
Discrete Mathematics 

Prof. Ashish Choudhury 

International Institute of Information Technology, Bangalore 

 

Lecture - 52 

Vertex and Edge Colouring 

 

(Refer Slide Time: 00:26) 

 
Hello everyone, welcome to this lecture; the plan for this lecture is as following.  We will 

discuss about vertex colourings, vertex chromatic number and we will discuss about edge 

colouring and edge chromatic number. 

(Refer Slide Time: 00:33) 

 

So, let us start with vertex colouring first and let us see some real world motivation for 

studying the vertex colouring problem; the problem is that of exam time table scheduling. So, 

there are n subjects in a college.  Imagine there is a college with n subjects; multiple students 



taking those subjects and we need to schedule the exams for those n subjects and we need to 

schedule the exams in such a way that it should not happen that a student has 2 exams in the 

same time slot appearing in the schedule.  

 

So, for instance if I am a student and if I have taken subject number 1 as well as subject 

number 2 then it should not happen that I get a schedule where subject number 1 and subject 

number 2; their exams are scheduled on the same day and at the same time slot so that should 

not happen. So, one obvious way of doing the scheduling is that you schedule one exam in 

exactly one time slot and that will require you n time slots but we do not want to do that 

because that will be an overkill and that might be a wastage of resources.  

 

Instead we would require or we would be interested to find out the minimum number of time 

slots where I can allow multiple exams to be conducted in the same time slot, but without 

violating the condition that no student has two exams in the same time slot.  It should not 

happen that I schedule the exams in such a way that a student who has taken two subjects and 

both the subjects appear in the same time slot in my schedule that should not happen. So, how 

do we model this problem as a graph theoretic problem? So, the n subjects will form the n 

nodes of my graph. 

 

And what will be the edge set so I will add an edge between node number i and node number 

j which you can interpret as subject number i and subject number j. So, subject number i and 

subject number j will have an edge among them if there is at least one student who has 

registered both for the subject i as well as the subject j. If there is no student who has taken 

both subject i as well as subject j that means I can interpret or treat subject i and subject j as 

kind of independent subjects. 

 

And I can conduct the exam for both subjects number i as well as subject number j in the 

same time slot. But if there is an edge between subject number i and subject number j that 

means I cannot schedule the exam for subject number i as well as the subject number j in the 

same time slot. So, how do I model that requirement? So, basically I will be interested to 

colour the nodes of the graph by various colours. 

 

And my colouring should satisfy the condition that no two adjacent nodes should get the 

same colour. And the number of time slots or minimum number of time slots I require is 



same as the minimum number of colours needed to colour the vertices. Of course a trivial 

way to colour the vertices will you take n distinct colours and assign one distinct colour to 

each of the n vertices.   I do not want to do that but because that is equivalent to saying that I 

conduct exams for the n subjects taking n slots. 

 

I might like to assign the same colour to multiple vertices provided this condition is satisfied. 

And the minimum number of colours that I need to colour the vertices will give me the 

minimum number of time slots so for instance if this graph is given to me. So, I have subject 

number s1 here, s2 to here, s3, s4, s5, s6, and s7 I have seven subjects. So, I can take 7 time slot 

and in each time slot I can schedule 1 exam I do not want to do that. 

 

It turns out that just with 4 slots I can finish off all the 7 exams namely subject number 7 and 

subject number 4 can be scheduled together because there is no student who has taken 

simultaneously the subject number 7 and subject number 4.  In the same way, subject number 

5 and subject number 3 can be scheduled together because there is no student who has taken 

both the subjects and so on. 

(Refer Slide Time: 05:20) 

 

So, now coming to the vertex colouring problem what is the input? The input here will be a 

simple graph it may or may not be connected and the output is basically an assignment of a 

colour to each vertex such that no two adjacent vertices are assigned the same colour,  What 

is the vertex chromatic number of a graph? So we denote the vertex chromatic number of a 

graph by this quantity χ0(G) this is a Greek character. 

 



If you do Latex then this is the character \chi.  It is pronounced as “khi” not as “chi”. So, it is 

what is the vertex colour chromatic number of a graph. The vertex chromatic number is the 

minimum number of colours needed to colour the vertices of the graph such that no two 

adjacent vertices are assigned the same colour. It turns out that finding the chromatic number 

of a graph is indeed a hard problem. Hard problem in the sense we do not have in general 

efficient algorithms or practical algorithms for finding out the vertex chromatic number of a 

graph, if the number of vertices n in the graph is arbitrarily large or very large.  Of course I 

can run exponential time algorithms, exponential in the number of vertices, and get vertex 

chromatic number.  What I mean by hard problem is basically we do not have efficient 

algorithm, that is a very loose definition of a hard problem. So, what is an upper bound on the 

vertex chromatic number? 

 

It turns out that the vertex chromatic number of a graph is always upper bounded by 1 + the 

maximum degree of any vertex in your graph. You do not require more than these many 

number of colours in your graph to colour the vertices of the graph and to check whether 

indeed this bound is true or not just take the case of a complete graph of n vertices where the 

degrees of all the vertices are same. 

 

And where Δ(G) namely the maximum degree is n - 1. So, for colouring all the n vertices in a 

complete graph we will need indeed n colours because there is an edge between every pair of 

nodes in the graph and that satisfies this upper bound. So, what we will do is we will give an 

algorithm which will indeed need at most these many number of colours to colour all the 

vertices of the graph. But that need not be the optimal colouring because it might be possible 

that your graph may not need Δ(G) + 1 number of colours. So, in that sense my algorithm 

need not be an optimal algorithm. 

(Refer Slide Time: 08:18) 



 

So, this algorithm is based on the greedy strategy which is a very popular strategy in 

algorithm designs. So, what exactly is the greedy strategy here: the greedy strategy is that you 

use the first available colour at every step if possible, if not possible then use a new colour. 

So, more specifically the algorithm is an iterative algorithm and in each iteration we will pick 

a new vertex for colouring. 

 

And when we are picking the new vertex for colouring we have to follow a greedy strategy to 

decide whether we can use a new colour for colouring the next vertex or whether you should 

use an existing colour which you might have already assigned or given to some of the 

existing vertices depending upon some conditions. So, to be more specific we do the 

following repeat while loop so till we have uncoloured vertices left in the graph we do the 

following. 

 

We arbitrarily choose any uncoloured vertex which is not yet assigned any colour. So, there 

might be several uncoloured vertices still left in your graph I arbitrarily choose one of them. 

And let T be the set of colours which I have used till now for colouring the various vertices in 

the graph. So, to begin with my T will be empty and all the n vertices are uncoloured. So, I 

will start with any of the vertex and my T will be empty. 

 

But in general as my algorithm proceeds my T will keep on taking new values depending 

upon what colours I have chosen for various vertices. So, imagine I am at my current iteration 

where I have decided to colour the vertex number vi because it has not been assigned any 

colour. Now what I will do is I will check that is it possible to use one of the existing colours 



from the set T and assign it to the vertex vi in the sense that there is no vertex incident with 

the vertex vi or which is adjacent to the vertex vi to be more specific, and that has been 

assigned the same colour which I am considering from the set T.  That means your set T 

might have already taken the colour c1 to ck. So, you have already used k number of colours 

and then you will like to check whether it is possible to assign the colour number c1 to the 

vertex vi or not without violating the vertex colouring requirement if not then check for c2 if 

not then check for c3 and so on. 

 

So, if at all you stuck or you find some colour which can be assigned to the vertex vi and if 

there are multiple colours from the set T which can be assigned to the vertex vi without 

violating the vertex colouring requirement then assign the least index colour from the set T to 

the vertex vi. If not then pick a new colour which is different from all the colours c1 to ck and 

assign it to the vertex vi and add that colour ck+1  to the set of colours T and repeat this 

process that is the idea here. 

 

So, now the question is will this algorithm always give the optimal colouring and what do I 

mean by optimal colouring? By optimal colouring I mean the minimum number of colours  

that is indeed required to colour all the vertices of my graph namely the number of colours is 

exactly the vertex chromatic number. So, it turns out that this algorithm may not always give 

you the optimal colouring because it depends upon the sequence in which you pick the 

uncoloured vertices in every iteration. 

 

So, remember in each iteration we are arbitrarily picking one vertex from my current set of 

uncoloured vertices and then deciding to colour it. Now depending upon in what order you 

pick it you may or may not get an optimal colouring. 

(Refer Slide Time: 12:42) 



 

So, let me demonstrate my point here so imagine this is a graph given to you and we want to 

assign colours to the vertices by following this algorithm. So, if I follow the vertex ordering 

{v1, v6, v3, v4, v2, v5} then I will need 4 colours why so? So suppose I start with the vertex 

number 1 my set T is empty so I will assign colour number 1 then as per my sequencing 

vertex v1 is done then I have 5 vertices left. 

 

So, suppose I decide to colour vertex number 6.  Vertex number 6 can be assigned one of the 

colours from my set T.  So, remember my set T has now taken colour number 1 so I can 

assign colour number 1 to vertex number 6. So, vertex 6 is also done.  Now I am left with 4 

vertices my T has only 1 colour as of now.  Then out of the 4 vertices which are not yet 

coloured suppose I decide vertex number 3.  Now vertex number 3 cannot be assigned colour 

number 1 because colour number 1 has been assigned to vertex 6 which is adjacent to vertex 

3. 

 

So that is why now I have to use a new colour for vertex number 3; it is done. Now out of the 

3 vertices as per my sequencing I am deciding to colour vertex 4.  The vertex 4 cannot be 

coloured with colour number 1 because colour 1 has been assigned to vertex 1 which is 

adjacent to vertex 4 but colour 2 can be assigned to vertex 4 so I do not need a new colour, 

vertex 4 done. 

 

Now I am left with 2 vertices, vertex 2 and vertex 5.  Suppose I choose vertex 2 then I cannot 

use colour 1 I cannot use colour 2 so I have to add a new colour give it to vertex 2. And now 

only vertex left is vertex 5 which cannot be given colour 1 which cannot be given colour 2 



which cannot be given colour 3. So, the only option is to give a new colour namely colour 

number 4. So, if this is the order in which I picked the vertices in every iteration I will need 4 

colours. 

 

On the other hand imagine that I choose the vertices in this order {v1, v2, v6, v3, v5, v4} then it 

is easy to see that I will be needing 3 colours which is 1 less than the number of colours that I 

used in the previous ordering, whereas, if I use this ordering {v1, v3, v5, v2, v4, v6} then I need 

just 2 colours. And it is easy to see that 2 is indeed the vertex chromatic number of this graph. 

Indeed you need 2 colours here because you have at least 1 edge. So, you cannot give the 

same colour to the endpoints of an edge. 

 

So, definitely 2 is the minimum number of colours needed to colour all the vertices of this 

graph. And indeed I am giving you now colouring which requires 2 colours here. So, the 

vertex chromatic number of this graph is 2. And I can get an optimal colouring from this 

algorithm but this algorithm may also give me non optimal colouring namely it can give me a 

colouring where I required 4 colours or this algorithm can also give me a colouring which 

requires me to use 3 colours. 

 

And this algorithm can also give me the optimal colouring. Now I do not know in what order 

I should use or decide the next set of uncoloured vertices because if my graph has million 

number of nodes to structure the pictorial representation of the graph may not be given to me. 

In this example you can say it is having 6 vertices I can always follow this optimal strategy 

but imagine that you are given an arbitrary graph which has a million number of nodes. 

 

And you are not given a pictorial representation of the graph but just say that adjacency 

matrix or adjacency list representation then in every iteration you have to just pick the edges 

arbitrarily. And it may turn out that your ordering does not lead you to the optimal colouring. 

What this algorithm guarantees is that you do not need more than maximum degree plus 1 

number of edges why so? So, what is our maximum degree in this graph? The maximum 

degree is 3 and this algorithm guarantees you that you do not need more than 4 colours. So, 

let us argue that formally. 

(Refer Slide Time: 17:28) 



 

So, what this algorithm basically says is that the greedy approach is not always optimal. So 

that is why a greedy approach is used very carefully in algorithm design.  There are 

algorithms which can be always solved and greedy approach can always give you optimal 

solutions, but vertex colouring is not one such problem instance.  The greedy approach may 

not give you the optimal colouring here. 

(Refer Slide Time: 17:56) 

 

So, what we now want to argue here is that if we follow the greedy algorithm for vertex 

colouring then even if you do not get optimal colouring at most the colouring that you obtain 

will require you to use maximum degree plus 1 number of colours,  You do not need more 

than these many number of colours. And the proof is very simple.  The proof is based on the 

fact that when you are deciding a colour for a vertex vi. 

 



Then there are 2 possible cases: either the vertex vi is the vertex which has the maximum 

degree and say that all the neighbours of that vertex vi have been already coloured. So, in that 

case it can have already Δ(G) colours used, in which case you have to use a new colour for 

the vertex vi or it might be possible that you can use one of the existing colours from your 

currently used set of colours T because remember that the colours of the neighbours of the 

node vi can be used. 

 

So, in any case it does not matter whether you are in this case or in this case you would need 

more than Δ(G) + 1 number of colours. That is a simple proof for the fact that this greedy 

algorithm will require at most these many number of colours.  

(Refer Slide Time: 19:21) 

 

So that is all about vertex colouring. Now let us see a related concept which is called as edge 

colouring. And again let us first to see a motivation for studying this problem and then we 

will discuss the general theory. So, the motivation here is how to schedule a round robin 

tournament. So, what do we mean by that? Imagine you have n teams say n cricket teams 

representing n countries and again for simplicity assume n to be even but that is not 

necessary. 

 

And in a round robin tournament each team has to play against each other. And then based on 

the results we decide the semi final and then final. So, now we want to schedule the matches, 

so it is possible to schedule all the matches in 1 single day. So, you will be having 
𝑛(𝑛−1)

2
 



number of matches and you may schedule all the matches.  In that case each team has to play 

multiple matches but you do not want to put too much stress on the teams. 

 

So, you want to schedule the matches in such a way that no team is forced to play more than 

a single game on any day. And the goal is to come up with a schedule so that you finish all 

the required matches satisfying this condition in minimum number of days; again you can do 

the following: each day just schedule 1 match. And in that case you will require 
𝑛(𝑛−1)

2
 

number of days to schedule all the matches. 

 

But that will be overkill because audience may not be so much patient, you might schedule 

multiple matches in parallel and simultaneously satisfy this requirement. So, what will be the 

graph theoretic formulation here so the input will be a complete graph with n nodes and 

output will be an edge colouring with least number of colours and what is an edge colouring 

here? We want to now colour the edges not the vertices. 

 

And we want to colour the edges in such a way that if you have an edge ei and ej which are 

adjacent, adjacent in the sense they are incident on a common node then they should get 

different colours you cannot assign the same colour simultaneously to such edges ei and ej. 

So, for instance if I take a complete graph of 4 nodes then I can do the colouring in the 

following way. I can colour the edge between 1 and 4 and 2 and 3 with the same colour. 

 

Because those 2 edges are not adjacent because their endpoints are completely distinct.  I can 

assign the same colour to the edges between 4 and 3 and 1 and 2 because the endpoints are 

completely distinct. And I can assign the same colour to the edges between 1 and 3 and 4 and 

2. So, I need 3 colours here and that corresponds to the fact that I can do the scheduling in 3 

days: the first day we can schedule the match between team number 1 and 4 and team number 

2 and 3 that would not force any of the teams to play more than 1 match. 

 

On day number 2 you schedule the match between team 4 and 3 and team 1 and 2. Again that 

would not force any team to play more than 1 match. And on the third day you schedule the 

match between team 4 and 2 and team 1 and 3. 

(Refer Slide Time: 23:11)   



 

So, now coming to the general problem of edge colouring you are given a graph without 

loops. And what we want here as an output? We want to output an assignment of colour to 

the each edges of the graph so that no two adjacent edges and by adjacent edges I mean who 

have common incident vertex. So, I need a colouring of the edges in such a way that no two 

incident edges are assigned the same colour. 

 

So, like vertex chromatic number we have a related concept called edge chromatic number 

and this is denoted by  χ1. So, χ0 was for vertex chromatic number and χ1 is for edge 

chromatic number. So, what is edge chromatic number? Edge chromatic number of a graph is 

the minimum number of colours needed to colour the edges of the graph satisfying this 

condition that no two adjacent edges are assigned the same colour. 

 

And again like vertex colouring, finding the edge chromatic number of an arbitrary graph 

with large number of vertices is a hard problem, you do not have efficient algorithms or 

practical time algorithms for finding the minimum number of colours. Of course you can do a 

brute force and try to see whether 1 colour is sufficient, 2 colour is sufficiently, 3 colour is 

sufficient, 4 colour is sufficient, 5 colour sufficient. 

 

And then you will hit upon the right answer but that will require you enormous amount of 

time so that is not an efficient algorithm. Now can we find a lower bound on the edge 

chromatic number that means what can I say that definitively these many colours are indeed 

required: it turns out that the lower bound is nothing but the maximum degree you take the 

vertex which has the maximum degree say the vertex v has the maximum degree. 



 

So, I have the vertex v and it has the maximum degree and how many edges are there? Δ(G) 

number of edges are incident with the vertex v. So, definitely I need these many number of 

colours to colour all the edges incident with the vertex v because none of these edges can be 

assigned the same colours because all of them are incident with a common vertex namely v.  

Definitely these many number of colours are required but I may need more than these many 

colours as well. 

(Refer Slide Time: 26:12) 

 

And what can I say about upper bound so there is a very interesting theorem called as the 

Gupta-Vizing theorem which says that if you have a simple graph then you do not need more 

than these many number of colours: Δ(G) + 1. So, basically we get a range of values for edge 

chromatic number the lower bound was the maximum degree and upper bound is 1 plus the 

maximum degree. 

 

Now finding the exact value is the hard problem. So, again if you want to verify whether this 

theorem is true or not take the case of a triangle graph where you need 3 colours basically to 

colour all the edges of the graph. So, due to interest of time I am not going into the exact 

proof of the Gupta Vizing theorem because it is slightly advanced but if you are interested 

you can refer to any standard reference. 

(Refer Slide Time: 27:11) 



 

So, these are the references for today’s lecture. And with that I conclude today's lecture; just 

to summarize in this lecture we introduced the problems of vertex colouring and edge 

colouring. We saw the notion of vertex chromatic number, edge chromatic number, we 

discussed greedy algorithm for vertex colouring which may not give you the optimal 

colouring always. And we discussed various bounds for vertex chromatic number and edge 

chromatic number. Thank you. 


