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Hello, everyone, welcome to this lecture, the plan for this lecture is as follows: in this lecture, 

we will introduce linear congruences. And we will see 2 methods for solving linear 

congruences one using extended Euclid’s algorithm and another one due to the famous 

Chinese Remainder Theorem or CRT.  
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So, let us start with linear congruences so, in regular algebra, you often come across linear 

equations of the forms a times x = b, that means you are given some real numbers a and b, 

and you have to find out the value of this unknown variable x such that this condition is 



satisfied. And how do we find out the solution for the above equation; by solution of the 

above equation, I mean to find out the value of this unknown x.  

 

And if you know that the value of a is not 0 then I can say that, if you multiply both sides by 

1/a, and 1/a is considered as the inverse of a in your regular algebra, then I say that x = b/a. 

That is a solution for your linear equation here. Now, when I say linear congruence, we are 

more or less in the same situation except that we are in the modular world, that means 

everything is given some modulus. 

 

So, we will be given some a and b and a modulus N and our goal will be to find out x such 

that 𝑎𝑥 ≡ 𝑏 mod 𝑁 and that means x when divided by N and b when divided by N gives the 

same remainder, you have to find out the value of x, or equivalently ax - b is completely 

divisible by N. So, for instance if I say that I am given 6x congruent to 4 modulo 10 and if I 

want to find out the value of x then the possible solutions are x = 4 because if x = 4 then you 

get 24 congruent to 4 modulo 10 which is true. 

 

Because 24 - 4 is completely divisible by 10, If you substitute x = 9, then you get 54 

congruent to 4 modulo 10, which is again true, because 54 - 4 is 50, which is completely 

divisible by 10. And it is not the case that these are the only solutions, you have infinite 

number of solution. That means any number of the form 4 + 10k, where k can be either 

positive or negative will also satisfy this linear congruence.  

 

In the same way, every number of the form 9 + 10k, where k can be either positive or 

negative will also be a solution of this linear congruence. So, that is an interesting thing 

unlike regular algebra, where the solution was just b/a, of course you can also say 2 times b 

over 2 times a is also a solution, 3 times b over 3 times a is also a solution but more or less 

their primitive form is b over a. In the same way, the primitive solutions, primitive in the 

sense the base solutions are 4 and 9. And now you can create infinite number of solutions out 

of these 2 solutions by adding all multiples of 10.  
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So, now let us see how we can solve linear congruences using extended Euclid’s algorithm 

that is our method number one. So, you are given a, b and N, goal is to find out this unknown 

x. Now, as we did for our equation in the linear algebra where we said that divide both sides 

by a provided a is not 0. The question is can we do something similar in the modular world as 

well that is can we say divide both sides by a.  And divide both sides by a by that I mean 

multiplying both sides by multiplicative inverse of a. 

 

And that is possible only if GCD(a, N) is 1. So, remember, in the earlier; in the last lecture, 

we proved that the multiplicative inverse modulo N exists only if the number for which you 

want to find out the inverse is co-prime to your modulus. So, if your number a is co-prime to 

your modulus N, then I know that a
-1

 exists. And hence I can say that multiply both sides by 

the multiplicative inverse. So that is the method of solving linear congruence under this 

restricted condition.  

 

So, if your GCD(a, N) is 1 then by running the extended Euclid’s algorithm, compute the 

multiplicative inverse of a namely b, I stress that it is not 1/a in the modular world it is an 

integer. And now I multiply both the sides of this linear congruence by this a
-1

. So, I will get 

this linear congruence and I know that a into a
-1

 is 1 modulo N and 1 into x modulo N is x. 

So, I get that x is congruence to b
-1

 modulo N that means; I can say that the value of x being 

this plus any multiple of N is a solution for this linear congruence (𝑥 =  𝑏𝑎−1 mod 𝑁 +

 𝑘𝑁).  

 



Because all these values of x minus this value ba
-1

 is completely divisible by a. However, this 

method will work only if your number a is co-prime to your modulus N. What if the number 

a is not co-prime to your modulus N, then we have to follow a slightly different approach 

which is complicated and I am not going to discuss that matter.  
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Instead I will discuss another way of solving linear congruences; in fact, a set of linear 

congruences and this method is often called as the Chinese Remainder Theorem attributed to 

the ancient Chinese but it is also believed that the ancient Indian mathematicians also used 

the same technique for solving a system of linear congruences. So, what exactly we mean by 

system of linear congruences.  

 

So, very often you come across a puzzle of the following form you have an unknown number 

x which is not given to you, but it is given to you that unknown number x has a property that 

when it is divided by 3, it gives you the remainder 2, when divided by 5 it gives you the 

remainder 3 and say when it is divided by 7 it gives you the remainder 2.  Under this 

condition, find out the value of x of course, again you can find out infinite number of x 

satisfying this condition, but what the CRT method says is it gives you at least one x which 

satisfy this condition. 

 

And then from that you can find out the other values of x as well, so the above puzzle, above 

instance of the puzzle can be formulated as a system of linear congruence namely, my goal is 

to find out an unknown x satisfying the linear congruence that it is congruent to 2 modulo 3 it 

is congruent to 3 modulo 5 and it is congruent to 2 modulo 7. And the special property of this 



problem instance is that you are given the value of x modulo various modulus, those 

individual modulus are pairwise co-prime. 
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So, let me now formally state the theorem statement of Chinese remainder theorem and then 

we will prove it. So, you are given n different modulus which are pairwise relatively prime, 

that means, you take any pair of modulus mi and mj they are co-prime to each other. And you 

are given n number of remainders a1 to an. So, you have to find out an unknown x which is 

congruent to a1 modulo the first modulus, it is congruent to a2 modulo the second modulus, it 

is congruent to an modulo the last modulus. 

 

Now, what is the Chinese Remainder Theorem : it says that this system of n linear 

congruence has a unique solution modulo the bigger modulus and what is the bigger modulus 

it is defined to be the product of n modulus. So, in other words, what does it mean unique 

solution by unique solution I mean that there is only one value of x in the range 0 to M-1 

which satisfies simultaneously all the n linear congruences but that does not mean there are 

there is only one solution in this range.  

 

But there can be other solutions as well outside this range, in fact there are other infinite 

number of solutions and what you can say about other solutions: they are obtained by adding 

various multiples of M namely they are congruent to modulo M to this solution x which is in 

the range 0 to M-1. So, we now want to prove the Chinese Remainder theorem and there are 

multiple things which we have to prove, the proof strategy is as follows, we will give the 

construction of one of the solutions in the range 0 to M - 1. 



 

But that does not mean that is a unique solution, remember there are 2 parts of the proof, we 

have to show that there is at least one solution in the range 0 to M - 1 which we will be doing 

in this lecture. And then we also need to show that, that is the only solution you cannot have 

any other solution in the range 0 to M – 1. That we will do in the next lecture. By the way, 

when I say unique solution again and again, I am stressing unique solution modulo M that 

means unique solution in this range, Outside this range if x is a solution, any number of the 

form x + l times m, where l is positive negative will also be a solution of this system of linear 

congruence. But these values, these solutions will be outside the ranges of 0 to M -1. So, do 

not get confused in this term unique solution. 
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So now, let us see how exactly we can find at least one solution that will be the goal of this 

lecture. So, the construction idea of that solution will be as follows: we will define; we will 

try to find out a special linear combination of the N remainders that are given to us. So 

remember, we are given N remainders a1 to an, we will try to express that unknown x which 

we want to find out as a special linear combination of these n remainders namely, we will try 

to find out this special linear combiners c1, c2, cn. 

 

These linear combiners will be special in the sense that if you take the ith  combiner ci and 

reduce ith modulo mi namely mi modulus you will get 1, but if you take the jth combiner and 

try to reduce it modulo any other modulus, you will get 0. So for instance, what I am saying 

is that my combiner c1 will be such that c1 modulo m1 will be 1, but the same linear combiner 

c1 modulo any other modulus will be 0, namely the n - 1 other modulus, all this will be 0. 



 

In the same way your c2 modulo m2 will be 1, but c2 modulo m1, c2 modulo m3, c2 modulo 

m4, c2 modulo mn will be 0. So, that will be the property of the special linear combiners; how 

exactly we find them that is our whole process, but imagine for the moment that it is possible 

to find out this linear combiners. That means, I know how to find out this linear combiners 

such that x is indeed equal to this.  

 

Now, you can see that if I take this value, once I have found c1 c2 cn then I will have this 

exact value, then if I take this RHS and compute RHS modulo m1 then that will be same as a1 

modulo m1 because for all other summands I will be getting c2 modulo m1 , c3 modulo m1 , cn 

modulo m1 and their effect will be 0 0 0 0 0 it will be only c1 times a1 modulo m1 and c1 

modulo m1 is 1, because that will be the property for my linear combiner. And hence, this 

value of x that I have obtained modulo m1 will be indeed a1.  

 

In the same way assuming that I have found c1 c2 cn satisfying these conditions what I can say 

about the x that I have obtained modulo a2, if I do x modulo a2, then it will be equivalent to 

this c2 times a2 modulo m2 because the effect of this term will be 0, the effect of third term 

will be 0, the effect of the nth term will be 0 and so that is the idea here. So, everything falls 

down to how exactly we find this special linear combiners c1 c2 cn satisfying this properties.  
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So, let us see how we find; so, remember, my bigger modulus M is the product of all n 

modulus. Now, I define n number of small sum modulus, so my first sum modulus M1 is the 

product of all the n modulus except the first namely m1, my M2 is the product of all the n 



modulus except m2 and so on. So, in general the sum modulus Mk is the product of all the n 

modulus except the kth modulus.  

 

Now, my claim is that if I take the modulus mk and the modulus Mk then they are co-prime to 

each other and this is true for every k from 1 to n. Now, the proof is very simple assume that 

the GCD of mk and  Mk is not one. So, if your GCD is not one that means, there is another 

common divisor and that will have some prime factor as well because every number has a 

prime factorization.  

 

So, that means, if the GCD is not one, then that means there is at least some common prime 

divisor which divides both mk and Mk. Now, if this prime number p divides this modulus Mk 

then since Mk is the product of n – 1 number of small modulus so, it is the product of m1, m2, 

mk - 1 and mk is missing mk + 1 up to mn it is the product of n - 1  modulus. And I know and I 

am assuming here that p is a divisor of Mk. 

 

p is a divisor of this Mk it has to either divide m1 or it has to either divide m2 or it has to either 

divide mk - 1 or it has to divide either mk + 1 and so on, because if p does not divide any of 

these small modulus m1 m2 mk – 1 mk + 1 mn. Then how in the first place it can divide Mk 

because p is a prime number. So, that means, it has to divide some small modulus call it mj 

and we already know that p divides mk. Now, this mj is definitely different from mk because 

mk is not present in this Mk; it is not present. 

 

So, that means now I have obtained a pair of small modulus mk and mj which are not co-

prime because p is a common divisor of both mk and mj which is a contradiction to the fact 

that the n small modulus which are given to us they are pairwise co-prime, so that is a proof 

of this claim. 
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So, I am retaining this claim here, now, if this small modulus mk is co-prime to this Mk and I 

can say that I can find out the multiplicative inverse of this Mk modulo mk. I am treating mk 

my modulus and Mk as the number so, I am treating it as my a and this is my N and I have 

shown that a is co-prime to N and hence I know that multiplicative inverse of a modulo N 

exists.  

 

So, I know that multiplicative inverse of Mk modulo mk exists and I can find it out using the 

extended Euclid’s algorithm. So, let yk be the multiplicative inverse of  Mk modulo mk. That 

means this property holds that means you multiply yk with Mk and then you take modulo Mk 

you will get the remainder 1, you will get the answer 1.  
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So, these are the various facts here so, this is my Mk and the corresponding multiplicative 

inverse is yk. And this I can find out for every k in the range 1 to n. Now, my claim is that the 



product of this yk and Mk modulo every other modulus except the kth modulus is 0. So, for 

instance if k = 1, what I am saying is, we know that y1M1 is congruent to 1 modulo the first 

modulus. 

 

But the claim that I am now making is the following that y1 times m1 will be congruent to 0 

modulo every other  small modulo, that means you take the remaining n - 1 modulus says y1 

times m1 will be congruent to 0 modulo those n – 1 modulus. Similarly, if you take y2 times 

m2, we know that that is congruent to 1 modulo the second small modulo m2. But with 

respect to the first modulo m1, the third module m3, fourth modulo m4 and so on y2 times m2 

is 0 and the proof is very simple here.  

 

So, I know that Mk is the product of n - 1 small modulus is here, that means it is a product of 

all the n modulus expect the kth modulus. And hence, if I divide this Mk by m1 I will get 

remainder 0 because this number is completely divisible by m1. If I divide this Mk by m2, 

again it is completely divisible by m2, if I divide this Mk by mj again, it is completely 

divisible by mj, if divided by mk – 1, it is completely divisible. If I divide it by the k + 1 th 

modulus again it is completely that is a very simple fact.  
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So that is the third property that I have retained here, now remember, the proof strategy was 

that I want to express my unknown x as a special linear combination of my remainders a1 to 

an. And my claim is that now I have obtained those special linear combiners. So, my claim is 

that if I take this linear combination of the n remainders, namely y1 times M1 times a1. So, 



this is my first linear combiner, this is my kth linear combiner and this is my nth  linear 

combiner.  

 

My claim is that this value of x (𝑥 =  𝑦1𝑀1𝑎1 +  … + 𝑦𝑘𝑀𝑘𝑎𝑘 +  … +  𝑦𝑛𝑀𝑛𝑎𝑛  ) is indeed a 

solution for this system of linear congruences and you can easily verify that; what will 

happen if I take the value of this x and compute modulo mk. I compute x modulo mk so, if I 

compute x modulo mk then that will be same as this first summand modulo mk the second 

summand modulo mk, the kth summand modulo mk and the last summand modulo mk. 

 

Now what can I say about the first  summand modulo mk, so I know that this property holds; 

that means if I take the first summand here there M1 is present and M1 is congruent to 0 

modulo mk that means M1 is completely divisible by my small modulus mk. So, this first 

summand is completely divisible by mk, so it will give me the remainder 0. Similarly, the 

second summand will have  M2 which is completely divisible by Mk.  

 

So that is why the overall second summand is completely divisible by Mk and it will give me 

the remainder 0. But when I come to the kth summand here, in the kth summand, I know that 

I have yk times Mk present and yk times Mk modulo mk is 1. So that is why this overall term 

modulo mk will give me ak and again the remaining other terms will vanish they will turn out 

to be 0 that means it tells me that if I divide x by mk, I will obtain the same remainder that ak 

gives me on dividing by mk or equivalently x - ak is completely divisible by mk. So that 

means, by following this process, I can find out at least one solution satisfying the whole 

equation, the whole equation in the sense the whole system of linear congruences. But I want 

to find out a solution in the range 0 to M – 1.  
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How do I obtain that? So, for that, again, let me reiterate what I am been saying again and 

again, if you have one solution x, satisfying the n linear congruences here. Then any number 

of the form x + l times your bigger modulus is also a solution for the same system of linear 

congruences where l can be positive or negative. That means, let us first prove this claim and 

then we will see how exactly we can find out a solution in the range 0 to M - 1. 

 

So, since x is a solution which satisfies the system of linear congruences, that means, x has 

these properties, that means x is congruent to a1 modulo m1, it is congruent to a2 modulo m2 

and so on. Then what can I say about x + l M modulo m1, x + l M modulo m1 will be same as 

x modulo m1 because l times M modulo m1 will give you 0 because M is completely divisible 

by m1. 

 

Because remember your M is the product of all the n modulus, that means, even though this 

might look like a different number, this different number when divided by m1 will give you 

the same remainder which you obtained by dividing just the value x by m1 and we know that 

x on divided by m1 will give you the remainder a1. So, that means, this different number 

satisfies the first linear congruence. In the same way, the same different number satisfies the 

second linear congruence and so on. 

 

So, now this claim is true, we have proved that, so assuming you have a solution x satisfying 

your linear congruence. Now, if that x is not within the range 0 to M - 1, then you keep on 

subtracting multiples of M from it, you make it small and small, because every time you 

subtract one full multiple of M,  the new number is still a solution.  



 

That means, if x does not belong to the range; if this condition is not satisfied and you want to 

find out an x’, which is also a solution and within the range 0 to M, then what I am saying is 

that you keep on subtracting means you first compute x - M and check whether this x – M is 

within the range 0 to M - 1 or not. If not, then compute x - 2M and compute x – 3M. 

 

Because all of these new numbers also will be solution for your system of linear congruences 

and eventually by appropriately choosing the value of l you will obtain an x will be in the 

range 0 to M - 1 and which satisfies all the n linear congruences. So, that shows that using the 

Chinese Remainder Theorem, you can obtain at least one solution modulo the bigger modulus 

satisfying the system of n linear congruences, namely, you have to find out your special 

linear combiners as we have seen in the last slide.  

 

We have to find out this yk which is the multiplicative inverse of your kth sub modulus Mk 

modulo mk and if you do this, then this x will be one of the solutions, if this x that you have 

obtained as per the Chinese Remainder Theorem satisfies the condition that is it is in the 

range 0 to M-1, then well and good else, you find out an appropriate multiple or you select an 

appropriate value of  l  which will ensure that you obtain a solution in the range of 0 to M - 1.  

 

So, that brings me to the end of today's lecture just to summarize, in this lecture, we 

introduced linear congruences and we discussed 2 methods of solving the system of linear 

congruence one using the extended Euclidean algorithm and another one due to Chinese 

Remainder Theorem. Thank you. 


