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Hello everyone, welcome to the second part of tutorial 6. 
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Let us start with question number 8. You are given here arbitrary distinct points in 2 dimensional 

planes. Each point will have an x-coordinate, y-coordinate and the points are having integer 

coordinates. So they are arbitrary points except that they are distinct. So, I am denoting the points, 

their respective coordinates as 𝑥!, 𝑦!, 𝑥", 𝑦", 𝑥#, 𝑦#, 𝑥$, 𝑦$ and 𝑥%, 𝑦%. And our goal is to show that 

irrespective of the way these 5 points are chosen arbitrarily they are always exist a pair of points 

such that if you consider the midpoint of the line joining those 2 points it has integer coordinates.  

 

So just to recap if you have 2 points, a point with coordinates (𝑎!, 𝑏!) and another point with 

coordinates (𝑎", 𝑏") then the midpoint of the line joining these 2 points is given by the formula 

)&!'&"
"

, (!'("
"
*. And we want to apply here pigeonhole principle. So remember for pigeonhole 

principle we have to identify the set of pigeons and the set of holes here and then the mapping 

which relates the pigeon and the holes. 



 
So let us do that. So consider the set of 5 arbitrary points which are all distinct and have integer 

coordinates. We are trying to map this point depending upon what is the nature of their x-

coordinate and y-coordinate. So depending upon whether the x-coordinate is even, or x-coordinate 

are odd, or whether the y-coordinate is odd, or the y coordinate is even, I have 4 possible 

combinations. 

 
And my function 𝑓 maps these 5 points to the corresponding pair; say if 𝑥! is odd and 𝑦! is even 

then I will say that 𝑓(𝑥!, 𝑦!) is (odd, even) and so on. That is the mapping here. So now, it follows 

from pigeonhole principle that we have now 5 items here in the set 𝐴 and 4 items in the set 𝐵 then 

there always exist a pair of points among these 5 points say (𝑥) , 𝑦)) and .𝑥* , 𝑦*/ such that both of 

them are mapped to the same ordered pair.  

 
So it could be any 2 out of those 5 points; it could be the first 2 points, it could be the last 2 points, 

it could be the third point or the fourth point and so on; we do not know. It depends upon the exact 

5 points that we chose. So, without loss of generality assume that out of those 2 points which are 

guaranteed to be mapped to the same ordered pair are the first 2 points.  

 
So say (𝑥!, 𝑦!) and (𝑥", 𝑦") be the 2 points such that the corresponding 𝑓 output of the 𝑓 function 

for these points are the same. Now we want to inspect what happens to the midpoint of the line 

joining these 2 points 𝐴 and 𝐵. So as per the formula the midpoint of the lines joining these 2 

points 𝐴 and 𝐵 will be )+!'+"
"

, ,!',"
"
*.  

 

And since both the points 𝐴 and 𝐵	are mapped to the same ordered pair; so for instance it could be 

the case that both 𝑥! as well as 𝑥" are odd or it could be the case that both 𝑥! as well as 𝑥" are 

even. So irrespective of the case 𝑥! + 𝑥" will always be divisible by 2. If both of them are even 

definitely sum of 2 even quantities is divisible by 2. Whereas if both of them are odd then also the 

sum of 2 odd quantities is divisible by 2. And as per our assumption it is not the case that 𝑥! is odd 

and 𝑥" is even that is not the case because we are considering the case when the output of the 

𝑓	function on these 2 points 𝐴 and 𝐵 are the same.  

 



In the same way we cannot have the case where 𝑥! is even and 𝑥" is odd because that is not the 

property of the point 𝐴 and 𝐵. Due to the exactly the same reason, the type of 𝑦! and 𝑦" coordinates 

are the same. Either they are both odd or both of them are even right. And again in this case it is 

easy to see that 𝑦! + 𝑦" will be divisible by 2. And that shows that this statement is a correct 

statement.  
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So let us go to question number 9. Here you are given the following. You are choosing 5 integers 

from the set 1 to 8 arbitrarily. Our goal is to show irrespective of the way you choose those 5 points 

there always exists at least one pair of integers among those chosen 5 integers whose sum is 9. So 

say you pick 1, 2 and 5 and then if you pick 3 then you still do not have any pair of integers whose 

sum is 9. But as soon as you pick the fourth point, so if you pick 4 that is the fifth number then 

you have 5 and 4 which is summing up to 9.  

 
If you pick 6 as the fifth number, then you have 3 and 6 summing up to 9. If you have if you pick 

7 as the fifth number, then you have 7 and 2 summing up to 9. If you pick 8 as the fifth number, 

then you have 1 and 8 summing up to 9 and so on. So you can verify this by an example but we 

want to prove it irrespective of the 5 numbers that we are going to pick.  

 

So one way of proving this is that you take all possible 8 choose 5 ways of picking 5 numbers and 

for each of those combinations you show that the statement is true but that will be an overkill 

because this is a relatively large value. Instead we will apply the pigeonhole principle and again 



for applying the pigeonhole principle we have to identify the pigeons and the holes and the 

mapping. So my pigeons here are the 5 integers among the numbers 1 to 8 that I am picking 

arbitrarily and my holes are the ordered pairs of distinct integers in the set 1 to 8 whose sum will 

give you 9. 

 
So you have either the ordered pair (1, 8) or the ordered pair (2, 7) or ordered pair (3, 6) or the 

ordered pair (4, 5). And you do not have any other ordered pair from the set 1 to 8 summing up to 

9. And my function 𝑓 basically maps these 𝑥) values to the corresponding ordered pair depending 

upon whether 𝑥! is 1 or 8 I will say that 𝑓(𝑥!) is either (1,8). Or if 𝑥! takes either the value of 2 

or the value of 7 then I will say 𝑓(𝑥!) is (2, 7).   

 
Or if my 𝑥! is either 3 or 6 then I will say that 𝑓(𝑥!) is (3, 6) or if my 𝑥! is either 4 or 𝑥! is either 

5 then I will say that 𝑓(𝑥!) is (4, 5). That is the interpretation for my mapping 𝑓.  

(Refer Slide Time: 08:51) 

 
Now it follows simply from pigeon-hole principle that there always exists a pair or two values out 

of the 5 numbers say .𝑥) , 𝑥*/ such that 𝑓(𝑥)) and 𝑓.𝑥*/ are the same. It could be say the first 2 

values, the last 2 values, the second or the third value, the third or the fourth value, or the first 

value or the fifth value; it could be any 2 values out of those 5 numbers.  

(Refer Slide Time: 09:24) 



 
We do not know which one. So again without loss of generality, suppose both of them got mapped 

to (1, 8); we do not know what is the identity of 𝑥) or 𝑥* and we do not know the corresponding 

mapping as well. It could be either (1, 8), (2, 7), (3, 6) or (4, 5). So, without loss of generality; that 

means whatever reasoning we are giving here for the case where 𝑓(𝑥)) = 𝑓.𝑥*/ = (1,8) hold, the 

same argument will hold even if 𝑓(𝑥)) is same as 𝑓.𝑥*/ is equal to say (2, 7); the same reasoning 

will hold symmetrically for that case as well.  

 
Symmetrically for the case when it is (4, 5), symmetrically for the case when it is (3, 6) and so on. 

So that is why we do not consider the remaining 3 cases. We just consider the case when 𝑓(𝑥)) 

and 𝑓.𝑥*/ is (1, 8).  

(Refer Slide Time: 10:21) 



 
If that is the case then since your 𝑥) and 𝑥* are distinct and they got mapped to (1, 8) that means 

either 𝑥) is 1 and 𝑥* is 8 or 𝑥) is 8 and 𝑥* is 1. Irrespective of the case, the sum of 𝑥) and 𝑥* is 9. So 

now you can see that even without enumerating all possible 𝐶(8,5) arrangements or combinations 

of picking 5 numbers out of these 8 numbers we ended up arguing in a very simple fashion that 

our statement is true using pigeonhole principle. It shows the power of this proof strategy or 

counting mechanism basically. 
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So question 10 we want to prove a universally quantified statement. Namely, we want to prove 

that you take any integer 𝑛, there is always a multiple of 𝑛 which has only the digits 0’s and 1’s in 



its decimal expansion. So before going into the proof if you want to take few examples say 𝑛	 = 	1 

then I always have the number 1 which is a multiple of 1 and which has only the digit 1 in its 

decimal expansion. 

 
Remember it is not mandatory that you have both 0’s as well as 1 in the decimal expansion. The 

only restriction is we have to show that in the decimal expansion you only have either the digits 

0’s or 1’s. If you take 𝑛	 = 	2 then I can take the number 10 which is a multiple of 2 and which 

has only 1’s and 0’s and in its decimal expansion. If I take 𝑛	 = 	3 then I can take the number 111 

which has only the digit 1 in its decimal expansion and which is divisible by 3.  

 
So at least by taking few examples we found that the statement is true. But this is a universally 

quantified statement and we cannot prove a universally quantified statement just showing 

examples for a few cases. So we have to give the proof for arbitrary 𝑛. Again, we are going to 

apply here pigeonhole principle. So let me define a few decimal numbers here.  

 
I define the first decimal number to be 1. I define second decimal number as 11, the i-th decimal 

number as a decimal number consisting of 𝑖 number of 1’s and the 𝑛 + 1 decimal number which 

has the digit 1, 𝑛 + 1 number of times. Let me define another set of values. So my value 𝑟! is the 

remainder which I obtain by dividing 𝑎! by 𝑛. Similarly, I define 𝑟" to be the remainder obtained 

by dividing 𝑎" by 𝑛. I define 𝑟) to be the remainder obtained by dividing 𝑎) by 𝑛.  

 
And in the same way I define 𝑟-'! as the remainder obtained by dividing 𝑎-'! by 𝑛. Now what 

can I say about this remainders? It is easy to see that these remainders belong to the set 0 to 𝑛 − 1 

because of the simple fact that you divide any number by n the only possible remainders could be 

0 if it is completely divisible by 𝑛 or the remainders could be 1, 2	 … 	𝑛 − 1. Now you have to 

apply the pigeonhole principle.  

 
So my pigeons are the numbers 𝑎! to 𝑎-'! that I have constructed here. And my holes are basically 

the remainders which I can obtain by dividing these 𝑛 + 1 numbers by 𝑛. And I have 𝑛 possible 

remainders and my function 𝑓 map the numbers to the corresponding remainder which I have 

obtained by dividing that number by 𝑛. So you have more number of numbers and less number of 

remainders.  

 



So it follows from the pigeonhole principle that you always have a pair of numbers 𝑎) and 𝑎* out 

of this 𝑛 + 1 numbers which gives you the same remainder if you divide 𝑎) and 𝑎* by 𝑛. I do not 

know the remainder it could be either 0, or the remainder could be either 1, or the remainder could 

be 𝑛 − 1.  

 
I do not know what are the individual remainders that 𝑎) and 𝑎* are going to give on dividing by 

𝑛. But what I know is that they are leaving the same remainder. And again without loss of 

generality assume that 𝑎) is occurring before 𝑎* in my sequence here. Now what can I say about 

this number 𝑎*– 𝑎). So 𝑎* will be a number which has 𝑗 number of 1’s and 𝑎) is another number 

which has 𝑖 number of 1’s. Both of them gives me the same reminder on dividing by 𝑛.  

 
So if I take 𝑎*– 𝑎)then this will be a decimal number which will have trailing 0’s and then at the 

leading positions you will have the 1’s. That means it is a decimal number which has only the 

characters 1s and 0’s. But what can you say about its divisibility by 𝑛. This number will be divisible 

completely by 𝑛 because 𝑎* gives you the same remainder, say 𝑟, so I can say 𝑎* is some 𝑞* ∗ 𝑛 +

𝑟 and 𝑎) also gives me the same remainder 𝑟, so I can write 𝑎) as some 𝑞) ∗ 𝑛 + 𝑟.  

 

Then if I take 𝑎*– 𝑎) the effect of 𝑟 cancels out and I get that its completely now a multiple of 𝑛. 

So, I showed you constructively here that irrespective of what is your 𝑛, I can always give you a 

number which is divisible by 𝑛 and which has only 1’s and 0’s in its decimal expansion right. 
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So now let us go to question number 11 which is really a very interesting question. Here we want 

to show the following that you take any sequence of 𝑛" + 1 distinct real numbers. They are 

arbitrary real numbers; may be positive, negative in any order you take them. The only condition 

is that they have to be distinct. Then the claim is that irrespective of the 𝑛" + 1 real numbers that 

you have in your sequence you always have a subsequence of length 𝑛 + 1 which is either strictly 

increasing or strictly decreasing.  

 

First of all what what is a strictly increasing sequence? A sequence of the form (𝑎!, 𝑎", … ) where 

𝑎! < 𝑎" < 𝑎# < ⋯ < 𝑎).! < 𝑎) 	… . Whereas if I have a sequence of the form (𝑎!, 𝑎", 𝑎#, … ) 

where 𝑎! > 𝑎" > 𝑎#… > 𝑎).! > 𝑎) > ⋯ then it is a strictly decreasing sequence. 

 
Now what does a subsequence means? A subsequence mean here that the values may not be 

consecutive. That means I am allowed to miss few numbers. In the sense, say I take a sequence 1, 

3, 0, -5, 2, 8 and so on. Then I can choose to pick 1 and then exclude 3 and 0 and -5. This is a 

subsequence. In the same way I can pick a subsequence saying 3, 2 and 8 that means I skip 0, I 

skip -5.  

 
So what this question basically says is that irrespective of the way your 𝑛" + 1 distinct real 

numbers are chosen you always have a subsequence. By that I mean that you have a set of 𝑛 + 1 

values going from left to right but need not be in consecutive locations; some of the locations 



might be skipped. But the number of values are 𝑛 + 1 such that if you view those 𝑛 + 1 values 

they are either strictly increasing or strictly decreasing. That is what we have to prove. 

 
Again, if you want to convince yourself whether this is indeed a true statement or not you can take 

some concrete values of 𝑛, try to draw any possible sequence of 𝑛" + 1 for that value of 𝑛 and you 

can verify that this statement is true. But now we want to prove it for any arbitrary sequence. How 

do we do that? So let the arbitrary sequence of 𝑛" + 1 distinct real numbers be denoted by 𝑎! to 

𝑎-"'!.  

 
Why I am taking arbitrary here? Because I want to prove this statement for every sequence. So 

this is a universally quantified statement and to prove a universally quantified statement I can use 

the universal generalization principle by proving that a statement is true for some arbitrary element 

of the domain. My domain here is the set of all possible sequences of 𝑛" + 1 distinct real numbers. 

I am just taking one candidate element from that domain arbitrarily.  

 
I do not know the exact values of 𝑎! 	… 𝑎* 	… 𝑎-"'!. What I will do is to prove this statement, I will 

use pigeonhole principle along with proof by contradiction. So let me first define two values. I 

define 𝐼) as the length of the longest increasing subsequence starting at 𝑎). So a_i will have some 

value depending upon what is the arbitrary sequence and it will have some various possible 

increasing subsequences starting at 𝑎).  

 
One might be of length 1, a trivial increasing subsequence starting at 𝑎) is the value𝑎) itself. That 

is a subsequence of length 1. But I might be having a subsequence of say length 2 which is strictly 

increasing and starting at 𝑎). I might have a subsequence of length 3 starting at 𝑎) and so on. So 

whatever is the length of the longest increasing subsequences starting at 𝑎), I am denoting by 𝐼).  

 
In the same way, I define 𝐷) as the length of the longest decreasing subsequence starting at 𝑎). I 

might have several strictly decreasing sequences starting at 𝑎). In fact the sequence 𝑎) itself is a 

subsequence of length 1 which is strictly decreasing. But I might be having a subsequence of higher 

length which is strictly decreasing and starting at 𝑎). So the length of the longest decreasing 

subsequence starting at 𝑎) I am denoting it as 𝐷). So that means with 𝑎!, I have associated the 

values 𝐼! and 𝐷!. With 𝑎", I would have associated the value𝐼" and 𝐷". 



 
And similarly with 𝑎), I would have associated the value 𝐼) and 𝐷), with 𝑎* I would have associated 

the value 𝐼* and 𝐷*; and with 𝑎-"'! I would have associated the value 𝐼-"'! and 𝐷-"'!. It is easy 

to see that 𝐼-"'! will be 1, 𝐷-"'! is 1. Because I have only one sub sequence starting at 𝑎-"'! 

namely the value 𝑎-"'! itself.  

 
It is both an increasing subsequence starting at 𝑎-"'! as well as it is a decreasing subsequence 

starting at 𝑎-"'! because there is nothing after the number 𝑎-"'!. Now, what is my goal? The 

question basically asks me to show that there always exist some 𝑖 or some value 𝑎) such that there 

either exists an increasing subsequence of length 𝑛	 + 	1 that means 𝐼) is greater than equal to 𝑛	 +

	1 or there is a decreasing subsequence of length 𝑛	 + 	1. That means 𝐷) is 𝑛 + 1.  

 
I have to show the existence of one such number 𝑎) in this subsequence. I prove that by assuming 

a contradiction. So assume that the statement is false and that means for each 𝑎) in the sequence, 

the value 𝐼)is at most 𝑛. That means you take any number in the sequence the maximum length 

increasing subsequence of length 𝑛 and the maximum length decreasing subsequence is also of 

length 𝑛.  

 
What does that mean? That means if I try to pair all 𝐼) and 𝐷) pairs then they can take the values 

in the range (1,1) to (𝑛, 𝑛) namely 𝑛" possible pairs. These are the possible values of (𝐼) , 𝐷)) pairs. 

But how many numbers I have in the sequence? I have 𝑛" + 1 values in the sequence that I have 

chosen. That means I have more pigeons and less holes. What does that mean? So by PHP here I 

mean pigeonhole principle.  

 
So pigeonhole principle guarantees me that you definitely have a pair of values here say 𝑎) and 𝑎*. 

Such that your 𝐼) and 𝐼* are same. That means the length of the longest increasing subsequence 

starting at 𝑎) is the same as the length of the longest increasing subsequence starting at 𝑎*. And in 

the same way the length of the longest decreasing subsequence starting at 𝐷) is same as the length 

of the longest decreasing subsequence starting at 𝐷*. 

 



And as per my assumption 𝐼) , 𝐼* , 𝐷) , 𝐷* are all upper bounded by 𝑛 because I assume the 

contradiction. Now how do I arrive at a contradiction here? So there could be two possible cases 

with respect to the magnitude of 𝑎) and 𝑎*.  

 

The first case 𝑎) < 𝑎*. If that is the case, then what I can say is the following. I can say that you 

take the increasing subsequence starting at 𝑎*; what is its length? Its length is 𝐼* and if I put the 

value of 𝑎) at the beginning of that subsequence then that gives me now a new increasing 

subsequence starting at 𝑎) and of length 𝐼)'!. But that goes against the assumption that the length 

of the longest subsequence starting at 𝑎) was𝐼). So that is how I arrive at a contradiction. 

 
On the other hand if I take the case when 𝑎) > 𝑎* then I have to just give a symmetric argument. 

What I can say is the following. I know that there is a decreasing subsequence starting at 𝑎* and 

its length is 𝐷*. My claim is if you take that subsequence and put an 𝑎) at the beginning then that 

now give me a new decreasing subsequence starting at 𝑎) and the length of this new decreasing 

subsequence is 𝐷_{𝑖	 + 	1}. 

 
Which now goes against the assumption that the length of the longest decreasing subsequence 

starting at 𝑎) was 𝐷). That means in both the cases I arrived at a contradiction and that shows that 

whatever I assumed here that means the value of each 𝐼) and each 𝐷) was upper bounded by 𝑛	is 

incorrect. That means there is at least one 𝑎)where either 𝐼) is greater than 𝑛 or 𝐷) is greater than 

𝑛. I do not know what exactly is that 𝑎). So I gave you a non-constructive proof here. But I argued 

that the existence of such 𝑎) is guaranteed. 
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Now let us go to question 12. In this question we want to show the following you are arbitrarily 

picking 9 people in the age group of 18 to 58. That means the minimum age it is allowed is 18 the 

maximum age is allowed 58. Now we want to prove that irrespective of what exactly are their 

ages, as long as they are in the range 18 to 58 it is always possible to choose 2 disjoint groups of 

people out of this 9 people whose sum of ages is the same.  

 
Again, we will do this by pigeonhole principle. So the first thing is since we want to argue about 

a non-empty set of people because when I want to consider the age of the people there have to be 

people in the group. So I have to focus on non-empty subset. So if I have 9 people then the number 

of non-empty groups that I can form out of those 9 people need not be disjoint is 511. And now 

what I can say about the range of the sum of ages in these 511 subsets. 

 
If I consider the minimum sum of ages possible in a group it could be 18. This is possible only 

when I have a group of just consisting of one person and that person has age 18. That is a minimum 

possible sum. Whereas the maximum possible sum can occur when in my group I have all the 9 

people person 1, person 2 and up to person 9 and each of them has age 58.  

 
That is a maximum possible value of sum of the ages in a group we picked from 9 people. That 

means the range of possible sums here is 505. So now let us apply the pigeonhole principle. My 

pigeons are the various possible non-empty set of people that I can form out of this 9 group of 9 

people. So I have 511 possible subsets and my holes are the range of sum of ages. That means 



what can be the sum of ages if I consider the various possible subsets given that the ages could be 

in the range 18 to 58. 

 
So I have more pigeons than holes so by pigeonhole principle I can say that they always exists a 

pair of group 𝑆) and 𝑆* such that the sum of ages of the people in 𝑆) and 𝑆* are the same. But my 

question wants me to show that the group should be disjoint. So how do I argue that? I can always 

form disjoint groups of people out of this 𝑆) and 𝑆*. Well if they are already disjoint then I have 

showed the existence of 2 groups having the same sum of ages.  

 
But if the sets 𝑆) and 𝑆* are not same; if they have some common people just remove the common 

people from both the set 𝑆) and as well as 𝑆*. The common people in the set 𝑆) and 𝑆* were 

contributing the same amount to the sum of ages in the set 𝑆) as well as in the set 𝑆*. So if I remove 

those common people the same amount will be removed from the sum of ages in 𝑆) and 𝑆*. And 

now where I will get 2 disjoint groups of people having the same sum of ages. 
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In question 13 you are given the set of 𝐴 consisting of the numbers 1 to 2𝑛 and we want to show 

that if I pick an arbitrary subset 𝐵 consisting of 𝑛 + 1 elements from the set A and irrespective of 

the subset there always exist a pair of values such that one divides the other. And this is again a 

very interesting question. So for applying the pigeonhole principle what I do is I divide this set 𝐴 



into 2 disjoint subsets namely the subset consisting of the odd values and the subset consisting of 

the even values. 

 
Both of them will have the cardinality 𝑛. Now my claim is the following: you take any value in 

the set 𝐴, it has a unique factorization of the form that you have some power of 2 multiplied by the 

remaining value where the remaining value will be a number, specifically an odd number in the 

subset 1 to 2𝑛	 − 	1. For example, if your number 𝑥 that you are taking in the set 𝐴 is already an 

odd number then I can write it in the form 2/ ∗ 𝑥. 

 
So in this case my a will be 0 and my 𝑥 will be 𝑥 itself. So my statement is true. Whereas if your 

𝑥 would have been say 6 then 6 can be written as 2 into 3. So you have 2! times an odd value. If 

your 𝑥 is say 10 then you can write it as 2 1 ∗ 5. If your 𝑥 is say 20, then you can write it as 2" ∗

5. So you can see that irrespective of the case, whether your 𝑥 is odd or even, this claim is always 

true.  

 
So for 𝑥 being odd this statement is always true. But the statement is true even for a general 𝑥 

which is even because for such 𝑥 where 𝑥 is either 2, 4, or 2𝑛; I can express it in the form 2 power 

sum positive exponent 𝑒! followed by the remaining values. And this is because of the fundamental 

theorem of arithmetic that every integer has a unique prime factorization. The claim is that if I 

consider the remaining prime factorization here then that will be an odd value. 

 
And that odd value will be in the set 𝑂 here and it is easy to verify that. So that means this claim 

is true. Now based on this claim I have to apply the pigeonhole principle. For applying the 

pigeonhole principle I do the following. Let 𝐵 be the arbitrary set of 𝑛 + 1 values that I have 

chosen. And I mapped those arbitrary chosen values to the leftover value in its unique factorization 

that this claimed guarantees.  

 
So 𝑎! will be written in the form of some 2+! ∗ 𝑏. So 𝑎! will be mapped to this 𝑏!; 𝑎" will be 

written in the form of some 2+" into leftover thing. That left over thing is an odd number in the set 

𝑂. So a_2 will be mapped to 𝑏" and so on. That is a mapping 𝑓 here. Now what is the cardinality 

of set 𝑂? That is 𝑛; that means my number of holes is 𝑛. But the number of pigeons is 𝑛 + 1. That 



means by pigeonhole principle it is guaranteed that there exists a pair of values 𝑎) and 𝑎* out of 

this n+1 values. 

 
Where 𝑎) is sum 2+# into some left over thing which is an odd value. And 𝑎* is some 2+$ multiplied 

by the same leftover value. I do not know the exact value of that left over odd value 𝑏. But that 

left over odd value 𝑏 will be the same; that is a guarantee. And exponents 𝑥) ≠ 𝑥* because I am 

considering the distinct vales 𝑎) and 𝑎*. But what is guaranteed is that the leftover odd value here 

that is there as per this unique factorization claim will be the same. Now I have 2 possible cases if 

𝑎) is greater than 𝑎* then clearly 𝑎* divides 𝑎) because if I divide 𝑎* by 𝑎) then the effect of 𝑏 goes 

out and the exponent 𝑥) is greater than exponent 𝑥*. So, whatever is leftover that will be the quotient 

and the remainder will be 0. 

 
Whereas if 𝑎* is greater than 𝑎) then again the effect of 𝑏 vanishes and 2+$/2+# that will give you 

0 remember. So irrespective of the case my statement is correct. 
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Now let us go the last question. Here we want to find out how many solutions are there for the 

equation 𝑥! +⋯𝑥0 = 29 where there are various possible restrictions on 𝑥). So in part a, we have 

the restriction that each 𝑥) has to be greater than 1. So you can imagine that you are given here 

bills of type 𝑥!, bills of type 𝑥" and bills of type 𝑥0. We have to pick total 29 bills with the 

restriction that you have to definitely pick more than one bill of each type.  



 
That is the interpretation of this first restriction. That means I have to compulsorily pick 2 items 

of type 𝑥!, 𝑥"…𝑥0. That means I had already picked 12 items compulsorily. That means now I am 

left over with the problem of picking 17 bills in total, out of this 6 different bill types where there 

are no restrictions. And remember as per the formula for the number of combinations with 

repetitions the answer is 𝐶(6 − 1 + 17,17) = 𝐶(22,17).  

 
In part b, the restriction is 𝑥) ≥ 𝑖. Again, if I interpret this restriction that means I have to definitely 

include one bill of type 𝑥!, 2 bills of type 𝑥", 3 bills of type 𝑥#, 4 pills of type 𝑥$, 5 bills of type 

𝑥% and 6 bills of 𝑥0. That means I have already picked 22 bills of various types. That means now 

my goal was to pick 29 bills; 22 definitely I have already picked. So, I am left over with the 

problem of picking 7 bills where those 7 bills can be of type 𝑥!, 𝑥" to 𝑥0 in any possible order, no 

restrictions. So again, from the formula for number of r-combinations with repetition the answer 

will be 𝐶(6 − 1 + 7,7) = 𝐶(12,7).  

 

In part c, the restriction is that 𝑥_1	\𝑙𝑒	5. So, what we do here is the following. We first find out 

the number of solutions where there is no restriction. That means 𝑥_1 maybe 0 as well; those 

solutions are also included in this quantity. And now I try to find out those solutions where this 

condition namely 𝑥_1 less than equal to 5 is violated. That means find the number of solutions 

where 𝑥_1 is greater than equal to 6. 

 
That means definitely I have to pick 6 bills of type 𝑥_1 which further implies that now I am 

interested to pick the remaining 23 bills without putting any restriction that how many bills of 

different types I have to choose. The number of solutions for this case will be this. But this is not 

what we want. We want to find out the number of solutions which do not have this condition. So 

what I do? I subtract this value from the set of or from the number of solutions that I have without 

any restrictions and that will give me the answer.  
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The last part here, my restrictions are 𝑥_1	 < 	8 and 𝑥_2	 > 	8. Let us first try to find out the number 

of solutions where 𝑥_2	\𝑔𝑒	9. That means just try to satisfy the second restriction here. The 

number of solutions will be this because if 𝑥_2 is greater than equal to 9 that means 9 bills of type 

𝑥_2 definitely have to be chosen. That means now I am left with the problem of picking 20 bills 

from bills of 6 types without any restrictions. 

 
And now let us try to find out the number of solutions where this first restriction is violated, namely 

𝑥_1 is greater than equal to 8 and 𝑥_2 is greater than equal to 9. So, what basically I am trying to 

do is the set 𝐴 that I have defined here it has all those solutions where 𝑥_1 is less than 8 as well as 

𝑥_1 is greater than 8. So, I am trying to take out those solutions where 𝑥_1 is greater than equal to 

8 from this set A. I am denoting that set as B and the cardinality of the set B is this because if I am 

supposed to satisfy 𝑥_1 greater than equal to 8 and 𝑥_2 greater than equal to 9 that means I have 

already picked 17 bills. My goal will be now to pick 12 more bills from bills of 6 types without 

any restrictions. This will be the number of ways the number of solutions. And as I have said from 

the interpretation of the set 𝐴 and 𝐵 the required number of solutions is the difference of these 2 

cardinalities which we can easily find out. So with that we finish our tutorial number 6. Thank 

you. 

 


