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Hello everyone, welcome to this lecture on resolution just a quick recap. 

(Refer Slide Time: 00:27)

In the last lecture we discussed about valid arguments, argument form when exactly we say an

argument form to be valid and so on and we also saw various rules of inferences. The plan for

this lecture is as follows in this lecture we will discuss about resolution which is an important

influence rule and based on resolution we will see a proof strategy which is called as proof by

resolution refutation. 
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So to  begin  with,  let  us try  to  understand what  exactly  is  the  resolution  rule.   It  is  a  very

important  inference  rule  and  it  is  used  extensively  in  this  programming  language  called

PROLOG. So recall I said that PROLOG is an important programming language, which is used

in AI applications. So what exactly is this resolution rule? So it says the following, imagine you

are given two clauses. So C1 is the clause and C2 is another clause. 

And the important property here is that I have a literal L which is present in positive form in C1

and negative form in C2. So you can imagine that C1 is a huge clause consisting of one or more

literals, one of the literals is L. So just to recall a literal is propositional variable or the constants

True or False. So what I am saying here is that we have two clauses C 1 and C2. In C1, we have

some literal L and the same literal is available in a negation form in C2. 

The remaining portion of C1, I  am denoting it  as C1’ and the remaining portion of C2, I  am

denoting it as C2‘. So you have 2 such clauses and what this resolution rule says is the following.

It says that, if it is given that the clause  C1 and C2 are true, then based on the truth of these 2

clauses we can conclude, conclusion C1‘ ˅ C2‘. So in some sense you can imagine that resolution

rule is something equivalent to cancellation rule.

That means you can cancel out the literal L if it is available in positive form in C1 and negative

form in  C2 and  whatever  is  left  in  C1 and  C2 you  take  the  disjunction of  that  will  be  the



conclusion of C1. and C2. So in some way you are actually simplifying your clause C1 and C2. So

in argument form the resolution rule can be stated as follows. So this is the argument form of

resolution inference rule.

It says that if you are given the clauses C1 and C2 where, C1 is C1‘ ˅L and C2 is C2‘ ˅¬ L. Then

based on these two premises, you can conclude the conclusion C1‘ ˅C2’. I stress that to apply the

resolution rule you need C1 and C2 to be clauses. That means C1 and C2 have to be compound

propositions which are available in the form of clause. It should not be available in a different

form. 

So the conclusion that we can draw from the resolution rule namely the disjunction of C1‘ and

C2‘ is also called as the resolvent of the clauses C1 and C2. That means after resolving the clause

C1 and C2 we are getting the resolvent C1‘ ˅C2‘. And remember as per our definition of argument

forms since we are saying that our resolution is a valid argument form.

And a definition  of  valid  argument  form is  that  conjunction  of  premises  implies  conclusion

should be a tautology. That was our definition of a valid argument. Then since we are saying that

resolution as a valid inference rule we will prove that, assume for the moment resolution is a

valid inference rule, it means that we can say that the conjunction of clauses C 1 and C2 where C1

and C2 have the common literal L available in positive as well as in negative form in C1 and C2

respectively  implies  the  disjunction  of  C1‘  and  C2‘  is  a  tautology.  It  will  always  be  a  true

statement we will prove that very soon. So, that is the resolution. So now we want to prove that

indeed the resolution is the,  indeed resolution in principle that we are stating here is a valid

argument form. So what we have to prove is we want to prove  this statement that  indeed this

implication is a tautology. So for that we assume that a left hand side of this implication namely

the conjunction of C1 and C2 is true. 

Why we are assuming it to be true because remember we want to show that this implication is a

tautology and this implication is true for all other cases. Remember the truth table of implication

of false → false is true, false → true is true and in the same way true → true is true. So for these

three cases by default this implication is always a true statement we have to consider the fourth



case when your left hand side of this implication is true and we have to show in that case the

right hand side of the implication is also true.

That will prove that this implication is indeed a tautology. So that is why I am assuming here that

the  left  hand side of  your  implication  is  true.  So  now I  can  split  my proof  into  two cases

depending upon whether my literal L which is available in positive form and negative form in C1

and C2 respectively is true or not. So if L is true since I am assuming that this whole conjunction

is a true statement and since L is true, that means this portion here, this portion of your left hand

side. Since I am assuming it to be true this has to be true right the disjunction of C2‘ and negation

of  L has  to  be  true  because  then  only  the  overall  conjunction  can  be true. But  since  I  am

assuming L to be true negation of L will be false. And if negation of L is false then in order that

is the overall C2 should be true. I require that C2‘ should be true.

And if  C2‘ is true then you take the  disjunction of  C2‘ with  anything, say with  C1‘ the overall

disjunction will always be true.  So that  proves that this implication is a  tautology for case one

that means if you assume your left hand side is true of this implication and if  L is true, then I

draw the conclusion that even RHS is also true. Now take the second case when L is false, so

these are the two possible cases with respect to the literal L, can be either true or it can be either

false.

So if you literal L is false then I focus on C1 this is your whole C1. And since I am assuming that

this overall conjunction is true, this overall conjunction will be only if the individual clauses here

are true. But if I focus on the clause C1 I am assuming case two where L is false. Then in order

that C1 is true, C1‘ has to be definitely true. Because if C1‘ is also false and if L is also false your

C1 can never be true.

But I am assuming that my left hand side is true. So now if C1‘ is true, I take the disjunction of

C1‘ with anything the overall disjunction will be true.  So that proves that even for case  2 my

RHS is true and that proves that,  this implication that I have stated here is indeed a  tautology.

And since it is a tautology as per my definition of valid argument form I can say that resolution

is indeed a valid inference rule or it has a valid argument form and hence the corresponding



inference rule is indeed valid. Resolution is a valid argument form.
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So we have seen already how to find or how to resolve a pair of clauses, now next we want to see

how exactly we resolve a set of clauses where we may have more than two clauses. So imagine

you are given a set of n clauses and I would be interested to resolve the clauses in this set, which

is often called as a resolvent of the set of clauses. So the idea remains the same that means we

will keep on finding two clauses from this collection and keep on resolving them and we stop till

we cannot proceed further. 

So basically we build what we call as a resolution tree and in the resolution tree we can keep the

n clauses that are given in my set S at the root level, that means by default we can imagine that

the clauses C1, C2 Cn each of them belongs to the resolvent of my set of clauses S because I can

always conclude  C1, I can always conclude  C2 and I can always conclude  Cn from my set of

clauses in S.

Now, next what I have to do is the following I have to resolve a pair of existing clauses which

are already there in  my tree and whatever  is  the resolvent  I  obtain by resolving the pair  of

clauses, which I have resolved that will be treated as a new clause which will be again added to

my tree. 



And then I go to this step and again pick two clauses which I can resolve, I find a resolvent and

again I add them to the resolution tree and I stop this process when I cannot find any more

clauses which can be resolved at that step I stop. That is how I can find a resolvent for a set of

clauses. I stress here that there is no restriction at each step regarding the choice of the clauses

which you can pick for resolving in what order you have to resolve the clauses and so on.

As long as you are picking two clauses which can be resolved and adding the resolvent to the

tree you are fine.

(Refer Slide Time: 11:57)

So let  me give you an example to show how exactly we compute the resolution of a set of

clauses, so imagine you are given here compound propositions  p → q, r → s, p and r. So the first

step will be that I will be converting this compound propositions into their corresponding clause

form because as of now p → q is not in its clause form. But by applying the rules  of logical

equivalence, I can convert p → q into ¬ p disjunction q and so on. 

So now I obtain clauses C1, C2, C3, C4 and this will be my set S. So now here is how I can build

my resolution tree at the root I can pick, I can keep all the clauses that are there currently in my

set S. And now I keep on picking clauses, pair of clauses, which I can resolve. So for instance, I

can resolve these two clauses by cancelling p and ¬ p and the  resolvent will be q which will be

now added to the tree.



Next, I can resolve r from these two clauses and a resolvent will be S and now you can see that I

can no longer find a pair of clauses which can be resolved further and I stop here and hence I will

say  that  the  resolvent  of  the  set  of  clauses  consist  of  the  conjunction  of  clause  q and  the

conjunction of the clause s. So that is how we actually built the resolution of a set of clauses.

(Refer Slide Time: 13:35)

Now, I will be discussing two key properties regarding the resolution of a set of clauses based on

which we will see a very nice proof strategy which we call as proof by resolution refutation. So

the first property here is the following, imagine you are given a set of n clauses. Now, the claim

here is that the empty clause or the constant False, or the false statement you can imagine you

can interpret it in different manner. 

So this is the constant False which is also denoted by the notation ϕ in some text that I will be

interchangeably using the constant  F as well as  ϕ for denoting the false statement or the false

constant. So the claim here is that a constant  false will belong to the resolvent of set of these

clauses if and only if this, the set of clauses in  S is unsatisfiable. What does that mean? That

means that if the conjunction of the n clauses is always false that is what it means when I say that

the set of clauses in S is unsatisfied. 

If the set of clauses is unsatisfiable that means no truth assignment of the clauses C1 to Cn can



satisfy to make it true.  That means it is always false. So the statement here is that if the set of

clauses in S is unsatisfiable,  then when you build the resolution tree for resolving the set of

clauses in S, you will see that, the constant F appears in the tree. So due to interest of time I am

not going to give you the proof for this but you can easily verify that this is indeed true.

And in fact later on  we will demonstrate the statement with an example.  Now, based on this

statement I can prove another statement which states the following. So here again you are given

with the clauses C1 to Cn and suppose C is another  clause. Now the statement says that,  the

clause C belongs to the resolvent of the set of clauses in S if and only if the set of clauses in S,

along with the clause ¬ C is unsatisfiable. 

So this union here means that I am adding the Clause ¬ C to the set of clauses in S. That means I

am basically taking the conjunction of the existing clauses in the set S and the clause ¬ C. So the

statement says here that the clause C will belong to the resolvent of S, if I build a resolution tree,

for the set of clauses in  S, I will see a node with label  C and the statement says that this is

possible if and only if the conjunction of the clauses in S along with ¬ C is false. 

And  by the previous statement I know that a set of clauses is unsatisfiable  if and only if the

constant False belongs to the resolvent of the set of clauses. So when can it be possible, so now

my set S is modified to C1 to Cn and along with that ¬  C. So when can I say that the set S

consisting  of  the  n  clauses  along  with  negation  of  C is  unsatisfiable  well, that  will  be

unsatisfiable if and only if the resolvent of C1, C2 and Cn and negation of C, gives me constant

False.

That means, I can say that a constant False belongs to the resolution of resolvent of the set of n

clauses along with negation of  C. So that is the second statement. 
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So  based  on  these  two  properties,  I  can  next  discuss  what  we  call  as  proof  by  resolution

refutation, so in the proof by the resolution refutation the goal is the following you are given an

argument form and you have to verify whether this argument form is valid or invalid. Namely, I

have  to  check  whether  the  conjunction  of  premises  implies  conclusion  is  true  or  not,  or

equivalently whether Q can be concluded logically from the conjunction of my premises.

Now the first thing that I do in the proof by resolution refutation is I can convert my premises as

well as conclusion into its equivalent clausal form because the premises P1, P2, Pm may not be

available in clausal form, so I have to convert them into the clausal form in the same way my

conclusion also need not be available in the clausal form. So I convert it into it is clausal form

and now my goal is to verify whether the equivalent argument form where everything is in the

form of clauses is valid or not.

Namely, I have to check whether C belongs to the resolvent of this set of clauses. So this is my

set S, I want to check whether I can conclude C from this set of clauses in S which is equivalent

to saying whether I want to check whether the clause C belongs to the resolvent of the set of

clauses and for that as per this property, I have to check whether the conjunction of my premises

along with the negation of the conclusion is unsatisfiable or not.

And that will be unsatisfiable only if the resolvent of my premises along with the negation of the



conclusion  is  empty  or  not.  Actually  it  is  not  exactly  equivalent  to  checking  whether  the

resolvent  is empty or not is actually  check equivalent  to checking whether  ϕ belongs to the

resolvent of this or not, because the resolvent of this set of clauses may consist of many clauses.

Among those clauses I have to check whether one of the clauses is empty close or not. 

If that is the case then it will show that this collection of clauses is unsatisfiable which will show

that this argument form is a valid argument form. 

(Refer Slide Time: 21:00)

So, let me demonstrate it with an example that will make things clear, so I am given a bunch of

premises you are given premise number 1, 2, this is your 1, 2, 3 and 4 premises and this is your

conclusion and I want to verify whether this is a valid argument form using proof by resolution

refutation method. The first thing I will do is, I will convert each of these English statements into

an abstract argument form where everything will be in terms of propositional variables.

So for doing that, I will introduce propositional variables to represent various statements. So let p

denote a statement today is Friday and q denote the statement I will go to a movie, if that is the

case then the first premise can be represented by p → q because this is a statement of the form if-

then. Then let r denote the statement today is bright and s denote the statement I will go outside,

then the second premise can be represented by r → s.



I have already introduced the variable p for denoting the statement that today is Friday, so the

third premise is p. I have already introduced a variable r to denote the statement today is bright,

so the fourth premise will be r. And what is the conclusion I am trying to do well I am trying to

do a conclusion that the disjunction of q and s. So I have to verify whether this argument form is

valid or not.

Well  you  can  use  truth  table  method  or  you  can  keep  on  applying  Modus  Ponen  and

simplification rule and so on to verify whether these argument form is valid or not. But goal of

this exercise is we will show that how this argument form is valid or not, how we can check that

using the resolution refutation method. 
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The first thing that we have to do is we have to convert the premises as well as the conclusion

everything in the form of equivalent clauses. So p → q is not in the form of clause, so we have to

convert p → q into its clause form and I can rewrite p → q in the form ¬ p or q by the way if you

are wondering how we are converting statements into its equivalent clause form that is nothing

but converting statements into its conjunctive normal form.

If you have to conjunctive normal form equivalent of the original statement that is nothing but

the clause form of your original statement. So, if I convert p → q and to conjunctive normal form

I get ¬ p or q, r → s is equivalent to ¬ r or s, p is anyhow in it is conjunctive normal form r is



anyhow in its conjunctive normal form and my conclusion is already in it is CNF. So that is the

equivalent clause form.

Now I have to verify whether this is a valid argument form or not and the proof by resolution

refutation says the following you take the premises. That is your set of clause s and you add the

negation of the conclusion to that and what will be the negation of the conclusion. The negation

of the conclusion will be negation of q ˅s. I can apply the De-Morgan’s law and take ¬ q, take

the negation inside and these are the two clauses corresponding to my conclusion which I am

adding to my resolution tree.

And now I have to, so the four clauses was your set s and these two clauses correspond to your

negation of conclusion and now I have to find a resolution of this set of clauses s union of ¬ c

and check whether I get the conclusion false or not. Again, I can pick any pair of clause and keep

on resolving, so what I do is I choose clause number c1 and c3 to resolve because p is available in

positive and negative form, I can cancel out.

And resolvent of c1 and c3 will be q. Then, let q be the clause which I pick and negation of q is

the second clause which I am choosing here and I can cancel them and I obtain False because if

you take q and ¬ q and cancel out your left with nothing and that is a false conclusion. Since, I

have obtained a false conclusion that means this argument form in it is clausal form is indeed

valid. 

Remember you might be wondering here that I am not using c2 and r and negation of s in my

resolution  process.   That  is  not  necessary  when  I  am  constructing,  when  I  am  doing  the

resolution refutation proof, my goal is to arrive at the false conclusion as soon as possible for that

it is not necessary to touch upon each and individual clauses in my tree, it might be possible that

just by using two clauses at the first place I can arrive at a conclusion false.

That  will  complete  the  process  I  need not  have to  touch upon the  other  clauses  that  is  not

necessary. So, in this particular case just by resolving c1 and ¬ q, c1 and c3 I can come to the

conclusion q and then by resolving q and ¬ q, I can come to the conclusion. Well, you can do the



proof other way around as well in the sense that you can do the proof differently as well that

means instead of say resolving c1 and c3 first, you can do the following as well, you can resolve

this c2 and negation of s you can cancel out and you can come to the conclusion negation of r. 

And then you can choose this r and negation of r also to derive at the false conclusion that is

another  resolution  refutation  proof.  So  there  can  be  multiple  resolution  refutation  proof  or

proving the validity of the same argument you just have to come to the conclusion ϕ if at all it is

possible well if you cannot come to the conclusion ϕ even after repeatedly applying or resolving

pair of clauses that shows your argument form is not valid. 

So in this case the argument form is valid, the clausal form of the argument form is valid that

shows that the original argument form is also valid. So that brings me to the end of this lecture

the references used for today's lecture are the chapters in the Rosen’s book and just to summarize

in this lecture we have introduced the resolution refutation proof strategy, which is based on the

resolution inference rule.

The resolution inference rule can be considered as an equivalence form of proof by cancellation

where you pick two clauses where you have a literal available in positive form in one of the

clauses and negative form in other clause. You can cancel both literals and whatever is left in

both the clauses the conjunction of that you can consider as the resolvent or the conclusion of the

two clauses which you have simplified. 

This  is  a  very  powerful  proof  mechanism,  which  is  very  extensively  used  in  programming

language PROLOG, thank you.


