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Hello everyone welcome to this lecture the plan for this lecture is as follows. In this lecture 

we will discuss about Euler path and Euler circuit and we will see the characterization for the 

existence of Euler path and Euler circuits in a graph. 
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So, let us start with the definition of Euler circuit and Euler path. So, imagine that you are 

given a graph then an Euler circuit is a simple circuit which contains every edge of the graph. 

So, since it is a circuit that means the starting point and the end point of the trail or the tour 



will be the same that means you have to start at the same vertex and you have to end at the 

same vertex in the tour. 

 

And it is simple in the sense that during the tour the edges are not allowed to be repeated. So, 

it is a special type of simple circuit in the sense that it contains every edge of the graph; no 

edge of the graph will be absent in this simple circuit if you have the existence of such a 

simple circuit and the circuit will be called as an Euler circuit. And if you have an Euler 

circuit in your graph then the graph will be called as an Eulerian graph. 

 

Whereas an Euler path is a simple path which contains every edge of the graph so the 

difference between Euler path and Euler circuit is that in the case of Euler path your starting 

point and end point are not same because it is just a path. However it is still simple and hence 

the edges are not allowed to be repeated. Whereas in the case of Euler circuit edges are not 

allowed to be repeated but you also need the fact that the starting point and end point should 

be the same. 

 

So, let us see some examples of both these concepts. So, imagine this is a graph given to you 

then this graph has an Euler circuit and hence this graph will be an Eulerian graph. So, if you 

follow the tour along the blue edges or the blue arrows that gives you an Euler circuit. So, for 

instance suppose I start at e in fact you can start at any vertex and I first go from e to d that 

takes care of this edge then I go from d to c that takes care of this edge between d and c. 

 

Then I go from c to f that takes care of this edge then from f I go to g that takes care of the 

edge between the node f and g then I go from g to c that takes care of this edge. And then 

finally I stop my tour by traversing the edge between c and e. So, you can see I started at e 

and ended my trip at e and in my tour all the edges of the graph are covered and no edge is 

repeated. Hence this is an example of an Euler circuit. 

 

Whereas if you see this graph then it is easy to verify here that this graph does not have any 

Euler circuit you start at any vertex it is impossible to make a tour starting at the same vertex 

and ending at the same vertex and traversing every edge of the graph exactly once and 

without repeating any edge that is not possible. So, for instance let us try to make a tour 

starting from a so if I traverse from a to c and then if I go from c to d. 

 



And then if I go from d to e and then from e to b and then if I go from b to d and then if I go 

from d to a. And then if I go from a to b by the time I reach b I have traversed all the edges 

but now you see that my current point is b and I started my tour at a. So, the requirement of 

Euler circuit is that tour should start and end at the same vertex. So, currently I am at b if at 

all I want to end my tour at a I will be repeating the edge between b to a. 

 

And hence this tour will no longer be a simple circuit. However this graph has an Euler path 

because if you follow the tour along the edges highlighted in the red color then I have started 

the tour from a ended my tour at b and I have traversed all the edges of the graph exactly 

once. So, hence this graph is not an Eulerian graph because it does not have an Euler circuit 

but it does have an Euler path. 
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So, Euler gave a very simple necessary and sufficient condition according to which you can 

verify easily whether a given arbitrary graph as an Euler circuit or not. So, the theorem 

statement is the following.  Imagine you are given a connected graph that is important and 

your graph need not be a simple graph it can be a multi graph by multi graph I mean that 

between the same pair of vertices you might have multiple edges. 

 

So, the graph need not be a simple graph but still I can define the notion of Euler circuit and 

Euler path even for multi graph. So, imagine you are given a connected undirected graph 

which is a multi graph and the graph has at least 2 nodes because if my graph is just a single 

node then again the notion of Euler circuit does not make much sense there. So, imagine you 

are given a multi graph which is connected and it has at least 2 nodes. 



 

Then what Euler proved is that the graph will have an Euler circuit if and only if each of the 

vertices in the graph has even degree. And this condition is both necessary condition as well 

as a sufficient condition because this is an if and only if statement. So, we will prove both the 

necessity condition as well as the sufficient condition. So, let us first prove the necessity 

condition namely the only if part. 

 

And for that we have to show the following implication we have to prove that if your graph 

has an Euler circuit then it implies that each vertex of the graph has even degree you cannot 

have any vertex in the graph which has an odd degree. So, and it is very simple to prove this: 

so imagine, your graph. you are given an arbitrary graph which may not be a simple graph 

and imagine that a graph indeed has an Euler circuit. 

 

So, I am calling an Euler circuit which is there in your graph by T.   I am denoting it by T. So 

since it is an Euler circuit the tour T will start and end at the same vertex. So, I am denoting 

the starting point and the ending point of the tour by the node a. So, the first thing to observe 

here is that the degree of the vertex a in your graph will be even why so? Because the first 

edge of the tour will be incident with a, namely it will be an edge coming out or incident with 

a that means because your tour is starting from the node a. 

 

So, the the first edge in the tour which is incident with the node a will contribute 1 to the 

degree of a. And since your tour also ends with the node a that means last edge in the tour is 

also incident on the incident with the node a. So, that implies that definitely the degree of a is 

at least 2. And if your node a occurs as an intermediate node in the tour T then again it 

contributes 2 to the degree of a. 

 

Because each time you will be entering the node a via some edge and you will be coming out 

of the node a in the tour. So, the edge through which you enter the node a in the tour that 

contributes 1 to the degree of a and edge through which you are coming out of the node a in 

the tour contributes again to 1 to the degree of a and it can happen multiple times. So, if your 

node a is appearing p number of times as an intermediate node in that tour, then the overall 

degree of a will be 2 times p and this is apart from the degree 2 which is contributed because 

the starting edge of the tour was incident with a and the ending edge of the tour is also 

incident with a. So, every time you enter the node a or a occurs as an intermediate node you 



are actually counting 2 to the degree of a and since my circuit T is an Euler circuit that means 

all the edges incident with a in my original graph will be covered; will be appearing 

somewhere in my tour T. 

 

And as we have argued here each time the node a occurs in the tour we are actually counting 

2 to the degree of a. So that shows that the degree of the node a will be even.  In the same 

way I can argue that if you take any intermediate node b which is appearing in the tour it will 

contribute 2 to the overall degree of b because if your tour is, if this is a part of the tour where 

you enter the node b, and then by following some edge incident with b you go to some 

another node and then again suppose you come back to the node b through some edge and 

again you leave the node b. So, every time you enter the node b and you come out of the node 

b you are counting 2 for the degree of b. So, again following the same logic as we have used 

to argue that the degree of node a is even we can conclude that the degree of the node b also 

will be even. 

 

And again since all the edges incident with the node b in your original graph will be 

appearing somewhere in the tour T that shows that the degree of the node b is even. So, 

necessity condition is very simple. 
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Now we will prove the sufficiency condition if part and for that we have to show the 

following: I have to show that if you are given a connected multi graph where all the vertices 

have even degree then there exists at least 1 Euler circuit in your graph there might be 

multiple Euler circuits also possible in your graph but at least 1 Euler circuit is definitely 



there. And for proving the sufficiency condition I will discuss here an algorithm called as 

Fleury’s algorithm. 

 

By running this algorithm on a graph we are the degree of every vertex is even we are 

guaranteed to obtain an Euler circuit and algorithm is very simple. And overall the main 

principle followed in this algorithm is that when you are trying to make a tour in the graph by 

using the Fleury’s algorithm try to not burn the bridges; by bridges I mean the cut edges try to 

avoid traversing the cut edges until and unless it is not possible to avoid traversing the cut 

edges or the bridges. 

 

So, the algorithm is an iterative algorithm because in each iteration we will be advancing our 

tour and after a certain number of iterations our tour will end and we will end up covering all 

the edges of the graph. So, we can start the tour from any vertex there is no restriction that 

you should start the tour only from a specific vertex you can pick any vertex to start your 

tour. So, the vertex from where I am starting my tour I am denoting it as v0. 

 

And I am defining a set W0 which is initialized to the set v0 my starting point of the tour and 

in each iteration I will be picking an edge which I will be traversing next in my tour and once 

I traverse that edge since I require overall; since my final output should be a simple circuit 

where the edges are not allowed to be repeated once I have traversed an edge in the graph I 

should not consider it in the future iteration. 

 

So, I will keep on updating my graph once an edge is traversed I should remove it for further 

consideration. So, as a result my graph also will keep on getting updated.  So my initial graph 

G0 will be the input graph G itself because as of now I have not traversed any edge I have just 

decided the starting point of my tour. Now as I said the algorithm is iterative so imagine you 

have finished the k iterations. 

 

So, right now k = 0 but imagine that you have already obtained a partial tour and your partial 

tour has already traversed k number of edges edge e1, edge e2 and edge ek where the edge e1 

is incident with the node v0 and v1 the edge e2 is incident with v1 and v2 and like that the edge 

ek is incident with vk - 1 and vk. So, imagine that this tour has been this is the partial tour 

which you have already done through the Fleury’s algorithm. 

 



Now you have to decide what should you do in the next iteration. So, as I said your graph G 

also keep on getting updated because as you keep on traversing more and more edges those 

edges are removed from further consideration. So, since my edges e1, e2, ek have been already 

traversed and covered in my tour I will be removing those k edges from my graph and 

updated graph is Gk. Remember by removing the edges we are not removing the vertices we 

are just removing the edges which we have traversed vertices remain as it is. 

 

Now for the next iteration we will do the following. So, since my current tour has stopped at 

the node vk I will check whether there are more edges to be traversed incident with the node 

vk in my graph Gk that means I will just check whether there are any more edges left for 

traversing or not and that edge is incident with vk or not. If there are no more edges left 

incident with the node vk then I stop the algorithm and the tour Wk is my output tour. 

 

We will argue later that indeed this tour is an Euler circuit. But suppose if there are still some 

more edges which are left which are not yet traversed and those edges are incident with vk 

then I have to select the next edge incident with vk for traversing. Now there might be 2 

possibilities here if you have only 1 edge left in the graph which is incident with vk you have 

no choice you have to traverse that edge because you have to ensure that that edge is covered 

as part of the tour. 

 

So, in that case you have no other choice; no other option. But imagine you are in a scenario 

where there are multiple edges which are still not traversed and incident with vk then among 

all those edges which are still incident with vk you should select your next edge for 

traversing. And you should give preference to a non cut edge of the graph Gk and that is what 

I mean by do not burn the bridges that means say you have reached the node vk. 

 

And you have multiple edges still left in the graph incident with the node vk. So, what the 

algorithm says is you cannot arbitrarily choose any of those edges.  Among all the edges 

which are still incident with vk and not yet traversed, check which of the edges are non cut 

edges for the graph Gk I stress for the graph Gk because now your graph is Gk not the original 

graph because in the original graph you have already removed the edges e1 to ek. 

 

So, if you have non cut edges still left in the graph Gk give preference to non cut edge but if 

you have no non cut edge available incident with vk then feel free to use or traverse any of the 



cut edge incident with the vertex vk that is what is Fleury’s algorithms. So, once you have 

decided that edge ek + 1  has to be traversed next by following the preference rule dictated by 

the Fleury’s algorithm you will update your tour to Wk + 1. 

 

And that updated tour will now have this new edge ek + 1  included incident with the nodes vk 

and vk + 1 . And then you will again go to the next iteration, that is the algorithm; a very 

simple algorithm. 
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So, let me demonstrate this algorithm so imagine this is a graph given to you. And you can 

easily check here that this graph indeed satisfies the sufficiency condition as dictated by the 

Euler’s theorem because indeed every vertex in this graph has an even degree. So that means 

if I run the Fleury’s is algorithm I should definitely get an Euler circuit. So, let us check 

whether we get an Euler circuit here or not. 

 

So, I start with the node v0 and there are 2 edges left incident with the vertex v0 my graph G0 

is my original graph and both the edges are non cut edges for the graph G0 so you are free to 

traverse any of them. So, suppose I traverse the edge between the node v0 and v2 and hence I 

remove that edge and I updated my tour. Now this is my graph G1. . Right now I am at the 

node v2 and I have 3 edges which are not yet traversed then incident with the node v2 and 

none of them is a cut edge.  

 

So, I am free to traverse any of them, so suppose I decide to traverse the edge between v2 and 

v1. And hence I remove it from the graph I updated my tour and my graph gets updated to G2. 



Now I am at the node v1 now you can see that I have 3 edges incident with v1 the edge 

between v1 and v3 the edge between v1 and v4 and the edge between v1 and v0. And you can 

see that the edges between v1 and v3 is a non cut edge.  

 

And also the edge between v1 and  v4 is also a non cut edge but the edge between v1 and v0 it 

is a cut edge because, indeed if you remove the edge between v1 and v0 the vertex v0 gets 

disconnected from the rest of the graph in G2. So that is why as per the Fleury’s algorithm 

when you have the choice here between selecting the cut edges and non cut edges you should 

give preference to the non cut edges that means you should either traverse edge v1, v3 or you 

should traverse the edge v1, v4.  

 

And you can check why that is the case because if you do not follow the Fleury’s algorithm 

and you decide to make or include this edge namely the edge from between v1 and v0 and you 

advance your tour and you reach v0 then you are stuck you still have lots of edges to cover. 

And you have now reached a point where from that point if you want to come back to the 

graph you have to repeat the same edge between v0 and v1.  

 

And hence you will not obtain a simple circuit. So that is why Fleury’s algorithm says when 

you have an option between cut edge and non cut edge you should give preference to non cut 

edge. So, we will give preference to either the edge between v1 and v3 or the edge between v1 

and v4. So, I followed the edge between v1 and v3 and now I am at v3. I have 3 edges incident 

with v3 none of them is a cut edge so I can select any of them.  

 

So, I select the edge between 3 and 5 now I am at v5. And now you can see that there is only 

one edge incident with the node v5 which is not yet traversed namely the edge between v5 and 

v4. And indeed that is a cut edge in the graph G4. But I do not have any choice I have to 

traverse that edge because there is no other edge left incident with v5 other than the edge 

between 5 and 4. So, I have to traverse that edge but that would not cause any issue.  

 

Because if I traverse the edge between v5 and v4 that means I have now taken care of all the 

edges incident with v5 in my original graph. And I do not need to come back to the node v5 in 

my future iterations of the tour. So, now I am at the node v4, multiple edges are incident with 

the node v4 none of them is a cut edge so we can choose any of them I choose to traverse the 

edge between 4 and 2.  



 

Now at vertex v2 there is only 1 edge incident namely between v2 and v3 which is indeed a 

cut edge for the graph G6 but I have no other option. So, I have to traverse that edge but that 

would not cause any issue. Now I am at v3 there is only 1 edge incident with v3 which is a cut 

edge but again not an issue and I have to follow that edge because there is no other option. 
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So, I go to the node v4.  Again there is only 1 edge left incident with v4 which is a cut edge. 

So, I have no choice I have to traverse that edge I am now at v1 and there is only 1 edge left 

in the graph, traverse that edge and now you have your tour ending. So, W10 will be the tour 

T which was output tour of your Fleury’s algorithm and it is easy to see thatwe have indeed 

obtained an Euler circuit. So that is a demonstration of Fleury’s algorithm. 
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So, now we want to prove that indeed the output of Fleury’s algorithm is an Euler circuit and 

the proof is slightly involved. But I will try to give you a high level overview of the proof of 

correctness. So, what we want to prove here is that if your graph G is a connected graph and 

multi graph; remember for Euler circuit I do not need my graph necessarily to be a simple 

graph. As long as all the vertices of the graph has even degree that is fine. 

 

I will end up getting a circuit which covers each and every edge of the graph even if there are 

multiple edges between the same pair of nodes. So, the theorem statement that I want to 

prove here is that if your graph is connected and every vertex has even degree then by 

running this Fleury’s algorithm a very simple algorithm you can see the algorithm is very 

simple. So, the claim is that by running this simple algorithm the output tour that we obtain is 

indeed an Euler circuit. 

 

So, there are multiple things which we have to prove regarding the output that we obtain as 

part of the Fleury’s algorithm. So, let the output be Wk that means I have run for k iterations I 

have to first show that indeed the output is a simple path that means no edge is repeated.  

That means all the edges e1, e2, ek which I obtain in the tour Wk are distinct edges but that is 

very simple to prove because what we are doing in the Fleury’s algorithm if you check this 

step. 

 

Once I have decided the next edge to traverse I am not going to consider it in the future 

iterations I am simply removing it from my original graph G and I am updating my graph. So 

that ensures that in each iteration I am selecting distinct edges and hence my output will be a 

simple path. The next thing I have to prove is that not only the output is a simple path it is a 

closed circuit that means the starting point and the end point they are the same. 

 

And there are multiple ways to prove this: a very simple proof will be proof by contradiction. 

So, we want to prove that v0 and vk are same that is what we want to prove but on contrary 

assume that vk and v0 are different. So, assuming this contrary statement I have to arrive at 

some false conclusion or false statement.  So let us see what is the false conclusion we can 

arrive at.   So, since I have terminated my tour with the node vk, that means this particular 

step which determines the termination condition of your algorithm guarantees or implies that 

there are no more edges incident with the vertex vk in your graph Gk .  There are no more 

edges left that means what I can say is the following if the node vk which is my endpoint of 



the tour has appeared p number of times in there tour. So, remember the vertices are allowed 

to be repeated in your Euler circuit. 

 

It is the edges only which are not allowed to be repeated. So, it is not necessary that vk has 

appeared exactly once it can appear multiple times in fact it can appear multiple times. So, 

imagine it has appeared p number of times that means you started with your tour with v0 you 

went to v1 and you continued your tour and you stuck vk somewhere and then again you came 

out of vk. 

 

And then again suppose you entered vk and then again you came out of vk and so on. So like 

that assume that vk has appeared p number of times in your tour. That means the degree of the 

vertex vk in your original graph is 2 times p + 1 why 2 times p + 1? Because out of those p 

times where the vertex vk is appearing, the last occurrence is actually the occurrence where 

you are actually terminating the tour. 

 

So, you remember you are terminating your tour with the vertex vk. So that means out of 

those p times definitely 1 time is the last occurrence. And the remaining p - 1 times you have 

entered you have come out you have entered you have come out you have entered you have 

come out. So, I am assuming here that the vertex vk is occurring as an intermediate node p 

times apart from the final occurrence. 

 

So, where a p number of occurrences of the vertex vk as an intermediate node and there is a 

final occurrence of the vertex vk as the endpoint of your tour. So that means that the overall 

degree of the vertex vk is 2 times p + 1, 1 because of the final appearance of the vertex vk in 

the tour and 2 times p because it is occurring as an intermediate node and each time it is 

occurring as an intermediate node we are counting 2 to the degree of the vertex vk. 

 

So that means the overall degree of the vertex vk is 2 times p + 1 which is an odd quantity and 

this is a contradiction, contradiction to the fact that in my graph it is guaranteed that all the 

vertices are of even degree. So that means whatever I have assumed here is contrary; that 

means my starting point and end point are the same. 
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So that means whatever output I obtain it is indeed a simple circuit now left is the tricky part 

to prove. So, we have to prove that indeed the tour Wk, the simple circuit Wk, which we 

obtain here it has all the edges of the graph G, no edge is missing in this tour and the proof 

will be by contradiction. Again there could have been multiple ways but we will follow a 

proof by contradiction approach. 

 

So, imagine that some vertices of positive degree are still left in my graph Gk. So, remember I 

have stopped my algorithm at the kth iteration because I am assuming that my tour consists of 

k edges. So, the instance of the graph left at that point is the graph Gk and since I am 

assuming that there are still some untraversed edges left in my graph that means there are 

some vertices which do have incident edges left in my graph Gk. 

 

That means in other words there are still some vertices of positive degrees left in my graph 

Gk. So, I am denoting the set of all the vertices which still have some untraversed edges left 

in the graph Gk by the set S. So, namely it is the set of all the vertices which have degree 

greater than 0 in the leftover graph Gk. The first thing to observe here is that since you started 

with your original graph where all the vertices have even degree, it is guaranteed that even in 

the set S all the vertices still have even degree. So, if you have not at all traversed any edge 

incident with the vertex in a set S that means whatever was its original degree that is still left 

that means its original degree was even and that even quantity is retained as a degree in my 

graph Gk as well. Whereas if you have traversed some of the partial edges incident with node 

v in the set S that means if its original degree was some 2 times p, and if you have traversed 

some of the edges that may say the vertex v has occurred q number of times that means you 



have taken care of 2 q degree that means the leftover degree will be 2 p - 2 q which is still an 

even quantity. So, that ensures that each vertex in my graph S still have even degree; whereas 

for every vertex vk, the vertex vk with which I have stopped my tour it is not a member of S. 

Because since I have ended my tour with the vertex vk and ending condition or the 

terminating condition was that there are no more edges left incident with the vertex vk.  

 

So, I can say that the vertex vk is indeed a member of the set V - S. So, now the proof by 

contradiction here basically would like to derive the following : we would like to derive the 

fact that if at all we have not obtained Euler circuit by running Fleury’s algorithm, that means 

at some point during some iteration in the algorithm we have not followed the Fluery’s rule 

namely there must have been some intermediate iteration where we would have traversed cut 

edge rather than traversing a non cut edge - that is a contradiction we have to arrive at.  

 

So, how do we arrive at that contradiction? So, let vp be the last vertex from the set S which 

appears in your output tour Wk. So, pictorially imagine that this path that is indicated by this 

dotted arrow that is a tour T obtained by your Fluery’s algorithm. And since we have 

terminated in the kth iteration this is my graph Gk. And what I am saying here is there must 

be some vertex vp which is there in your set S.  That means there are still some untraversed 

edges incident with the vertex vp and vertex vp is the last vertex; last vertex in the sense that 

there might be multiple vertices from the set S which could have occurred along your tour 

Wk.  Among all those vertices from the set S which has occurred in your tour Wk I am 

focusing on the last vertex which has appeared I am then calling that vertex as vp.  

 

So, first of all you might be wondering that what is the guarantee that such a vertex vp is 

there? Well if the vertex vp is not there that means the unexplored part of the graph which is 

not yet covered is completely separate or not at all have any overlap with your tour Wk; that 

means your original graph is a disconnected graph. But I am assuming that my original graph 

is a connected graph that means there must be some overlap between the uncovered portion 

and the output tour which you have obtained as part of your Fluery’s algorithm.  

 

And I am focusing on the last overlap here; overlap in terms of the vertex. So, the last overlap 

I am calling it as the vertex vp.  And since there are still some edges incident with my vertex 

vp in my graph Gk when I have terminated my algorithm, I denote by H the connected 



component in my graph Gk containing the vertex vp; that means whatever is the unexplored 

portion left in my graph and Gk incident with the vertex vp.  

 

So, the vertex of vp + 1 was selected during the p + 1th iteration and definitely the vertex vp + 1  

belongs to the set V - S that means in my final output when I am considering the graph Gk 

there would not be any more edges left which are not yet traversed and still left and incident 

with vp + 1 because vp + 1 is not a member of the set S it belongs to the set V - S because the 

last appearance of a node from the set S is vp not vp + 1  that means all the edges which are 

incident with vp + 1 would have been traversed as part of the tour Wk.  

 

This implies that the edge vp and vp + 1  which you have selected during the pth iteration is a 

cut edge in the graph instance Gp. Because if this edge vp and vp + 1  is not a cut edge that 

means there is still a way to go to edge and then come back to the vertex vp + 1  then that 

violates the assumption that vp is the last occurrence of a node from the set S which appears 

along your tour Wk.  

 

So that is why there is no way to go back to this unexplored portion H and come back which 

implies that this H between vp and vp + 1  is actually a cut edge in your graph Gp. Now since 

my vertex vp is a member of the set S and it has some untraversed edges left over in the graph 

Gk that means it has at least one edge incident and that edge is a part of my sub graph H. So, I 

am calling that vertex as vertex V so there might be still multiple edges incident with the 

vertex vp left I am calling one of the edges as the edge v, vp.  

 

And notice that H is connected because that is our definition of a connected component. And 

we have already argued that whatever vertices that are there which have untraversed edges 

left they still have even degree; that means every vertex in this connected component has an 

even degree. So that means now you have an untraversed portion in the graph which is 

connected and where every vertex has an even degree.  

 

So, it is a very simple fact to prove which I am not proving here that if you have a connected 

graph or a connected sub graph where you have every vertex of even degree. Then it would 

not have any cut edge that means none of the cut edges in the graph H will be a cut edge. So 

that shows that during the pth iteration you have an option of selecting a non cut edge namely 

the edge between the vertex v and vertex vp this edge. 



 

That edge was still there to traverse which was a non cut edge during the pth iteration but you 

did not follow the Fleury’s instruction but rather followed the edge between the vertex vp and 

vp + 1. And due to which you have leftover portion of the graph namely the portion H which 

has not yet obtained as an output in your overall algorithm. So that means you have not 

followed the Fleury’s algorithm that means you have given preference to a cut edge rather 

than a non cut edge which is the contradiction. So that means if we follow the Fleury’s 

algorithm systematically there is no possibility of leaving out any edge in the graph. 
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So that was the simple characterization of Euler circuit. Now let us quickly prove a 

characterization of Euler path. So, the characterization of Euler path is that in your graph 

there should be exactly 2 vertices of odd degree and remaining all vertices should have even 

degree. So, the necessity condition again can be proved along similar lines as we did for the 

characterization of Euler circuit. So, we want to prove that if at all you have an Euler path 

then there are exactly 2 vertices of odd degree. 

 

So, imagine your Euler path that is there in a graph is T which starts at the vertex a and ends 

at the vertex b. So, it is easy to argue here that degree of and degree b will be both odd 

because the first edge of the tour will be incident with the node a which will contribute 1 to 

the degree of a and if a occurs as an intermediate node p number of times then that 

contributes 2 times p to the overall degree of a. 

 



So, hence the overall degree a will be 2 times p + 1 and same we can argue for the node b as 

well. Whereas if you take any other intermediate node c different from a and b which is 

occurring say k number of times in the tour then the overall degree of node c will be 2 times 

k; so that proves the necessity the condition. 

(Refer Slide Time: 41:26) 

 
How do be prove the sufficiency condition? So, imagine that you have a connected multi- 

graph where you have exactly 2 vertices of odd degree remaining all vertices of even degree 

then I have to show that I can find out an Euler path; so imagine that 2 vertices which are 

having odd degrees are a and b. So, what we do is we add dummy edge in my graph between 

those special nodes a and b which have odd degrees. 

 

And let G’ be the resultant graph.  Now it is easy to see that the graph G’ all the nodes 

including the node a as well as node b have even degree and that satisfies the characterization 

of Euler circuit. So, I can run the Fleury’s algorithm on the modified graph G’ to obtain an 

Euler circuit; I call it T. And now in that Euler circuit just remove the dummy edge imagine 

or pretend thus edge is dummy edges are not there. 

 

The resulting trail will be a simple trail which will have all edges of the original graph it 

would not have the dummy edge that you have added. So, for instance suppose tour T is like 

this you traversed and suppose you reached the vertex a and suppose as part of the tour that 

you have obtained as an output of Fleury’s algorithm; this is a tour you started at a same 

vertex you ended at same vertex and this tour has all the edges of the dummy graph. 

 



So, you can imagine or you can extract out an Euler path of this term is tour as the following 

you can imagine as your tour starts with b and then follow this tour and end at a and just 

ignore this dummy edge that is all so that will be continue that has an Euler path. 
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So that brings me to the end of this lecture.  These are the reference used for today’s lecture, I 

also follow some of the notes from Prof. Choudum’s NPTEL lecture on graph theory 

specially for the proof of correctness of Fleury’s algorithm. So, just to summarize in this 

lecture we saw the definition of Euler circuit, Euler path and we proved the necessary and 

sufficient condition for the existence of Euler circuit and Euler path in the graph, thank you.  

 


