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Hello everyone welcome to this lecture. So, in this lecture we will continue our discussion 

regarding how to solve recurrence equations, linear recurrence equations. And in this lecture we 

will focus on how to solve linear non-homogeneous recurrence equations.  
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So, let us first discuss the general form of any linear non-homogeneous recurrence equation of 

degree k with constant coefficients. So the general form will be this, the nth term will depend on 

previous terms plus some function of n, F(n). So, here your coefficients c1 to ck are real numbers 

they could be 0 as well but the only restriction is that ck is not allowed to be 0 that means the nth 

term definitely depends upon the (n – k)
th

 term. 

 

And that is why the degree of this equation is k. And F(n) will be a function of n that is why it is 

called non-homogeneous recurrence equation. So, some examples of recurrence equation in this 

category are as follows. So, in this equation your F(n) is 2
n
 and this equation your F(n) is n

2
 + n 

+ 1 and so on, it turns out that unlike linear homogeneous recurrence equations of degree k for 

which we have a standard method of finding the general form of any solution, we do not have 

any standard method for solving the non-homogeneous recurrence equation because we do not 

know what could be the structure of this function F(n). But it turns out that for some specific 

form of this function F(n) we have some well-known methods and in this lecture we will discuss 

those methods.  
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So, the first thing that we do, while solving the linear non-homogeneous recurrence equation is 

the following. We form what we call as the associated recurrence relation, associated 

homogeneous recurrence relation to be more specific and this is obtained by chopping off this 

F(n) function. So, if I chop off this F(n) function then whatever recurrence relation I am left over 

with that is called as the associated homogeneous recurrence relation. 

 

It will be of degree k and then we know how to solve this. We have seen extensively in the 

earlier lecture how to solve a linear homogeneous recurrence equation of degree k, the general 

form of it can be obtained by using those methods. So, let the solution be denoted by the 

sequence whose nth term is an
(h)

. So, this h denotes that the sequence is the solution of the 

associated homogeneous sequence relation. It may not satisfy the entire recurrence equation.  

 

So, remember we have to solve or we have to find out a sequence satisfying the entire recurrence 

equation where F(n) is also a part of the equation, but the sequence an
(h)

 is a solution only for the 

associated homogeneous recurrence relation. And then what we do is the following, we try to 

find out one of the solutions satisfying the whole recurrence equation. Namely a sequence 

satisfying the entire recurrence equation and we call that solution as a particular solution.  

 

So, the sequence satisfying the entire recurrence equation which is the particular solution the nth 

term of it is denoted by an
(p)

. Then the claim is that any sequence which satisfies the entire 



recurrence equation; its nth term will be the summation of the nth term of the sequence satisfying 

the associated homogeneous equation and the nth term of the particular solution; that is the 

statement.  

 

So, what basically we are trying to say here is that once you have obtained one of the solutions 

satisfying the entire recurrence equation,then you can express any solution satisfying the entire 

recurrence equation in terms of that particular solution or one of the solutions that you have 

obtained and the solution for the associated homogeneous reference equation. By the way now if 

you substitute an
(h)

 to be 0 then you get automatically that bn =  an
(p) 

is also one of the solutions 

satisfying the entire recurrence equation.  

 

So, we can derive any solution satisfying the entire recurrence equation from this generic 

solution.  
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So, let us prove this theorem, we want to prove that any solution satisfying the entire recurrence 

equation is of this form. Namely its nth term is the summation of the nth term of the 

homogeneous recurrence equation or associated homogeneous sequence equation plus nth term 

of the particular solution that is what we want to prove. So, since an
(p)

 is one of the solutions 

satisfying the entire recurrence equation, we can say that its nth term is c1 times the n -1 term of 

that sequence + c2 times the n - 2 term of that sequence. 



 

And like that ck times the (n – k) term of that sequence + F(n), because that is what is the 

implication of saying that this particular solution satisfies the entire recurrence equation.  And 

now if there is another sequence whose nth term is bn and that is also one of the sequences 

satisfying the entire recurrence equation, then we get the implication that bn is equal to c1 times 

b(n – 1) + c2 times b(n – 2) + … + ck times b(n-k) + F(n). 

 

Then what we can say is the following, if I subtract the nth term of the particular solution and the 

nth term of the b sequence then the effect of F(n) and F(n) cancels out and we get this property. 

And now how can you interpret this property? You can interpret this property as if you have a 

sequence whose nth term is the difference of the nth type of the b sequence and the particular 

solution and this sequence is now satisfying the associated homogeneous recurrence relation. 

 

Why so? Because if you take this property here, this property basically says that this bn - an
(p)

 is 

equal to c1 times (b(n – 1) – a(n – 1)
(p)

) + up to that like that ck times (b(n – k) - a(n-k) 
(p)

).  So, you can 

imagine that you have now a sequence satisfying the associated homogeneous recurrence 

equation because the associated homogeneous equation is that an the nth term should be equal to 

c1 times (n – 1) th term + c2 times (n - 2) th term + … + ck times (n – k) th term. 

 

And indeed you have a sequence satisfying this recurrence relationship and the nth term of that 

sequence is basically bn - nth term of the particular solution. So, based on this what we can say is 

the following, we can say that the nth term of the sequence which is basically the difference of 

the nth term of the b sequence and the nth term of the particular solution is a solution for the 

associated homogeneous equation. 

 

And since we have used the notation an
(h)

 for denoting the solution for the nth term of the 

sequence satisfying the associated homogeneous equation, we get the implication that any 

sequence satisfying the entire recurrence relation; its nth term is basically the summation of the 

nth term of the sequence satisfying the associated homogeneous recurrence relation plus the the 

nth term of the particular solution satisfying the entire equation, so that proves our theorem. 
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So, coming back to the method for how to solve linear non-homogeneous recurrence relation the 

first step will be to solve the associated homogeneous equation which is easy. Because the 

associated homogeneous equation will be of degree k and we will know how to solve it because 

we have seen extensively how to solve linear homogeneous recurrence relation of degree k. So, 

say the general form of the solution satisfying the associated homogeneous equation is this. 

 

The step two is the difficult part, namely coming up with a particular solution satisfying the 

whole equation, and this is the challenging part of, coming up with the general solution 

satisfying the entire equation. So, remember we want to find out the general form of any solution 

that satisfy the entire recurrence equation and for that we need one of the solutions satisfying the 

entire equation. 

 

You might be wondering that if we can find out one of the solutions satisfying the entire 

equation why we are bothered to find other solutions satisfying the other equation.  That this is 

because we want to find the general formula which covers all possible solutions all the sequences 

satisfying the given recurrence condition. Remember a recurrence equation can have infinite 

number of solutions if I do not give you the initial conditions.  

 

So, I would like to find out a general formula, a general form of the solution which covers all 

possible sequences satisfying the given non-homogeneous recurrence equation. Just finding one 



of the solutions is not sufficient, that is one of the sequences satisfying the entire equation but I 

might be interested to find out other sequences as well and that is why we need the particular 

solution.  

 

So, for finding this particular solution we do not have any well known methods or rules.  What 

we do is to try to find out the particular solution by using what we call as trial and error and this 

trial and error method becomes easy for some specific forms of this function F(n). We will see 

those specific forms and assuming that we have obtained a particular solution then we can write 

down the general solution as a summation of the associated homogeneous equation and the 

particular solution. That is a method for solving linear non-homogeneous recurrence equations.  

(Refer Slide Time: 12:24) 

 

So, now let us see how we can find out the particular solution for some specific forms of F(n) 

function using the trial and error method. So, let us take this example where my F(n) is 2n and 

the associated homogeneous equation is of degree 1, So, I can solve it, the characteristic equation 

will have only one root namely 3. So, the general form of the associated homogeneous equation 

will be this where α is some constant, unknown constant. 

 

And now we have to find out the particular solution satisfying the whole equation. So, for that I 

will make some guess about the particular solution. So, in this case I observe that my F(n) is a 

polynomial of degree 1, because my F(n) here is 2
n
 which is a polynomial of degree 1. So, I 



make a guess that let my particular solution be a polynomial of degree 1 for some constant c and 

d.   I do not know the exact values of c and d I am just guessing that let this be the particular 

solution : cn + d. 

 

And now I have to check whether my guess is correct or not about the particular solution. How 

do I check whether my guess regarding the particular solution is correct or not? I have to check 

whether there exist values of c and d, such that if I substitute those values of c and d in my 

guessed particular solution then it satisfies the entire recurrence equation. So, let us do that, In 

order that cn + d or a sequence whose nth term is cn + d satisfies the entire recurrence condition 

this relationship should hold. 

 

Namely the nth term is this, should be equal to 3 times the (n – 1) term and the (n – 1) term as 

per my guess of the particular solution will be this plus the function of n, and this relationship 

will hold if c is equal to - 1 and d is equal to – 3/2. How do I get these values of c and d? Well 

basically I rearrange the terms here, and then compare the LHS part and RHS part and based on 

the comparison I come up with these values. 

 

That means it turns out that if indeed c is equal to - 1 and d is equal to – 3/2, then I have a 

particular solution namely a sequence whose nth term is (– n – 3/2) and this sequence satisfies 

the entire recurrence equation. So, I am successful in finding the particular solution; successful in 

the sense my guess about the particular solution here is correct. And then I will say that my 

general solution satisfying the entire recurrence equation namely any solution satisfying the 

entire recurrence equation will be of this form: it will be the summation of the nth term of the 

sequence satisfying the associated homogeneous equation which is some constant times 3
n
, plus 

the nth term of the particular solution which I am able to find out using the trial and error 

method. So, this will be the general form of any solution. Now if you are interested to find out 

the unique solution satisfying the entire recurrence equation as well as the initial condition. 

 

You have to substitute n equal to 1 here and by substituting n equal to 1 here you will be able to 

find out the value of the exact constant α satisfying the initial condition as well as the entire 

recurrence condition.  



(Refer Slide Time: 16:52) 

 

Now let us see another case or another structure of F(n) function. So, in this case my F(n) 

function is some constant power n. So the step one will be solving the associated homogeneous 

equation, so it will be an equation of degree 2. So, the characteristic equation will have two roots 

and the two roots are distinct. So the general form of the solution for the associated 

homogeneous equation will be some constant times 3
n
 plus another constant times 2

n
. 

 

Then my goal will be to find out the particular solution satisfying the entire recurrence equation. 

So, what I do is in this case as I said my F(n) is some constant and the constant is 7
n
, I make a 

guess that let my particular solution be some constant times 7
n
. So, α3 is now a constant here. So, 

I am using different constants I am using α3 here as a different constant to distinguish it from the 

constants α1 and α2 which are there as part of the solution of the associated homogeneous 

equation. 

 

Now I have to check whether indeed my guess about the particular solution is correct or not, how 

do I check that? Well I have to see whether I can find out the value of α3 such that, that value of 

α3 times 7
n
 is a solution for the entire recurrence equation. So, I have to check whether there 

exists a value of α3 such that a sequence whose nth term is α3 times 7
n
 satisfies the condition that 

it is equal to 5 times the (n – 1)th term. 

 



So, the 5 times (n – 1)th term for that particular solution or the guessed particular solution will be 

this minus 6 times the (n – 2)th term of the guessed particular solution plus 7
n
. And then again if 

I rearrange the terms I see that indeed it is possible to have a value of α3 namely if α3 is 49/20 

then I can say that a sequence whose nth term is 49/20 times 7
n
 satisfies the entire recurrence 

condition. 

 

That means in this case again I am able to successfully find out a particular solution and now the 

rest of the steps are simple. I will now say that the general solution of any sequence satisfying 

the entire recurrence condition will be this; the nth term will be this. So, here the unknowns will 

be now α1 and α2 if you are given two initial conditions for the given recurrence equation then by 

substituting n = 1 and n = 2 you can find out the exact values of α1 and α2. 

 

But if you are not given the initial conditions then you will say that any sequence satisfying the 

entire recurrence condition will be of this form.  
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Now let us see another example. Here my F(n) is 3
n
, so I will first solve the associated 

homogeneous equation. The solution will be this, this is because 3 will be the characteristic root 

and it will be repeated two times. So that is why the general form the solution for associated 

homogeneous equation will be an unknown polynomial of degree 2 followed by the 

characteristic root raised to power n. 



 

Step 2: I have to find out a particular solution. So as I did in the previous example my guess will 

be that the particular solution is some constant times 3
n
. And now if I proceed to check whether 

my guess about a particular solution is correct or not, I have to check whether I can find out the 

value of α4 such that this condition holds, namely the nth term of this particular solution should 

be equal to 6 times the (n – 1)th term of the particular solution - 9 times the (n – 2)th term of the 

particular solution + 3
n
. 

 

And now if I rearrange the terms and try to solve and come up with the value of α4 you will see 

that I cannot find the value of α4. There exists no value of α4 such that this condition holds, I 

cannot do that. Then where I am going wrong, it worked for the previous example where my 

F(n) was 7
n
 but then why it is not working here? Well the reason it is not working here is that 

your F(n) is 3
n
 and 3 is also a characteristic root. 

 

Whereas in the previous example my F(n) was 7
n
 but 7 was not a characteristic root, it turns out 

that if I now make a guess that my particular solution is some constant times (n
2
 3

n
).  And then 

try to check whether this satisfies the recurrence condition or not, namely whether I can find out 

the value of α4 such that it satisfies the given recurrence condition I will be able to find out the 

value of the constant α4. Namely by rearranging the terms you will see that α4 being 1/2 is a valid 

solution.  
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So, now let us unify all the examples that we have discussed till now and come up with the 

general theorem statement. So, the claim is the following, imagine you are given a linear non 

homogeneous equation of degree k and suppose your F(n) function is of the following form, it is 

a polynomial of degree t and some constant power n. Suppose it is of this form then we have to 

check the following. 

 

We will check if this constant s is a root of the characteristic equation of the associated 

homogeneous equation or not. So, remember the step 1 for solving the non-homogeneous 

recurrence equation will be to solve the associated homogeneous equation. And when we try to 

solve the associated linear homogeneous equation we will be forming a characteristic equation so 

it will have characteristic roots. 

 

So, we have to check whether the constant s which is occurring in the function F(n) is one of 

those characteristic roots or not. So, it could be either a characteristic root or it may not be a 

characteristic root. So, if it is not a characteristic root then the theorem states here that the 

particular solution of the form: a polynomial of degree t followed by the same constant s
n
 is a 

valid particular solution. 

 

Namely any sequence whose nth term is this value will satisfy the entire recurrence equation; 

this is for the case where the constant s is not a characteristic. But if it is a characteristic root then 



depending upon how many times that root is repeated in the characteristic equation; that suppose 

if s is a root and that too with multiplicity m where m is greater than equal to 1 then the general 

form of the particular solution will be the following. 

 

You still have a polynomial of degree t and then you also have s
n
 but you also now need n

m
. So, 

that is the difference between case 1 and case 2. In case 1 you do not have this n
m

 this is not 

there, because in case 1, s was not occurring as a characteristic root but in case 2, s is occurring 

as a characteristic root and that too m number of times if m is equal to 1 then you will have n
1
; if 

m is 2 that means s is occurring as a root 2 times then it will be n
2
 and so on. 

 

And we can prove this easily, I am not going into the exact proof you can check that easily; these 

are the two cases. 
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And now let us see; let me demonstrate the application of this general form with some specific 

examples. So suppose I want to find out the nth term of this summation. So, this an here basically 

denotes the sum of first n natural numbers; basically an here denotes the sum of the numbers 1 to 

n so easily it is easy to see that an is a sequence depending upon what is the value of n you get 

different values. 

 



So, we have to find out the formula for the nth term of the sequence and that too using recurrence 

equation. So let us first formulate the recurrence equation.  It is easy to see that an is nothing but 

the summation of the (n – 1)th term of the sequence plus n, because your, an is 1 + 2 + … + n - 1 

+ n. Now the summation 1 to n - 1 is nothing but a(n – 1) and the + n is carried over. So, now this 

is a linear non-homogeneous recurrence equation of degree 1. 

 

So, let us solve it.  So we will first solve the characteristic equation which will be of degree one 

it will have only one root and in this case the root is 1 and its multiplicity is 1. So, that is why the 

general form of the solution for the associated homogeneous equation will be some constant 

times 1
n
 and now we have to come up with a particular solution. So, what is the general, what is 

the function F(n) here?  

 

You might be saying that F(n) is n but that is not the case, you have to be very careful here even 

though explicitly you will see that F(n) is just n, but I can always say that there is an implicit 1
n
 

which is there in the F(n) function and why I am taking this implicit 1
n
 ? this is because I am in 

the case where this constant 1 which is implicitly present in F(n) is also occurring as one of the 

characteristic roots. 

 

Otherwise I would not have considered this implicit 1
n
.  I could have simply ignored it, but since 

one is a characteristic root and the same constant 1
n
 is occurring in the function F(n) I have to be 

careful. So, now if I use the general form; if I use the result that I stated for the general form of 

the particular solution my F(n) here in this case is a polynomial of degree 1 multiplied by 1
n
. 

 

And this 1 is a characteristic root with multiplicity 1 so that is why there will be n
1
 outside in the 

particular solution followed by a polynomial of degree 1, followed by 1
n
.  Now this 1

n
 I can 

ignore. So, this will be the general form of the particular solution and now I have to find out the 

values of α2 and α3 satisfying the particular solution that means I have to check whether my 

guess regarding the particular solution is correct or not. 

 

For that I have to check whether this guessed particular solution satisfies the entire recurrence 

equation; for that I have to check whether an
(p)

 is equal to an
(p – 1)

 + (n * 1
n
), check this and try to 



find out the values of α2 and α3 and it turns out that by solving and rearranging the terms I will 

get the values of α2 and α3 that means my guessed particular solution is correct. 

 

And now if I have the guessed particular solution I can say that the overall solution will be the 

summation of the nth term of the associated homogeneous equation plus the solution for the nth 

term of the particular solution. So, this will be the overall solution. If you want to find out the 

exact value of this constant α1 you can use the fact that a1 is 1; you can have an initial term and 

then substituting n equal to 1 you can find out the exact value of this constant α1. 
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So, that brings me to the end of this lecture so these are the references for today's lecture just to 

summarize in this lecture we discussed how to solve linear non-homogeneous recurrence 

equations of degree k. The general solution is obtained by solving the associated linear 

homogeneous equation and getting a particular solution. And coming up with the particular 

solution is done by a trial and error method but it becomes methodical if you have the F(n) 

function in some specific form, thank you. 

 


