
Discrete Mathematics

Prof. Ashish Choudhury

Department of Mathematics and Statistics

International Institute of Information Technology, Bangalore

Lecture -45

Matching

Hello everyone. Welcome to this lecture.

(Refer Slide Time: 00:23)

The plan for this lecture is as follows. So, in this lecture we will introduce the definition of

matching. We will discuss about complete matching and we will see the theorem statement for

Hall's marriage theorem.

(Refer Slide Time: 00:40)

So, let us begin with bipartite graphs and matching. So, just to recap in the last lecture we discussed

what are bipartite graphs? They are the graphs where the vertex set can be partitioned into two

disjoint subsets V1 and V2 where for each edge in the graph one of the end points is into the subset

V1 and the other end point is in the subset V2. And it turns out that bipartite graphs are very

important class of graphs used to model various real-world problems.

And one of the problems for which they are used extensively is that of job assignment. So, let me

demonstrate the job assignment problem with this example. Imagine you have two organizations,

organization 1 and organization 2. Both of them are trying to build a software and say the software

has four modules. It has a Requirement module, Architecture module, Implementation module and

Testing module.

And say both organizations have their respective employees. Organization 1 has employees A, B,

C and D. Each of these employees can handle one of the four modules required in the software and

the skill set of each employee is modeled by adding an edge between the node representing that

employee and the node representing the corresponding skill set which that employee can handle.

So, for instance this edge here denotes that the employee A is capable of handling Requirement

and this edge from A to Testing denotes that he is capable of handling the Testing module as well.

In the same way the employee B can handle three of the modules. It can handle Architecture, it

can handle Implementation and it can handle Testing and so on. Similarly, the edges are added in

this graph representing the skill set of the employees in the organization number 2.

Now the job assignment problem is the following. Since we have to build a software, we have to

ensure that each of the four modules namely Requirement, Architecture, Implementation and

Testing are taken care. So, we want to assign employees to do the jobs as per their skill set such

that each job is attended by some employee. But at the same time we do not want to be very strict

or unfair with an employee by assigning multiple jobs as per its skill set.

So, for instance I do not want to do the following. I take the employee B and assign Architecture,

Implementation and Testing all three to employee B. That I do not want to do. So, I want to assign

each employee at most one job. When I say at most one job that means it is fine if I do not assign

any job in my job assignment or when I am assigning job to the employees to a particular employee

it is fine.

I just want to ensure that each job goes unattended and at the same time I do not assign multiple

jobs to any employee when I am doing the job assignment. So, that is my job assignment problem.

So, it is easy to see that one of the possible job assignment in organization 1 is the following. I

take or I ask employee D to take care of the only job that it is capable of doing namely Requirement

and then I take the employee B.

So, employee B can handle Architecture, Implementation and Testing. So, I choose architecture

for employee B. I pick employee C and assign the Implementation module to employee C and then

I take the employee A and assign the Testing module to employee A. So, I can come up with one

job assignment in the organization 1 satisfying this criteria. But if you take the second organization

it is not at all possible to come up with the job assignment in organization 2 satisfying these

conditions. Why so?

So, let us try to come up with one possible job assignment and then we will see that we will get

stuck here. So, for instance let us start with W and W is capable of only handling Architecture. So,

I can say W is assigned Architecture. So, we have taken care of W and Architecture. Then we go

to X. X can handle Requirement, Implementation and Testing. So, let us assign the Requirement

module to employee X.

Now let us go to employee number Y. Employee number Y can only handle Architecture. But I

have already assigned the Architecture module. So, no need to again assign it to any other

employee. So, I can say let us not assign any job to employee Y and then if I go to employee Z he

can handle Requirement, Architecture and Testing. Requirement and Architecture are already

taken care then I can assign only Testing to employee Z.

But in this whole process in this scheduling the module Implementation is not assigned to any

employee. It goes unattended. And you can try other possible combinations as well. You will see

that irrespective of the way you try to assign the jobs you cannot come up with a job assignment

satisfying these conditions. You cannot do that in this graph.

(Refer Slide Time: 06:52)

So, whatever we have discussed in this example can be modeled by a concept called matching. So,

imagine you are given a simple undirected graph. That is important. Then a collection of edges

denoted by M is called a matching if no two edges in this collection of edges M are incident with

the same vertex. Formally what I am saying here is the following. You take any pair of edges

(𝑒𝑖, 𝑒𝑗) ∈ 𝐸, if they are different then all the four end points, two end points of ei and the two end

points of ej they should be distinct, they should be different. I stress here this condition 𝑒𝑖 ≠ 𝑒𝑗 is

important here in this implication. Because if I take the same edge ei and the same if I take the

edge 𝑒𝑖 = 𝑒𝑗, of course, the first one of the endpoints of ei will be the same as one of the endpoints

of ej and so on. So, this inequality would not hold if my 𝑒𝑖 = 𝑒𝑗.

So, this condition this implication should hold for every pair of distinct edges ei and ej from my

collection of edges that I have picked. I stress here that there is no restriction on |𝑀|. I can just

pick one single edge from my edge set that will constitute a matching or I can pick two edges from

my edge set and if they can satisfy this implication that will also be considered as a matching and

so on.

So, what this implication means on a high level is the following. If I take the vertices of all distinct

edges in my collection of edges M they should be distinct. So, again if I take the job assignment

problem and organization number 1, what I actually did there was I picked the matching. My

matching was this collection of edges namely I took the edge (D, Requirement), (B, Architecture),

(C, Implementation) and (A, Testing).

And you can check here that you pick any 𝑒𝑖 ≠ 𝑒𝑗 , which are distinct in this collection of edges

M, their four end points will be distinct. So, if I have a matching M then a vertex v in my graph

will be called matched with respect to that matching if the vertex v is the end point of some edge

in my matching otherwise the vertex v is called unmatched. So, formally this means that there

should exist some edge small e and some vertex u such that the edge (𝑢, 𝑣) ∈ 𝐺 is there in my

graph and that edge is nothing but the edge e.

If that is the case then I will say that the vertex v is matched. In fact the vertex u is also matched

with respect to the matching if I have an edge of the form (u, v) if I have an edge of the form (u,

v) in my collection of edges M that I have picked.

(Refer Slide Time: 10:17)

So, for instance if I take this graph here and if this is my matching M then I have vertex number A

matched. Because there is an edge with one of its endpoints being A. I also have vertex B matched

with respect to M because I have an edge with B as its endpoint and so on. Now we have different

types of matching. So, we have what we call as maximum matching and it is a matching which has

the largest cardinality.

That means it is the collection of edges whose cardinality is the largest. That means you cannot

have a matching whose cardinality is bigger than the collection of edges of the matching that you

have picked. So, if I take this graph and the maximum matching here is the collection of edges (a,

b) and (c, d). Its cardinality is two, whereas if I take the matching M’ equal to (b, c) then that is

not the maximum matching. Why it is not the maximum matching?

Because the cardinality of |𝑀’| = 1. By the way the matching M’, this collection M’ is indeed a

matching because the end points are distinct here. You do not have first of all the second edge

here. So, if you just take any edge by default it is a matching. So, this is a matching, M’ is a

matching and it is not a maximum matching because you have only one edge in M’ whereas you

can have another matching M which has two edges in it.

So, M’ is not a maximum matching here. However, the matching M’ is maximal matching. So,

there is a difference between maximal matching and maximum matching. So, what is the maximal

matching? A maximal matching is a matching which cannot be further extended and what do I

mean by cannot be further extended? By that I mean that you cannot find another matching M’

such that 𝑀’ is a superset of your matching M.

Because if you can find another matching M’ which is a super set of M that is equivalent to saying

that you can extend, that means you can add further edges in M and still get a matching of bigger

cardinality. That is what is the interpretation of cannot be further extended in this definition. So,

that is why your matching M’ is a maximal matching because you cannot add any other edge now

in M’ and still get a new matching. Why so?

Because I cannot add the edge (a, b) in M’, because if I add the edge (a, b) to get say M’ and M’’

is not a matching. Because in M’’ you will have the edges (a, b) as well as (b, c) and you do not

have all the endpoints of any pair of distinct edges distinct. So, here you have the edges e1, e2 such

that one of the endpoints of edge e1 is same as one of the end points of the edge e2 which goes

against the definition of matching.

So, that is why M’ here in this example cannot be further extended and hence it is a maximal

matching. Whereas if I take the matching (c, d) in this graph it is not maximal. Why it is not

maximal? Because I can further extend my matching M and get a bigger matching, namely I can

add the edge (a, b) in this matching and it will still constitute a bigger matching here. So, that is

why there are two types of matching here, maximum matching and maximal matching.

Of course, every maximum matching is a maximal matching but other way around need not be

true. You may have a matching which is just maximal but it is not maximum and one example is

this. A matching (c, d) is the maximal matching. Sorry, one example here is this the matching (b,

c) it is a maximal matching but it is not maximum matching.

(Refer Slide Time: 15:02)

Now we have another kind of matching called as complete matching and what is a complete

matching? So, imagine you are given a bipartite graph with bipartition (V1, V2) then a matching in

this graph is a complete matching from 𝑉1 → 𝑉2. And when I define a complete matching it is very

important whether the complete matching is from 𝑉1 → 𝑉2 or from 𝑉2 → 𝑉1. They will be different

in general. So, here I am giving the definition of a complete matching from 𝑉1 → 𝑉2.

So, the matching M that I have picked is called a complete matching from 𝑉1 → 𝑉2 if every vertex

in V1 is matched with respect to my matching M or equivalently |𝑉1| = |𝑀|. This is because if

every vertex in V1 is matched that means I have edges in my matching M where for every vertex

small v in V1 there is a corresponding edge with v as its end point in my matching M.

And as per the definition of a matching I cannot have any other edge as well present with the same

endpoint v. That is not possible if I already have an edge with v as its end point in my matching

M. I cannot include any other edge in my matching M different from this edge which has v as its

end point. That automatically means that the number of edges in my matching M that I have picked

should be exactly same as the number of vertices in my subset V1.

If that is possible if that is the property of my matching then I will say that my matching M is a

complete matching from 𝑉1 → 𝑉2. Whereas if I want to find a complete matching from 𝑉2 → 𝑉1

then the matching should be such that its cardinality should be exactly equal to the cardinality of

V2. Namely it should be ensured that every vertex in V2 is matched and that is possible only if the

|𝑀| = |𝑉2|

So, for instance if I take this bipartite graph and it is easy to see that this is a bipartite graph because

I can put A, B, C, D in one subset and I can put requirement, architecture, implementation and

testing in another subset. And this is a bipartite graph but it is not a complete bipartite graph and

when I am defining complete matching I do not need a complete bipartite graph.

It is defined with just bipartite graph. Why this graph is not a complete bipartite graph? You have

many missing edges here. So, for instance I do not have the edge from D to testing and so on. This

edge is not there. So, if this is my V1 and V2 and if I pick this matching M then it constitutes a

complete matching from 𝑉1 → 𝑉2. Why it constitutes a complete matching from 𝑉1 → 𝑉2?

Because all the vertices in V1 they are matched, A is matched, B is matched, C is matched, and D

is matched. In fact, in this particular example this matching is also a complete matching from V2

to V1 as well. Because I can interpret this matching as if it covers each and every vertex in the

vertex set V2. So, requirement is covered or matched, architecture is matched, the node

implementation is matched and the node testing is also matched.

(Refer Slide Time: 19:06)

So, now let us talk about a necessary and sufficient condition for checking whether there exists a

complete matching in my given bipartite graph or not. So, if I am given a bipartite graph and if I

want to check whether there exists a complete matching from V1 to V2 or a complete matching

from V2 to V1 there should be some procedure for doing that.

Can I say that there exist some graph theoretic properties by checking which I can declare whether

the given graph has a complete matching or not? And there exists a very simple condition that

condition is also called as Hall's marriage problem. If you are wondering why the term marriage

is coming here, because the condition is given in the context of a bipartite graph where the vertex

set V1 and V2 corresponds to the set of boys and the set of girls and the edges basically in the graph

represents the preferences that the boys have for the girls.

So, if some boys prefer some girls and vice versa you will have the corresponding edges between

the vertex sets in V1 and V2. And we would like to find out a complete matching from 𝑉1 → 𝑉2 in

the sense that we would like to ensure that each boy gets a wife or a bride with respect to the

preferences that he has and we want to ensure that all the boys are covered. So, that is equivalent

to saying that I want to find out the complete matching from the set 𝑉1 → 𝑉2.

So, that give the necessary and sufficient condition for that problem and that necessary and

sufficient condition is also called as the Hall’s marriage condition. So, I have given here two

graphs. So, this is my graph number G1 and this is my graph number G2. The interpretations of V1

and V2 are different in G1 and G2. In G1 the vertex set V1 are my employee set and the vertex at

V2 are the skill set. Where in my graph G2, I have made the skill set as the vertex set V1 and

employee set as the vertex set V2.

So, you can see that in the graph G1 I have a complete matching from V1 to V2. That means I can

ensure that all the nodes in 𝑉1 = {𝐴, 𝐵, 𝐶, 𝐷} are matched with respect to the matching that I have

formed here. Whereas if I take the graph G2 then I cannot have a complete matching from V1 to

V2. Now why it is not possible to have a complete matching from 𝑉1 → 𝑉2? And we already saw

when we discussed the job assignment problem that in this specific graph G2 it is not possible to

do the job assignment.

So, recall the job assignment problem was that we want to ensure that each of the four modules

namely requirement, architecture, implementation and testing are taken care by some employee.

But at the same time I do not want to assign more than one job to any employee. That problem can

be modeled as if you want to find out a complete matching from 𝑉1 → 𝑉2. Because if you want to

find a complete matching from 𝑉1 → 𝑉2 that is interpreted as if you want to pick a subset of edges

in G2 such that no two distinct edges in that subset has a common endpoint.

That is equivalent to saying that there exists no employee who is assigned multiple jobs and at the

same time you want to take care of all the four modules. So, that is why complete matching from

𝑉1 → 𝑉2. I do not want to cover all the employees, it is fine if some employee is not assigned any

job. My goal is to assign or ensure that each job is taken care. So, that is why the complete matching

is from 𝑉1 → 𝑉2 and it turns out that in graph G2 there is no complete matching from 𝑉1 → 𝑉2.

So, if you are wondering that why a complete matching is possible in graph G1 but why a complete

matching is not possible in G2, what exactly is the difference? What exactly is the source of

problem in graph G2? Well the source of the problem in the graph G2 is this specific sub portion

of the graph. If you take this specific sub portion of the graph then we have three modules namely

the requirement module, implementation module and testing module and there are only two

employees who can take care of these three modules. So, in terms of graph theoretic properties I

have a subset V1’ here and a subset V2’ here such that the number of neighbors of V1’ is less than

the number of nodes that you have in V1’. So, the number of neighbors all together is two but you

have three nodes in V1’. So, how can it be possible that you take care of requirement as well as

implementation as well as testing?

And at the same time ensure that neither the employee X nor the employee Z is assigned more than

one job. That is not possible because if at all requirement is to be taken care it can be taken care

only by either the employee X or by the employee Z. Once you assign it to employee X, say for

example, then you cannot assign employee X any other job. So, you will be now left with two

more modules to be taken care. But now you have only one employee left. How can that be

possible? You will be able to only assign testing to employee Z and now the module

implementation will go unattended. So, that is the source of problem in graph G2 which is not

allowing you to find out the complete matching from V1 to V2 and that is precisely the formal

statement on the necessary and sufficient condition given by the Hall’s marriage theorem.

(Refer Slide Time: 26:03)

So, to understand the necessary and sufficient condition given by the Hall's marriage theorem, let

us first introduce a few definitions here and notations. So, if I have a graph G then the neighbors

of a vertex v, small v is denoted by this notation N(v) and what exactly is the neighbor set of the

vertex v? 𝑁(𝑣) = {𝑢: (𝑢, 𝑣) ∈ 𝐸}W. So, it is basically saying that the neighbours of vertex v are

all the vertex u such that u is one of the end points of an edge incident with the vertex v. Of course,

if there is a self loop at the node v then v also will be considered as its own neighbor. And once

we have the definition of a neighbor of a single vertex then the definition of a neighbor of a vertex

at A is the following. So, if A is a set of vertices that the neighbor of this set of vertices in A is

basically the union of the neighbors of all the individual vertices in that.

So, for instance if I have this bipartite graph well by the way the neighbor and the neighbor of a

set of vertices is defined with respect to any graph but we will be using it in the context of bipartite

graph and we will be discussing the Hall’s marriage theorem. So, if I consider this bipartite graph

and then if this is my set of vertices then its neighbor set is A, C, D and B. Why? Because the

neighbor of the vertex requirement are C and D and the neighbors of testing are B and A. So, if I

take their union, I get the set {𝐴, 𝐶, 𝐷, 𝐵}. Whereas if I take the subset {architecture,

implementation}, so the neighbor of architecture is only C and neighbor of implementation is B.

(Refer Slide Time: 28:34)

So, what exactly is the necessary and sufficient condition given by the Hall’s marriage theorem

for complete matching? It states the following; the Hall’s marriage theorem statement is the

following. If you are given a bipartite graph where (V1, V2) is the bipartition then for complete

matching from V1 to V2 you need the following necessary and sufficient condition. You need the

following. You take any subset 𝐴 ⊆ 𝑉1.

That subset could be an empty subset,𝜙. It could be a subset with just one vertex or it could be the

whole set V1. You take any 𝐴 ⊆ 𝑉1., the number of neighbors of that subset A should be greater

than equal to the number of nodes in the set A, |𝑁(𝐴)| ≥ |𝐴|, for all 𝐴 ⊆ 𝑉1. Of course, the

neighbors of the set A will be in the subset V2 because that is the definition of your bipartite graph.

You cannot have the neighbors of the subset A within the vertex set V1 itself.

The neighbors of A will be in the other subset in your bipartition namely V2. So, what it says is

you want to find out the complete matching from V1 to V2, this is a bipartite graph and if you have

any subset A here, it should have either the same number of neighbors in V2 as the number of

nodes in A or more neighbors. It cannot have less number of neighbors in V2 and that precisely

was the source of problem due to which we do not have a complete matching in the graph of

organization number 2.

So, if you take this graph this was the graph for organization number 1 and in this graph we are

able to find out a complete matching from the vertex set V1 to vertex set V2. This is because you

take any subset of V1, you take either {A, B} or you take {B, C} or you take {A, B, C}, you take

any subset. That subset has either the same number of neighbors as the number of nodes that in

the subset that you are taking or more number of neighbors in the other subset in your bipartition.

But if you take this graph, graph G2 then this condition is violated. Specifically, if you take your

subset to be {requirement, implementation, testing} namely A is equal to 3. Then the cardinality

of its neighbor set is what? So, requirements neighbor are X and Z, implementation neighbors is

only X and testing neighbor is only X. So, the number of neighbors all together for your subset A

that you have chosen here is 2. So, you have three nodes to be covered or matched namely

requirement, implementation and testing. But there are only two employees namely X and Z who

can handle those three modules.

So, the only way that you can ensure that all the three modules requirement, implementation and

testing are taken here is that you assign more than one job to employee X or Z which goes against

the definition of complete matching. So, we will prove this condition or the theorem Hall’s

marriage theorem in our next lecture.

(Refer Slide Time: 32:37)

I conclude today's lecture. These are the references used for today's lecture. To summarize, in this

lecture we introduced the notion of matching. We saw various types of matching like maximal

matching, maximum matching and complete matching and we saw the necessary and sufficient

condition for the existence of a complete matching in a bipartite graph namely the Hall's marriage

theorem. Thank you!

