a,b) is 1, then in the 

previous slide I showed that it has to be the case that a divides c. So, my X is the product of 

first k numbers and the k + 1 th number; so, I can treat my X as a1 to ak as product,. so, this is 

my say A and I also have ak + 1 also in the product that is B.  So, I know that p divides X that 

means, p divides the product of A and B and I am in the case where p is co-prime to A 

because this product of the first k terms I am calling it as A then from the previous result, I 

know that p has to divide B and B is nothing but ak + 1. So, that proves my inductive step 

because in the inductive step I have to show that there exists at least one number which are 

involved in the product here in the number X which is completely divisible by p. 

 

And I have shown the existence of one such number this is when the GCD(p,A) = 1. Now, 

consider the case when the GCD(p, A) = p and then in that case, if the GCD(p, A) =   p then p 

of course divides A and if p divides A and A is a product of k numbers and since p is a prime 

number, I can use my inductive hypothesis and argue that there exists at least one number 

which are involved in the computation of A which is completely divisible by p that means 

either p divides a1 or p divides a2 or p divides ak. So, that proves my Euclid’s Lemma, 

important property which will be again useful.  
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So now, coming back to the uniqueness proof part for the Chinese remainder theorem in the 

last lecture, we showed that there exists at least one solution in the range 0 to M – 1. How do 

I prove that there is no other solution possible satisfying the same system of linear 

congruences and which is also in the range 0 to M - 1, we have to refute the existence of 

second solution.  
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So, again we will take the help of a helping lemma and this helping lemma will be useful 

later as well. So, what this helping lemma says is the following: imagine you are given n 

modulus which are pairwise relatively prime that means, you take any pair of modulus mi and 

mj they are co-prime to each other. And suppose you know that you are given 2 numbers a 

and b which are congruent with respect to all the n individual modulus. 

 



It means they are congruent with respect to modulo m1, they are congruent with respect to 

modulo m2, and they are congruent with respect to modulo m3 and so on. Then, the claim 

here is that the same 2 numbers a and b are congruent with respect to the bigger modulus M, 

which is the product of all the n modulus and again there are multiple ways to prove this, let 

us follow the following strategy.  

 

So, as per the fundamental theorem, I know that this bigger modulus M must be having a 

unique prime factorization, that means, I can express this bigger modulus M as product of 

powers of prime. So, let those powers e1, e2, eq and so on. Now, my goal is to show the 

following, in my proof I will show that if I take the prime power factorization of a - b. So, a - 

b also will be a number and it will have a prime power factorization.  

 

So, I have to select the prime power factorization of a – b be p1 
e1’

, p2 
e2’

, and like that pq 
eq
’ 

and so on. So, what I want to show is that each of the prime factors, which are involved in the 

prime factorization of M, they are also involved in the prime power factorization of a - b and 

with at least the same individual powers with which they were involved in the prime 

factorization of M.  

 

So, what I am trying to say here is the following: say for instance, if my M was say 2
3
.3

1
.5

6
 

and so on. Suppose these are the various powers of primes which are involved in the prime 

power factorization of M, my goal will be to show that if I consider a - b, then the same prime 

factor 2 is involved at least 3 or more than 3 times that means it will be either greater than or 

equal to 3 power it is must that means 2 should have 3 or more power appearing in the prime 

factorization of a - b.  

 

Similarly, the factor 3 should appear with the power at least 1, the next prime factor 5 should 

appear with at least power 6 and so on. If I show this, then that shows that a - b is completely 

divisible by M; if I show this then this will imply that a - b is divisible by M. And that is what 

precisely I want to show I want to show a is congruent to b modulo M. And remember, an 

equivalent definition of congruence is that if a is congruent to b modulo m then that also 

implies a - b is completely divisible by M.  

 

So, if I can show that each of the prime factors, which are involved in the prime factorization 

of M are also involved in the prime factorization of a - b and with at least the same powers 



with which they were appearing in the prime factorization of M, that means, a - b is 

completely divisible by M and that is what the proof strategy will be.  
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So, let us consider an arbitrary prime factor of the bigger modulo M and suppose it is 

appearing with power e in the prime power factorization that means so, M = 2
e1

, 3
e2

 and so on 

and some p
e
 so on. So, I am taking an arbitrary prime which is appearing with some power in 

the prime power factorization of M, I have to show that the same power, at least, is also 

present in the prime power factorization of a - b as well.  

 

Now, since p is occurring with power e in the prime power factorization of M, that means I 

can definitely say that p divides the product of m1 to mn because M involves a prime power of 

the form p
e
 in its prime power factorization; that means, p has to divide the product of m1 to 

mn which is nothing but M.  That means, this condition holds. And now, I can apply the 

Euclid’s Lemma which I just proved some time back that if p is a prime number and if it 

divides the product of n values, then it has to divide at least one of those n values.  

 

So that means p divides at least one of the small modulus, let us call it as mi and I know that p 

does not divide any other modulus mj, I can conclude that because I know that the various 

modulus m1 to mn they are pairwise prime that means, there cannot be any other modulus mj 

such that p divides that other modulus mj as well because if p divides the other modulus mj as 

well, then I already have the fact that p divides mi and if p divides mj as well, then I will get 

the conclusion there is a common divisor other than 1 namely the prime number p which 

divides both mi and mj and which goes against assumption that my modulus mi and mj are 



pair-wise prime. And if p does not divide any other modulus mj and I know that p
e
 is 

occurring in M in the prime power factorization, then the only way the contribution p
e
 can 

come in the prime power factorization of M is because the p
e
 was contributed in the prime 

power factorization of mi itself so, remember each of the modulus m1, m2, mi, mj, mn will 

individually have their own prime power factorization and I have the product of all this 

modulus which is M, I know that p
e
 is contributed in the prime power factorization of M. So, 

this p
e
 might be accumulated through several modulus m1, m2, mi, mj, mn. 

 

But what I have shown here is that if at all p is coming from mi that means if p’s contribution 

was there in the prime power factorization of mi. Because if p divides mi then p would not be 

appearing in the prime power factorization of m1, p would not be appearing in the prime 

power factorization of m2, p would not be appearing in the prime power factorization of mj, p 

would not be appearing in the prime power factorization of mn and so on. So, that means the 

only way this p
e
 would have been accumulated in the prime power factorization of M is 

because it was present in the prime power factorization of mi itself.  
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So that is a conclusion I have drawn that p

e
 occurs in the prime power factorization of mi. 

Now, remember, the properties of a and b is the following they are congruent with respect to 

every modulus that means a - b is completely divisible by all the n individual modulus. So, a - 

b is also divisible by mi as well because as per my premise a and b they are congruent modulo 

mi as well, the same mi where p
e
 occurs in the prime power factorization.  

 



That means p
e
 occurs in the prime power factorization of mi and if mi divides a - b that means 

p
e
 also occurs in the prime power factorization of a - b as well and that is what precisely I 

wanted to show. So, namely if I substitute p with p1 I have shown that p1
e1

 will also occur in 

the prime power factorization of a - b. If I substitute p with p2 in this whole proof then I 

concluded that at least p2
e2

 also occurs in the prime power factorization of a – b;  p2 can occur 

with higher power as well, but at least p2
e2

 is definitely there that much power is always there 

in the prime power factorization of a - b and so on.  
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So, we have proved the helping lemma now, coming back to the proof of the uniqueness of 

the solution, we wanted to prove that there is a unique solution x in the range 0 to M - 1 

satisfying the system of n linear congruence says, so we will prove it as follows. On contrary 

imagine you have 2 solutions, 2 solutions in the range 0 to M - 1 satisfying this system of 

linear congruences and those solutions be let x and y.  

 

That means x satisfies this system of n linear congruence is that when x is congruent to a1 

modulo m1, x is congruent to a2 modulo m2 and x is congruent to an modulo mn. And 

similarly, since y is also a solution, for the same system of linear congruences, this set of n 

linear congruences will also get satisfied. Now, from the first equation here and the first 

equation here, I get that x is congruent to y modulo mk, or x is congruent to y modulo m1.  

 

Because x - a1 is completely divisible by m1 and y - a1 is completely divisible by m1, then 

what can I say about x - y, if m1 divides x - a1 completely that comes because of the first 

linear congruence here, and this linear congruence tells me that m1 divides y – a1. Then I can 



say that and m1 divides the difference of these 2 numbers as well and the difference of these 2 

numbers will be x - y. 

 

In the same way, I can say that x - y is completely divisible by m2, I can say that x - y is 

completely divisible by mk and x - y is completely divisible by mn. So, I get n congruences 

like, that means x and y are congruent modulo m1, m2, mn and remember that my m1, m2, mn 

they are pairwise relatively prime.  
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So, I can take the help of helping lemma and I can conclude that both x and y are congruent 

modulo M. And since both x and y were in the range 0 to M - 1, that means they were strictly 

less than M, and both of them are congruent, then that is possible only when x = y that shows 

that there exists a unique solution modulo M satisfying your system of linear congruence.  
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So now, let us see an example for Chinese remainder theorem.  So, say we want to find out 

this unknown x satisfying the system of linear congruences : 𝑥 ≡ 2 mod 3, 𝑥 ≡ 3 mod 5, 𝑥 ≡

2 mod 7. So, we will find out the bigger modulus and sum modulus so, the bigger modulus 

will be the product of 3, 5, 7 and you can see your m1 is 3, m2 is 5, m3 is 7 and a1 is 2, a2 is 3 

and a3 is 2. So, my bigger modulus will be 105, M1 will be the product of all the modulus 

except 3, so 35.  M2 will be the product of all the small modulus except 5, and M3 will be the 

product of all the 3 modulus except 7 so, I found M1, M2, M3. Now, my next goal will be to 

find out M1 inverse modulo m1, M2 inverse modulo m2 and M3 inverse modulo m3, which I 

can do by using extended Euclid’s algorithm. So, M1 inverse modulo m1 will be 2 because, 

you can see that your M1 is 35 if you multiply 35 with 2 and then you take small modulo m1 

then you will get answer 1 in the same way M2 inverse modulo m2 is 1 and M3 inverse 

modulo m3 is also 1. So, then as per the Chinese remainder theorem, we will compute the 

value x which is the linear combination of your a1, a2 and a3 and the linear combiners are the 

various m1, m2, m3 and their respective multiplicative inverse multiplied with each other, so 

this will be the value of x = 233 𝑥 ≡ 2 ⋅ 35 ⋅ 2 + 3 ⋅ 21 ⋅ 1 + 2 ⋅ 15 ⋅ 1 mod 105, 𝑥 ≡

233 mod 105.  

 

Now this x will be 233 modulo 105 so, our goal is to find out the unique solutions of course, 

233 is a solution if I take x = 233 you can verify that it satisfies the system of linear equation, 

but we want to find out a unique solution in the range 0 to 104 so, how I can do that I can 

keep on subtracting 105 or equivalently I can directly take 233 modulo 105 because that will 

tell me exact number of times 105 have to be subtracted so that I get a remainder within the 

range 0 to 104, namely 23 which will be a solution for the system of given linear 

congruences. 
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So now, let us see some application of Chinese Remainder Theorem, it has tremendous 

applications, of course in cryptography, but in general it has other applications and our main 

application is when we want to do arithmetic with large values. So, what basically CRT tells 

us that if you are dealing with very big modulus and you want to do arithmetic involving 

those big modulus, then instead of doing operations modulo those big modulus you can do 

operations with small modulus and they will be equivalent, what do I mean by that?  

 

So imagine, you are given n modulus m1 to mn which are relatively prime and you are given a 

bigger modulo M, which is a product of these n modulus. So, consider the set ZM, the set ZM 

is nothing but it has all the integers 0 to M – 1 and you have n number of small sets here, you 

have Zm1 which is nothing but you have all the integers from 0 to m1 - 1, Zm2 has all the 

integers from 0 to m2 - 1 and Zmn has all the integers from 0 to mn – 1, we will later encounter 

these sets again. 

 

Now what Chinese Remainder Theorem basically tells you: it establishes a bijection between 

this bigger set ZM and the Cartesian product of these n sets, what exactly is the bijection? The 

bijection is the following: if you are given a value a here and you want to find out the 

corresponding mapping as per this bijection then the image of a is obtained by computing a 

modulo m1, a modulo m2, a modulo mn that will be the representation of a. 

 

And my claim is that this representation that we have obtained is an injective mapping 

because, if you have 2 different values a and b where a is different from b then definitely 

there will be at least one mi where a modulo mi and b modulo mi will be different because if a 



modulo m1 and b modulo m1 is same, a modulo m2 and b modulo m2 is same, a modulo mi 

and b modulo mi is same and a modulo mn and b modulo mn are same, then since my 

modulus m1 to mn are pairwise relatively prime using the helping lemma that we have just 

proved we come to the conclusion that a and b are also congruent namely, they are same 

because both a and b are in the range 0 to M - 1. So, you cannot have 2 different values a and 

b and at the same time their representations are also same; by the way by representation I 

mean though each value in the range 0 to M - 1 or an element of ZM will be now represented 

by an n tuple.  

 

So, why n tuple because there will be n values which will be treated as the representation of 

a, so, that is an injective mapping and the mapping is surjective as well, because if I give you 

arbitrary values of a1, a2, an where a1 is in the range 0 to m1 - 1, a2 is in the range 0 to m2 - 1 

and an is in the range 0 to mn – 1, then I can find out the corresponding a in the range 0 to M - 

1 whose CRT representation will be a1, a2, an that shows that my mapping is subjective as 

well.  
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So, basically what I can now say is the following, if you are given 2 numbers a and b and 

their corresponding representations; that means, now any operation which you want to do in 

the bigger set modulo the bigger modulus that can be equivalently performed in their smaller 

worlds modulo small modulus, modulo m1, modulo m2, modulo mn. So, what do you have to 

do is you have to focus on the first component of the representation of a and b, they will be in 

this set. 

 



You perform the same operation which you want to perform in the bigger set and do modulo 

the small modulus, you perform the same operation in the second world modulo m2, you 

perform the same operation in the nth world modulo mn and so on and same holds for product 

as well. That means equivalently what it shows is that using CRT any arithmetic operations 

which you want to perform over integers modulo some bigger modulus that is equivalent to 

performing arithmetic over the remainders as well. And this is a very interesting fact which 

we use extensively at least in cryptography. So, for instance, if your, say m1 is; each of this 

modulus is m1, m2, mn are n bit prime numbers then my M is an enormously large value.  

 

Now if I want to do a + b modulo that enormously large modulus then it will be an overkill 

instead, what I am saying is that to perform a + b modulo several small modulus and that will 

be the equivalent representation of whatever remainder you would have obtained by adding a 

and b in the modulo the bigger modulus. So, that gives you a tremendous saving in the 

computation that is involved.  

 

So that makes CRT a very interesting theorem, it has got tremendous application especially in 

cryptography. So, with that I conclude today's lecture, these are the references and just to 

summarize, in this lecture, we continued our discussion on the Chinese Remainder Theorem. 

And we proved that, indeed there exists a unique solution modulo the bigger modulus, 

satisfying the given system of linear congruences. Thank you. 


