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Hello, everyone, welcome to the second part of tutorial 9. So, let us start with question 

number 7. So, here we first define what we call as the degree sequence of a graph and the 

degree sequence of a graph is basically the sequence of degrees of the vertices in non 

increasing order. So, you list down the highest degree vertex or the degree of the highest 

vertex first followed by the next highest degree, followed by the next highest degree and so 

on.  

 

So, if you have n vertices, basically you are listing down the degrees of the n vertices in a non 

increasing order. And we say a sequence of n values as a graphic sequence, if you can 

construct a simple graph whose degree sequence is the given sequence, if you cannot draw 

any simple graph whose degree sequence is a given sequence, then the given sequence will 

not be called as a graphic sequence.  

 

So I stress here that we need a graph only to be simple it need not be connected, it is fine if 

the graph is not connected. So the first few parts of question 7 basically asks you to prove or 

disprove which of the given sequences is a graphic sequence. So let us take the first sequence 

5, 4, 3, 2, 1, 0. Of course, 1 obvious condition in a graphic sequence should be that values 



should be non negative, you cannot have a vertex with a negative degree so that is a trivial 

condition.  

 

So in this case, we have to verify whether we can draw a simple graph with 6 nodes where 

the highest degree is 5 and the smallest degree is 0. And it is easy to see that this sequence is 

not a graphic sequence. Because you cannot have a simple graph with 6 nodes where the 

maximum degree is 5 and the minimum degree is 0. Because if say v1 is the vertex which has 

the maximum degree, so if its degree is 5, then it should be a neighbour of each of the 

remaining 5 nodes.  

 

That means each of the remaining 5 nodes will have a degree which is non 0, but you also 

need a vertex with a degree 0 among those 6 nodes, which is not simultaneously possible. So, 

now let us take the second sequence (6,5,4,3,2,1) and try to argue whether the sequence is a 

graphic sequence or not. And again, this sequence is not a graphic sequence, but there are 

several ways by which you can refute that this sequence is not a graphic sequence.  

 

One simple way is that if you take the sum of the values that are given in this sequence is not 

an even quantity, but we know that for any graph, it may not be a simple graph for any graph 

the sum of the degrees of all the vertices is twice the number of edges which is an even 

quantity. So, 1 obvious condition that should be satisfied by any graphic sequence is that if 

you sum the values given in the sequence, it should be an even quantity, which is not the case 

for the sequence given here. Let us consider the third sequence and the sequence is a graphic 

sequence and this is a simple graph which realises or which has this degree sequence 

(2,2,2,2,2,2).  
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So, now in question 8, we want to characterise that, we want to find out a characterization for 

graphic sequences. So, if you are given a sequence with n values, how can you verify whether 

that sequence is a graphic sequence or not we cannot keep on drawing all possible simple 

graphs and then either prove or refute that a given sequence is not a graphic sequence, we 

need an algorithmic characterization, a necessary and sufficient condition and that is given by 

what we call as Havel-Hakimi theorem.  

 

So here we are given the following you are given sequence S of n non negative integers in 

non increasing order and you have a reduced sequence S*. It is reduced in the sense it has n - 

1 values whereas the sequence S has n values. So how exactly we construct a sequence S*. 

So, the way we construct S* from S is the following, we first to remove the value d1, and then 

from the next d1 degrees or from the next d1 values in the sequence S we subtract 1 from each 

of those d1 values in the sequence S.  

 

So d2 gets decremented by 1, d3 gets decremented by 1, and d1+1 th term gets decremented by 

1. Whereas, from d d1 + 2th term to the dn th term, the degrees remain the same as they were in 

the sequences. So, that is the way we obtained the sequence S*. And what Havel-Hakimi 

theorem says is the following it says that your sequence S is a graphic sequence if and only if 

the reduced sequence S* when arranged in a non increasing order is also a graphic sequence.  

 

So, for the moment imagine that this theorem is true, how exactly we can use this theorem to 

verify whether a given sequence of S values is a graphic sequence or not? Well, we have to 

reduce the sequence S and build a new sequence S* and then rearrange that terms in S*, so, 



that the new degrees are in a non increasing order. And now, we have to verify whether the 

reduced sequence S* is a graphic sequence or not. To do that, I can again apply the Havel-

Hakimi theorem.  

 

Now, this reduced to sequence S* can be further reduced to n - 2 degrees, where I can remove 

the first degree from S* and to compensate that I subtract 1 from the next few degrees. And 

then the next reduced sequence again is arranged in a non increasing order and then we can 

verify whether that sequence is a graphic sequence or not. And I can keep on repeating this 

process; keep on decreasing my sequence till I obtain a very short sequence which I can very 

easily verify whether it is a graphic sequence or not. 

 

If it is a graphic sequence then I can come back all the way and declare that my big sequence 

my original sequence S is a graphic sequence. Whereas if the reduced  sequence or the small 

sequence at which I stop and inspect and find out that it is not a graphic sequence, then I can 

declare that my original sequence S also not a graphic sequence. So, that is a way I can apply 

the Havel-Hakimi theorem to verify whether a given sequence is a graphic sequence or not. 

So now, let us prove this theorem and this is an if and only if statement.  

 

So, we have to prove 2 implications: let us first prove the easier one. So, we want to prove 

that if S* when arranged in a non increasing order is graphic, then so is the sequence S, what 

does this mean: so I will give a direct proof for this implication. And when I say I will give a 

direct proof, I mean to say that I will assume that my premise is true and I will arrive that my 

conclusion is also true so, assume that my premise is true.  

 

That means, since my sequence S* as a graphic sequence, I can construct a graph, a simple 

graph G* with n - 1 vertices and some edges whose degree sequence is the same as the 

sequence S*, what does that mean? So, I can imagine that my vertex set V* has n - 1 nodes.  I 

call those nodes as v2, v3, vn. And since it realises the sequence S* that means, I have a vertex 

of degree d2 – 1.  Let v2 be that vertex.  

 

I will have a vertex with the degree d3 – 1.  Let v3 be that vertex and like that I will have a 

vertex of degree this much.  Let vd1 + 1 be the vertex with that much degree and like that I will 

have a vertex of degree dn and let vn be the vertex with that degree. That is the implication of 



assuming my premise to be true. Now, my graph G* is a simple graph remember, apart from 

that, I do not know anything about G* whether it is connected or not connected and so on. 

 

Now from G*, I have to build another graph G which has n nodes, which is simple and whose 

degree sequence is the same as the sequence S, that is what is the implication. So the 

construction of the graph G is very simple. I take a copy of G* as it is and since I have to give 

a graph which has n nodes, but since I have taken the graph G* I have currently n - 1 nodes. 

So, what I will do is I will now include a new node: call it v1 and I have to give some edges to 

this vertex v1.  

 

So, what I do is, I add the edge between the vertex v1 and the vertex v2 which has earlier 

degree d2 – 1.  I add an edge between the vertex v1 and the vertex v3 which had earlier the 

degree d3 - 1 and similarly, I add the edge between the vertex v1 and vertex number d1 + 1 

which had earlier the degree d1 + 1 and the remaining edges they remain as it is in the graph 

G. Now, what can I say about the new degree for the vertex v2 it will be one more than what 

it was earlier.  

 

So, earlier the degree was d2 - 1, but now, since I have given a new edge to the node v2 its 

degree will now become d2; similarly, the new degree of the vertex v3 will become one more 

than it was earlier so, it will become d3 and like that degree of the d + 1th vertex will be one 

more than what it was earlier. So, it will become this much and the degrees of the remaining 

vertices will remain as it was earlier and what can I say about the degree of the vertex v1 :  it 

will be d1.  

 

Because I have added d1 edges incident with the vertex v1 and now, you can see that this 

sequence is nothing but the sequence S that means in the sequence S you need to have 1 

vertex of degree d1. So, I have one such vertex namely v1. You need to have a vertex of 

degree d2. I have one such vertex namely v2 you need to have a vertex of degree dn I have one 

such vertex namely dn. So, I have now a simple graph whose degree sequence is same as the 

sequence S. So, that shows that this implication is true.  
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Now, let us prove the implication in the reverse direction. So, I want to prove that if your 

sequence S is graphic, then the reduced sequence S* when arranged in a non increasing order 

is also graphic. And again I will give a direct proof; that means I will assume that my premise 

is true and I will arrive at my conclusion. So, since my premise is true that means, I have a 

simple graph call it G with n nodes.  

 

And some edges whose degree sequence is same as the sequence S; that means, you have n 

vertices say v1 to vn and let v1 be the vertex which has degree d1, v2 be the vertex which has 

degree d2 and vn has the vertex which has the degree dn. Now, from this graph I have to arrive 

at another graph, which is simple with n - 1 nodes and which realises the sequence S* : the 

reduced sequence S*.  

 

So, how do I do that, so, I will use now a proof by cases. So, once I assume my premise to be 

true, I will do a proof by cases because there will be 2 cases which will be happening 

depending upon what exactly is the structure of the graph G. So, your case 1 will be the 

following imagine your simple graph G is such that the vertex v1 which has degree d1 is 

adjacent to the vertex which has degree d2 it is adjacent to the vertex which has degree d3 it is 

adjacent to the vertex v4 which has degree d4 and like that, it is adjacent to the vertex which 

has degree d1 + 1.  Suppose that is the case. Case 2 will be when this is not the case. So, case 

1 is when v1 is adjacent to the vertex which has degree d2, it is adjacent to the vertex v3 which 

has degree d3 and it is adjacent to the vertex which has degree d1 + 1. Now, let us see what 

will happen if I delete this vertex v1 and the edges which are incident with the vertex v1 

because if I delete the vertex v1 of course, these edges will no longer be there.  



 

So, I will obtain now, a new graph G*, which will be of course, simple because my original 

graph G was simple. So, I am not adding any edges I am deleting edges, so, by deleting 

edges, I will still obtain a simple graph. So, my graph G* will be a simple graph and it will 

have n - 1 nodes because I am reducing 1 vertex namely v1. Now, what can I say about the 

new degrees of v2, v3 and vertex number d1 + 1 well the degree of v2 will be 1 less than what 

it was earlier, because the edge between v2 and v1 has vanished.  The degree of v3 will be 1 

less than what it was earlier, because the edge between v3 and v1 has vanished and the degree 

of the d + 1th vertex will be 1 less than what it was earlier, because the edge between the d + 

1th vertex and vertex number v1 has vanished.  The degrees of the remaining vertices will 

remain as it was in the graph G.  

 

So, now, what can you say about this sequence, I can say that this sequence is nothing but the 

sequence S* in non increasing order, namely I can say that there is a graph, a simple graph 

namely G*, which realises the sequence S* because in S* in order that S* is a graphic 

sequence, you need a vertex of degree d2 - 1 in G* and you have one such vertex namely v2 

you need 1 vertex of degree d3 - 1 in G* and you have one such vertex namely v3 and you 

need 1 vertex of degree this much.  

 

And you have a vertex in G* with that much degree you need a vertex of degree dn in G* and 

you have a vertex whose degrees is dn. So, that means, now I can say that G* can realise the 

sequence S* and hence my sequence S* is also graphic so, that is case 1.  
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Now, case 2 will be the following: case 2 occurs where in the graph G which realises your 

sequence S the structure is as follows: there is at least 1 vertex vi in the set v2 to the d + 1th 

vertex such that v1 is not adjacent to that vertex. So, what do I mean to say here is the 

following in case 1 if you see the situation was that v1 was adjacent, so, v1 degree was d1 and 

those d1 edges were contributed from the next d1 vertices namely the next d1 vertices which 

has the degree d2, d3, d4 and d1 + 1 that was case 1.  
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In case 2 we are considering the case where this is not happening.  That means, you have at 

least 1 vertex vi outside this set v2 to vertex number d1 + 1 such that v1 is not adjacent to vi. 

So, what do I mean by that for instance, imagine that your d1 is equal to say 4. In case 1, what 

was happening is the following you need v1 to have 4 edges incident with v1 that means 4 

edges should be incident with v1 that is why its degree was 4.  

 

So, those 4 edges were between v1 and v2 where the degree of v2 was d2, it was between v1 

and v3 where the degree of v3 was d3, it was between v1 and v4 where the degree of v4 is d4 

and it was between v4 and v5 where the degree of v5 is d5 and of course the degrees are now 

in non increasing order that was happening in case 1, but in case 2 what is happening is your 

degree d1 is still 4.  

 

But either the edge between v1 and v2 is missing or the edge between v1 and v3 is missing or 

the edge between v1 and v4 is missing or the edge between v1 and v5 is missing where v2, v3, 

v4 and v5 are the vertices with degree d2, d3, d4 and d5 in the graph G respectively. So now I 

cannot run the same argument, which are used in case 1.  In case 1, I simply deleted v1 due to 



which all these edges which are there between v1 and vertex 2, vertex 3, vertex 4, vertex 5, 

they vanished.  

 

And the degrees of d2, d3, d4, d5 automatically got decremented by 1, I cannot run the same 

argument here. Because, say for instance, if the edge between v1 and v2 is missing, then by 

deleting v1, I cannot say that the degree of v2 gets decremented to d2 - 1, because v2 is not 

adjacent to v1. Its degree will remain the same namely d2 or say for instance, the edge 

between v1 and v3 is not there, then deleting v1 will not change the degree of vertex v3, it will 

still remain d3 and so on.  

So, I cannot run the same argument which I easily or conveniently used for case number 1, I 

have to do something more to handle the case number 2, and by the way, these are the only 2 

cases either case 1 could occur or case 2 could occur, there cannot be any third case possible.  
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So, the proof strategy here will be the following. What I will do is I will do some 

transformation and we will see how exactly the transformation happens we will do some 

transformation on the graph G and convert it into another simple graph H with n vertices and 

with the same degree sequence S, that is important that means whatever what the 

characteristics of G were they remain the same.  

 

So, G was simple that transformed graph H also will be simple, G had n nodes, that 

transformed graph H also will have n nodes, the number of edges in G will be the same as the 

number of edges in H and G was simple H will be simple. G realised the degree sequences 



and a transformed graph H also will realise the same degree sequences, but H will now have a 

characteristic which was not there in the graph G.  

 

So, in the graph G there was some node vi in this set. So, let me call this set as F so, there was 

some node vi in the set F such that v1 was not adjacent to that node vi, but after 

transformation what we will do is we will ensure that v1 is adjacent to each node in the set F, 

that means, the degree d1 which was attributed to the vertex v1 is coming because of the edges 

between the vertex v1, v2, vertex v1, v3, vertex v1, v4, vertex v1 and d + 1th vertex.  

 

That means, what I can say now is that my transformed graph H is exactly having the same 

structure as we had for the graph G in case 1 and now, I can apply the same argument that we 

used for  case 1. So, now, I will say that I will forget about the graph G I will say that now I 

have a graph H, which is simple which has n nodes and which realises the degree sequence S 

and where the vertex with the highest degree d1 is adjacent to the next immediate d1 vertices.  

 

So, I can remove the vertex v1 and argue that because of the removal of the vertex v1 the 

degree of the next to d1 vertexes will get decremented by 1 and that will be an instantiation or 

realisation for the sequence S*.  So, that is a proof idea. So, now, everything boils down to 

how exactly we do the transformation. So, the transformation is as follows so, remember the 

structure in the graph G is the following: there is at least 1 node vi in the set F such that the 

edge between v1 and vi is missing.  

 

And I also know that since the degree of the vertex v1 is d1 and edge between v1 and vi is 

missing. So, to compensate this missing edge namely to ensure that the vertex v1 has the 

degree d1 there must be some outside vertex and what do I mean by outside vertex namely 

that vertex S not in the set F, but in the remaining n - d1 vertices. It is not among the first d1 

vertices.  So, this vertex vj is the outside vertex and there must be an edge between v1 and that 

outside vertex vj because we have to take care of the fact that the degree of v1 is d1.  

 

So again, for instance, what I am saying here is if d1 is 4. So in case 2, we know that either 

the edge between v1 and v2 is missing, or the edge v1, v3 is missing, or the edge v1, v4 is 

missing, or the edge v1, v5 is missing. But since I have to give degree 4 to the vertex v1, that 

means v1 is adjacent to either vertex 6 or vertex 7 or vertex 8 and so on. So, that is the vertex 

vj that is outside vertex vj in my current context.  



 

And what I know is that in my graph G the vertex vi, its degree di is as large as the degree of 

the vertex vj because that is the structure of my graph G. So, that means there must be some 

neighbour of vi call it vk, which is not a neighbour of vj. Because if every neighbour of vi is 

also a neighbour of vj and on top of that vj is a neighbour of v1. But vi is not a neighbour of 

v1, we arrive at the conclusion that the degree dj is more than the degree di, which is not the 

case.  

 

So that is a very simple proof of the fact that there must be some neighbour namely vk, which 

is there must be some neighbour vk of vi, which is not a neighbour of vj. So that is a structure 

present in your graph. Now, what the transformation does is the following. Since the edge 

between v1 and vi is missing in G, but after transformation, I want that edge to be present.  

 

So, I add the edge but that will increment the degree vi or degree of vi, but I do not want to do 

that. So to compensate this new edge, which I have given to vi, I take away the edge, which 

was earlier present between vi and vk. So, that ensures that the degree of vi remains the same. 

And I have to take away the edge between v1 and vj because since I am giving a new edge to 

v1, the degree of v1 will get incremented, which I do not want to do.  

 

So, to compensate that I take away the edge between v1 and vj, which was earlier there, but 

that will reduce the degree of vj. again, which I do not want to do and to compensate that I 

add the edge between vj and vk and this whole process, I am not disturbing the property that 

my graph G or the transformed graph H is a simple graph. So, my transformed graph H still 

remains a simple graph. 

 

But by doing this transformation, what I have done is the following: earlier this vertex vi was 

not immediately a neighbour of v1, but now in my transformed graph vi is a neighbour of v1. 

So, I can repeatedly apply this transformation for all the outside vertices vi and after doing the 

required number of transformation, I will get my graph H which will have the same structure 

as in case 1 and then the proof becomes the same as it was in the case 1. So, that proves the 

implication in the other direction.  
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In question number 9, we want to either prove or disprove whether the sequence is a graphic 

sequence. So, there are 2 options: we can use either Havel-Hakimi theorem or we can use a 

proof by induction to prove that this sequence is a graphic sequence, but we will give a 

constructive proof to show that the sequence is graphic by showing a graph, a simple graph 

with 2n nodes whose degree sequence is same as S.  

 

So here are the vertices: 2n vertices and what I do is the following.  I take the vertex v1 and 

add the edge with all vertices with even indexes. I take the vertex v3 and I add an edge with 

all even index vertices except the vertex v2 and I keep on doing this process and for the last 

vertex with odd index, I will give only 1 edge namely an edge with the last vertex with even 

index.  

 

Now, what I can say about the degrees of the respective vertices here, so it is easy to see that 

these 2 vertices will have degree n so indeed, I need 2 vertices of degree n. I will have this 

vertex of degree n - 1 and this vertex of degree 2, so I got 1 vertex of degree n - 1 and 1 

vertex of degree 2. And if I continue, I will find that I will get 2 vertices of degree 1 and then 

eventually I will obtain the second vertex of degree n - 1 and so on. So the vertex here will be 

of degree n - 1 and so on, that is a very simple construction to show that the sequence is a 

graphic sequence.  
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Now let us come to question number 10. Here, we want to prove that if you are given a graph 

with n vertices, and if you are doing edge colouring, then you cannot use a single colour to 

colour more than 
𝑛

2
 edges. And it is a very simple fact, depending upon whether your n is odd 

or even, we can prove this very easily. So let us take the case where n is even. So remember, 

each edge has 2 endpoints.  

 

That means if I consider 
𝑛

2
 distinct edges of the graph, and if I focus on their endpoints, that 

will constitute the entire vertex set. So that means I cannot colour 
𝑛

2
 + 1 edges with the same 

colour, because if I do that, then their endpoints will give me n + 2 vertices, but my graph at 

the first place has only n vertices. So at most I can colour 
𝑛

2
 edges, distinct edges with the 

same colour, I cannot colour more than those many edges.  

 

Whereas if n is odd, then this quantity 
𝑛

2
 is not well defined, it will not be an integer value. So 

𝑛

2
 in that context of an odd value of n will be 

𝑛−1

2
. And indeed, it is easy to see that I cannot 

use a single colour to colour more than 
𝑛−1

2
 number of distinct edges, because if I try to do 

that, say for instance, I tried to colour 
𝑛−1

2
 + 1 number of distinct edges, then their endpoints 

will give or constitute will n + 1 nodes, but my given graph has only n nodes. So that is a 

maximum number of distinct edges, which can be coloured with a single colour.  
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Now, based on these information, I will try to solve question 11 where I want to find the edge 

chromatic number of a complete graph with n nodes and my solution will be divided into 2 

cases depending upon whether my n is odd or even. So, remember, from the previous 

question, I know that if your n is even then you can use 1 colour and colour at most 
𝑛

2
 edges, 

whether indeed you will be able to colour 
𝑛

2
 edges or not that depends upon the structure of 

your graph, but at max you can colour 
𝑛

2
 edges using a single colour. 

 

Now in a complete graph, kn I have 
𝑛(𝑛−1)

2
 number of edges. So, with colour number 1, I can 

take care of at most 
𝑛

2
 edges.  With colour number 2, I can take care of another set of 

𝑛

2
 edges. 

So, like that, how many colours I will require at least? So, I will require at least n - 1 number 

of colours, because to the first colour, I can take care of 
𝑛

2
 edges, the next colour I can take 

care of another bunch of 
𝑛

2
 edges and I have to take care of n - 1 such bunches of 

𝑛

2
 edges.  

 

So, that is why the minimum number of colours that will be required will be n - 1. Whereas if 

I take the case when n is odd, then from my analysis of question 10, I know that through 1 

colour I can take care of at most 
𝑛−1

2
 number of edges. And I have to take care of n bunches 

of  
𝑛−1

2
 number of edges. So, that means I will require at least n colours if my n is odd. 

 

Now, what I will show is I will show that these bounds on the edge chromatic numbers, 

which were the lower bounds because they were the least number of colours which are 

required, they are actually tight in the sense I will give you a constructive colouring, a 



concrete colouring for colouring the edges of a complete graph with n nodes where n is even. 

And where the number of colours required is exactly n - 1.  

 

And you cannot beat this bound because the lower bound says you will need at least n - 1 

colours. So that is why I am giving you an optimal colouring. So let me demonstrate the 

colouring assuming the value of n = 8. So remember, edge colouring here corresponds to 

scheduling of a round robin tournament. So we have 8 teams, and we have to schedule 

matches among the teams.  

 

And the requirement is that each team has to play against every other team once but at the 

same time, we do not want to enforce a team to play more than a single match on any day. So 

the way I do the colouring here is as follows. So on the first day, I keep v8 at centre and 

engage v8 with v1 and engage v2 with 7, engage v3 with 6, engage v4 with 5. So, this is 

equivalent to saying that this colour c1 is used to colour the edges between (v4, v5), (v3, v6), 

(v2, v7) and (v1, v8). 

 

That means, I have coloured the maximum number of edges using colour number 1 and now, 

I have to use colour number 2 and using colour number 2, I will try to colour another set of 4 

edges. So, which is equivalent to saying that I now want to find a schedule for the next day. 

So, the schedule for the next day is obtained by kind of rotating this diagram by 30 degrees 

and changing the assignment of or engagement of v8.  

 

So, earlier v8 was engaged with v1, but now v8 will be engaged with the next team in the 

clockwise direction which is v2. So, now, the assignment of the colours is the following. So, I 

use the colour number c2 to colour these 4 edges, or equivalently I schedule these matches on 

day number 2, then again I shift it by 30 degree and change the engagement of v8 . Now v8 

will be engaged with v3 and so on.  

 

So, now you can see that I have to do this rotation 7 number of times, and then I will be able 

to colour all the remaining edges of my complete graph with n nodes: 8 nodes. 
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Now, let us see how exactly we can colour all the edges of a complete graph with n nodes 

where n is odd. And I will be using exactly n colours, which is optimal because the lower 

bound says that for n being odd, I need at least n colours. So, the idea here is I can convert the 

complete graph with n nodes to a complete graph with n + 1 node by adding a new vertex and 

the required dummy edges.  

 

And since n was odd, n + 1 will be even. And I know a colouring mechanism to colour a 

complete graph with n + 1 nodes where n + 1 is even using n colours, namely the colouring 

that I had discussed just now. So, take that colouring and now you delete the dummy node 

and the corresponding edges. That will give you the colouring for the original complete graph 

with n nodes where n was odd.  

 

So, for instance, what I am saying here is if you have only 7 teams, and you want to come up 

with a schedule, you imagine that you have included a dummy team, say the 8th team and 

now you want to come up with a round robin scheduled tournament for 8 teams with the 

same restrictions that you had earlier. So, this will be the schedule you will require 7 days. 

Now in the first day you can see that; on the first day you can see that v8 is engaged with v1.  

 

So you can forget about that you can imagine that match is not going to be held; remaining 

other matches will be held as per the colouring assignment namely v2 will play with v7, v3 

will play with v6 and v4 will play with v5 .  On the second day v8 is engaged with v2. So, you 

can imagine that match will not be there actually and remaining 3 matches will be played and 



so on. So, this now gives you a colouring; edge colouring for complete graph with n nodes 

when n is odd.  
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Now, question 12 we are giving a greedy strategy for vertex colouring and we want to prove 

that this strategy need not give you the optimal vertex colouring. So, the colouring strategy is 

the following. We first sort the vertices according to their degrees and then use colour 

number 1 to colour the vertex which has the highest degree that you have arranged as per 

your degrees and then the next vertex in the list which is not adjacent to be v1, if at all it 

exists and successively try to colour as many vertices as possible according to the colour 

number 1, keeping in mind that the next vertex which you are selecting is selected according 

to their degree. That means, you are following a greedy strategy and trying to occupy or 

colour as many vertices with that colour and now do the same process with the next colour 

and so on.  

 

So now we have to give a counter example, namely a graph where Welch-Powell algorithm 

will end up utilising more colour than the optimal number of colours. So consider this graph 

and let us see how many colours we need. Actually we need 4 colours as per the Welsh-

Powell algorithm because this vertex has the highest degrees so I will colour it and then I can 

assign the same colour to this vertex which has also the same degree.  

 

And now I cannot use the same colour to colour any other vertex. Now, I will focus on the 

next set of vertices which has the highest degree.  So let us use this vertex, this vertex and 

then the same colour I can assign to this vertex and this vertex. So that is the maximum 



number of vertices which I can colour with the second colour.  Now among the remaining 

vertices I will pick the vertices which have according to their degrees.  

 

So I can pick this vertex and the same colour can be assigned to this vertex. So we need total 

3 colours; but optimal colouring is 2 this will require only 2 colours and 2 colours will be 

sufficient to colour all the vertices in this graph so that shows this is not optimal colouring, so 

with that I conclude this tutorial. Thank you. 

 

 


