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Hello everyone, welcome to the first part of tutorial 6. 
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In question number 1, we are supposed to find the required relation for the number of strictly 

increasing sequences of positive integers that has 1 as its first term and 𝑛 as its last term where 𝑛 

is some positive integer. So for instance, if 𝑛	 = 	1 then there is only 1 sequence which starts with 

1 and ends with 1 and which is a strictly increasing sequence. Whereas as if 𝑛	 = 	2 then also I 

have only 1 sequence starting with 1 and ending with 2 and which is strictly increasing. 

 
By strictly increasing sequence, I do not mean that I need all the numbers between 1 to 𝑛. Similarly, 

if 𝑛	 = 	3 then a possible sequence could be starting with 1 ending with 3. This is a strictly 

increasing sequence or I can have a sequence where I have (1, 2, 3) starting with 1 and ending with 

3 and having 2 in between. So these are the various sequences possible for different values of 𝑛. 

Now our goal is to find out a recurrence equation for this problem. 

 
Basically, what we are asking here is the following. Imagine you have an arbitrary sequence 

starting with 𝑎! ending with 𝑎". The restrictions are here that the first term should be 1, namely 



𝑎! should be 1 and the last term 𝑎" should be 𝑛 and in between you have the numbers 𝑎#…𝑎"$! 

where they appear in the strictly increasing order. They can be any numbers from {2	 … 	𝑛	– 	1}. So 

let 𝑠% denotes my functions which is the number of valid sequences ending with 𝑛. 

 
So a trivial recurrence condition for 𝑠% is the following. I can say that 𝑠% = 𝑠! + 𝑠#…𝑠%$!. This 

is because, the second last value in the sequence, namely 𝑎"–!, can be 1. If that is the case then 

basically what I am saying is find out all possible sequences starting and ending with 1 and append 

it with the value 𝑛. That will give you one category of valid sequences starting with 1 and ending 

with 𝑛. 

 
How many such sequences you can have? You can have 𝑠! such sequences. Or 𝑎"–! can be 2. In 

that case what I am saying is you find out all valid sequences starting with 1, ending with 2, and 

which is a strictly increasing sequence and in each such sequence you put an 𝑛 at the end and that 

will give you another category of strictly increasing sequences starting with 1 and ending with 𝑛.  

 
How many such sequences you can have? Can have 𝑠# number of such sequences and the same 

way your second last value in the sequence 𝑎"–! could be 𝑛	 − 	1. So basically I am saying take 

any valid or strictly increasing sequences starting and starting with 1 ending with 𝑛	 − 	1 and put 

an 𝑛 at the end and that will give you another category of strictly increasing sequences starting 

with 1 and ending with 𝑛.  

 
And you can have 𝑠%–! such sequences. And all this category of sequences that we have discussed, 

they are disjoint. So this is one of the recurrence conditions for our function 𝑠%. But we want a 

more compact recurrence condition. Compact in the sense, the degree of this equation that we had 

just formulated, what is its degree? Its degree is 𝑛 − 1 because the n-th term of the sequence that 

we had formulated here depends on 𝑛	 − 	1 previous values in the sequence. 

 

We want a more compact recurrence condition. So let us derive that alternate recurrence equation 

and this alternate recurrence equation is derived by using the following argument. So imagine you 

have, considering a valid or strictly increasing sequence starting with 1, ending with 𝑛, and the 

second last value in the sequence is 𝑎"–!. Now there can be 2 categories. Category 1 that your, 



𝑎"–! is 𝑛	 − 	1. That means you are considering all such strictly increasing sequences where the 

second last term is 𝑛	 − 	1. 

 
How many such sequences you can have? You can have 𝑠%–! sequences and you take any such 

sequence and append it by a value of 𝑎" = 𝑛, you get a strictly increasing sequence starting with 

1 and ending with 𝑛. And there will be 𝑠%–! such sequences. Category 2 is the following. The 

second last value namely 𝑎"–! in your sequence can be either 1 or 2 or 𝑛	 − 	2. And you end this 

𝑎"–!; you append the 𝑛 at the end of this 𝑎"–! you get a valid or strictly increasing sequence starting 

with 1 ending with 𝑛. 

 
Now what we can do is? We can interpret the 𝑛 which is there at the last position, last position 

means after 𝑎"–! in your actual sequence ending with 𝑛. We can interrupt this last 𝑛 as 𝑛	– 	1. It is 

just some mental interpretation. So for instance what I am saying is here is one of the strictly 

increasing sequences in category 2. Why? Because my second last value namely 𝑎"–! here, is 𝑛	 −

	3. It is not 𝑛	 − 	1 it is	𝑛	 − 	3 and then there is an 𝑛 following this 𝑛	 − 	3. 

 
So I can just view this sequence as another sequence where instead of n being appearing at the last 

position I have 𝑛	 − 	1 appearing at the last position. Mind it, I stress here that these second 

category of sequences are different from the first category of sequence. Because in the first 

category of sequence I have only 𝑛	 − 	1 allowed in the second last position. But in this category 

2 of sequences I am not allowing 𝑛	 − 	1 in my second last position. 

 
My second last position could be anything from the set 1, 2 or 𝑛	– 	2 and then the last position is 

occupied by 𝑛. What I am thus basically saying is that just read that instead of being 𝑛 having at 

the last position, you have 𝑛 − 1 at the last position. And it is easy to see that how many such 

sequences you will have? By doing this logical interpretation, that means, by substituting the last 

𝑛 with an 𝑛	 −	1 in your mind you can easily see that there will be 𝑠%–! such sequences.  

 

And also this category 1 of sequences and category 2 of sequences are disjoint. And you cannot 

have any third category of strictly increasing sequences because your second last position namely 

𝑎"–! could be either 𝑛	 − 	1 or different from 𝑛	 − 	1. And these are the only 2 possible cases which 



we have considered and hence we can say that our alternate recurrence equation will be 𝑠% = 2 ∗

𝑠%$!. 

 
Now this is an equation of degree 1 because now the dependency of the n-th term is only on the 

previous term. So definitely this is a better recurrence equation in terms of solving it and in terms 

of the number of initial conditions that we need here. It turns out that even though this equation; 

this alternate recurrence equation is of degree 1, we need 2 initial conditions. So 𝑠! = 1 this is 

because if 𝑛	 = 	1 there is only 1 sequence which is strictly increasing starting with 1 and ending 

with 1; namely with sequence 1 i.e., the sequence which is having only the value 1 in it.  

 

And if I take 𝑛	 = 	2 then also I have only 1 sequence which is strictly increasing; starting with 1 

and ending with 2. The sequence will be 1 followed by 2. That is why 𝑠# = 1. Now you might be 

wondering that why 𝑠# is explicitly specified as an initial condition. Why cannot I just have an 

initial condition 𝑠! = 1 because this is an equation of degree 1 here. 

 
This is because if I do not explicitly specify the value of 𝑠# = 1 and then if you try to derive 𝑠# by 

substituting 𝑛	 = 	2 in this recurrence equation you should get 𝑠# = 2𝑠! = 2 ∗ 1 = 2, which is not 

the case because you do not have 2 strictly increasing sequences starting with 1 and ending with 

2. You have only one strictly increasing sequence. Or does that mean that our recurrence condition 

that we have derived is wrong?  

 

Well that is not the case because if you see here the problem that is happening here is that if I take 

𝑛	 = 	2 then this case 2 or category 2 of strictly increasing sequences would not be there at the first 

place. Because for 𝑛	 = 	2 this case 2 boils down to saying that at the second last position you have 

one at the beginning and you’re 𝑎"–!, namely the second last string, could be from the set 1 to 0 

which is not the case. 

 
Because 𝑛	 − 	2	 = 	0 for 𝑛	 = 	2, you cannot have a second last position occupied by something, 

say 0. That is not allowed. So that is why case 2 or category 2 is not going to occur for the case of 

𝑛	 = 	2. For 𝑛	 = 	2 it is only the case 1 which can occur namely your second last position can be 

occupied only with 1.  And then you append it with 1 that is why you have only 1 valid sequence 

for the case of 𝑛	 = 	2 as well.  



 
It is only from 𝑛	 = 	3 onwards that your category 2 of strictly increasing sequences appear. And 

that is why we have 2 initial conditions needed.  
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In question 2 you have to find out the recurrence relation for the number of bit strings of length 𝑛 

that contain the substring “000”. It might have more than 1 occurrence of “000” as well. In fact, a 

string of length 𝑛 consisting of all 0’s is a valid string. So let us try to find out this by formulating 

a recurrence equation. So let 𝑠% denote the number of bit strings of length 𝑛 containing the 

substring “000”. 

 
So what we will do is instead of counting the number of strings containing “000” we will rather 

count the number of strings of length 𝑛 not containing “000” because it will be relatively easier to 

formulate a recurrence equation for the number of bad string. Here, the term bad string denotes 

strings that do not have an occurrence of “000”. So, I call or denote the sequence of all 𝑛 length 

bit strings not containing “000” by this 𝑏 sequence and 𝑏% is the n-th term of such sequence. 

 
Now it is easy to see that as per the definition of 𝑠% and 𝑏% that 𝑠% = 2% − 𝑏%. This is because 2% 

is all possible 𝑛 bit strings. 2% denotes all possible 𝑛	bit strings which has an occurrence of “000” 

and which do not have an occurrence of “000”. And you subtract from such strings all such strings 

which do not have an occurrence of “000” we will get the number of strings of length 𝑛 which has 

an occurrence of “000”.  



 
So our goal now will be boiling down to find out the recurrence condition for the 𝑏 sequence. And 

it turns out that there are 3 disjoint categories of bit strings of length 𝑛 not containing “000”. Let 

us look into those 3 categories. Category 1 consists of those strings of length 𝑛 that start with 1. If 

it starts with 1 then in order that the overall string does not have any occurrence of “000”, it should 

be the case that the remaining portion, namely the remaining portion of length 𝑛	 − 	1 bit, should 

not have any occurrence of “000”. 

 
How many such strings we can have? As per our definition of 𝑏 function, there will be 𝑏%–! such 

strings. So this is category 1 of bad strings. Category 2 of bad strings are those that start with “01” 

and if that is the case then the remaining 𝑛	 − 	2 bit positions should not have any occurrence of 

“000”. How many such bit strings we can have? We can have 𝑏%–# such strings.  

 
And category 3 of bad strings where the first 2 positions are 0, and in that case, the third position 

cannot be 0 because if the third position has a 0 then it is not a bad string. The definition of bad 

string is that it should not have any occurrence of “000”. So in category 3 we are considering the 

case where the first 2 positions are 0 the third position is 1. And after that in order that the overall 

string do not have any occurrence of triple 0 the remaining substring of length 𝑛	 − 	3 should not 

have any occurrence of “000”.  

 
How many such bad strings I can have? I can have 𝑏%–' such strings. And these are the only 3 

categories of bad strings. I cannot have any other fourth category and it is easy to see that they are 

disjoint. So how many bad strings I can have? The number of bad strings of length 𝑛 will be the 

summation of the number of bad strings of length 𝑛 − 1, 𝑛 − 2 and 𝑛 − 3 and hence we get this 

recurrence equation for the 𝑏 series. 

 
And since this is an equation of degree 3, we need 3 initial conditions. 𝑏! = 2 because both the 

string 0 as well as string 1 do not have any occurrence of “000”. Similarly, 𝑏# = 4 and 𝑏' = 7.  
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So you can see in this question that why we did not formulated directly the recurrence condition 

for 𝑠%. Because that might be slightly involved but formulating a recurrence of 𝑏% is very easy and 

that is why we formulated our recurrence condition or expressed our recurrence condition for 𝑠% 

in terms of 𝑏%.  

 

In question 3, we have to find out the recurrence relation for the number of bit strings of length 𝑛 

that contain “01”. So let 𝑠% denote the number of bit strings of length 𝑛 containing “01”. Again, 

we need at least 1 occurrence of “01” there could be more occurrences of “01” allowed as well. 

My claim is that 𝑠% satisfies the recurrence condition 𝑠% = 𝑠%$! + 2%$! − 1. Let’s see why. So it 

turns out that we can have 2 disjoint categories of 𝑛 length bit string containing “01”. Category 1 

where the string starts with 1. If it starts with 1 and in order that the overall string has an occurrence 

of “01” we need that remaining 𝑛 − 1 length bit string should have an occurrence of “01”.  

 
As per our definition of s function I will be having 𝑠%–! such bit strings. And category 2 where the 

string starts with 0. Now the strings starts with 0; I may have only 1 zero, or I may have 2 zeros, 

or I may have a sequence of 𝑘 zeros followed by a 1 and then I do not care what is the remaining 

𝑛	 − 	𝑘	 − 	1 substring. And here 𝑘 ranges from 1 to 𝑛	 − 	1. Why from 1 to 𝑛	 − 	1? Because we 

definitely need 1 occurrence of 0 followed by a 1.  

 
So that is why k = 1. So 𝑘 denotes the number of zeros which are there at the beginning of the 

string. So I can have either 1 number of 0, or 2 number of 0, or 𝑛 − 1 number of zeros because I 



might be having a string of the form “000…0” 𝑛 − 1 number of time and the last bit is 1. That is 

also a valid string in this category 2. So that is why my 𝑘 ranges from 1 to 𝑛	 − 	1. 

 
And then I do not put any restriction. Once I have occupied 𝑘 + 1 bits here, the remaining 𝑛 −

𝑘 − 1 positions can be occupied by any bit, either 0 or 1. So how many strings in this second 

category I can have? It depends upon how many slots I am left here. Because the first 𝑘 + 1 slots 

are reserved for 𝑘 number of zeros and one single 1.  

 
So the remaining 𝑛 − 𝑘 − 1 positions can be occupied by either 0 or 1 and hence I can have 2%$"$! 

many strings in the second category. So if I sum these 2 things I will get the total number of strings 

but it turns out that in category 2 my 𝑘 ranges from 1 to 𝑛	 − 	1. So that is why I have to put 𝑘	 =

	1, 𝑘	 = 	2, 𝑘	 = 	3	 … 	𝑘	 = 	𝑛	 − 	1. And hence I get total 2%$# + 2%$' +⋯+ 2( many strings in 

category 2 and this is nothing but a geometric progression. If I sum them up I get 2%$!– 1 value 

and that is how we get 𝑠% = 𝑠%$! + 2%$! − 1.  
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Now let us go to question number 4. We want to find out a recurrence relation for the number of 

ternary strings of length 𝑛 that has an occurrence of “00” or “11” or “22”. It may have occurrence 

of all of them or it may have an occurrence of “00” as well as “11”. I need either an occurrence of 

“00” or an occurrence of “11” or an occurrence of “22”. And by ternary strings I mean that the 

only characters which are allowed in your string are 0, 1 and 2. 

 



So let 𝑠% denote the number of such ternary strings. The claim is that 𝑠% is satisfying the recurrence 

condition 𝑠% = 2𝑠%$! + 3%$!. So let us derive that. It turns out that we can have 2 disjoint 

categories of ternary strings of length 𝑛. Let’s see them. Category 1 where I take a ternary string 

of length 𝑛 − 1 which satisfies my condition, namely it has an occurrence of “00” or “11” or “22”. 

If I take any such 𝑛 − 1 length ternary string and there will be 𝑠%–! such strings and if I put any 

character at the beginning of such a string; that character 𝑥 could be either 1 or 2 or 3 it does not 

matter because I have already encountered an occurrence of “00” or “11” or “22” in the remaining 

portion of the string. So it does not matter what is my 𝑥 or it will give me overall a ternary string 

of length 𝑛 satisfying my conditions. So how many such strings I can have? So since my 𝑥 can 

take 3 possible values; I have 3𝑠%$! strings in this category. 

 
Category 2 where I take an 𝑛 − 1 length ternary string which has no occurrence of “00” or “11” 

or “22”. How many such strings I can have? The number of such strings will be all possible ternary 

strings of length 𝑛 − 1 minus the number of ternary string length 𝑛 − 1 which do have an 

occurrence of “00” or “11” or “22”. So that will be the total number of strings of this form. And 

let 𝑥 be the first position of this 𝑛 − 1 length ternary string. Right now there is no occurrence of 

“00” or “11” or “22”. 

 
I want to convert the string into a string of length 𝑛 which has an occurrence of “00” or “11” or 

“22” and the only way I can do that is I have to put the same character 𝑥 at the beginning of this 

string as well. So that will ensure that the overall length of the string becomes 𝑛 and then will have 

an occurrence of either “00” or “11” or “22”. So how many strings of this category I will have? It 

will be exactly 3%$! − 𝑠%$! because I do not have an option of 𝑥 here.  

 
Once this 𝑥 is frozen I have to repeat the same 𝑥 at the first position. So that is why the total 

number of strength in this category will be  3%$! − 𝑠%$!  and if I sum them, these two things, I get 

𝑠% = 2𝑠%$! + 3%$!. 

(Refer Slide Time: 26:07) 



 
Let us go to question 5. In question 5 I have defined the function 𝑇(𝑚, 𝑛) which is as follows. So 

you have 2 sets. A set 𝐴 whose cardinality is 𝑚 and set 𝐵 whose cardinality is 𝑛 and 𝑇(𝑚, 𝑛) 

denotes here the number of onto functions from the set 𝐴 to the set 𝐵. I have to show that 𝑇(𝑚, 𝑛)  

is satisfying the recurrence condition 𝑇(𝑚, 𝑛) = 𝑛) − ∑ 𝐶(𝑛, 𝑘)𝑇(𝑚, 𝑘)%$!
"*! . So let us prove that. 

The idea behind the derivation of this recurrence condition is that since a subtraction is involved 

here and you can see and identify the structure of this 𝑛). 

 

𝑛) denotes the number of all possible functions from 𝐴 to 𝐵. It could be either onto or it could be 

non-onto. So if I subtract all non-onto functions from the number of all possible functions from 𝐴 

to 𝐵 that will give me the number of onto functions. So it is easy to see that what this recurrence 

condition is saying is to derive 𝑇(𝑚, 𝑛) subtract the number of non-onto functions.  

 
That means I have to show that this latter part of this recurrence condition denotes the number of 

non-onto functions from 𝐴 to 𝐵 and indeed that is the case. So why that is the case? So you are 

given the sets 𝐴 and 𝐵 and we want to find out the number of non-onto functions. What will be 

the characteristic of a non-onto functions? A function will be a non-onto function from 𝐴 to 𝐵 if 

there is at least 1 element from the set 𝐵 which do not have any pre-image. 

 
Or in other words I can view any non-onto function as follows. So let 𝑓’ be an arbitrary non-onto 

function from 𝐴 to 𝐵. If I focus on the set of possible images which are assigned as per this function 



𝑓’ and call that set as 𝐷, the image set i.e., 𝐷 is the set of all the elements from 𝐵 which are the 

images as per the function 𝑓’.  

 
Then since my function 𝑓’ is a non-onto function clearly this image set 𝐷 will be a proper subset 

of 𝐵. So more specifically if the cardinality of image set 𝐷 is 𝑘; 𝑘	 < 	𝑛. 𝑘 could be either 1, 𝑘 

could be either 2, 𝑘 could be either 3 or 𝑘 could be either 𝑛 − 1. If you ensure that if I take these 

values of 𝐷 then it ensures that there is at least 1 value from the set of B which is left which is not 

going to have any pre-image.  

 
So now in how many ways I can select my set 𝐷? Since its cardinality is 𝑘, I can select it in 𝐶(𝑛, 𝑘) 

ways and as I said 𝑘 ranges from 1 to	𝑛	 − 	1. So that takes care of the fact that I have to consider 

a summation from 𝑘	 = 	1 to 𝑛	 − 	1. Now once I have decided the value of 𝑘, I have to find out 

which subset or what should be my subset 𝐷 of size 𝑘. So I have 𝑛 choose 𝑘 or 𝐶(𝑛, 𝑘) ways of 

selecting my set 𝐷 of size 𝑘.  

 
And once I have chosen by set 𝐷, the set or the function 𝑓’ will be an onto function from the set 𝐴 

to 𝐷. That means I if I just forget about the set 𝐵 and just imagine that I have a set 𝐷 of size 𝑘 and 

consider an onto function from the set 𝐴 to the set 𝐷 that can be interpreted as a non-onto function 

from the set 𝐴 to the set 𝐵 because my set 𝐷 is a proper subset of the set 𝐵. So now how many 

such onto functions I can have from 𝐴 to 𝐷? 

 
So as per my definition of the 𝑇 function, there are 𝑇(𝑚, 𝑘)  such functions. So once I have decided 

the cardinality of the set 𝐷, I have 𝐶(𝑛, 𝑘) ways of selecting that as per the product rule. For each 

way of selecting a subset D of size 𝑘, I have 𝑇(𝑚, 𝑘) number of onto functions from the set 𝐴 and 

the chosen 𝐷 set and hence if I multiply that, that will give me the number of non-onto functions 

where the image set of those non-onto functions is the set 𝐷.  

 
And then as I said if I take the summation from 𝑘	 = 	1 to 𝑛	 − 	1 that will give me the overall 

number of non-onto functions. 
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Let us go the question 6. Here we recall our sterling functions of type 2, namely the 𝑆(𝑛, 𝑘) 

function which is the number of partitions of an 𝑛 element set into 𝑘 non-empty disjoint subsets 

and we have to prove that it satisfies this recurrence condition. So, since the plus is involved here 

definitely I have to show that I have 2 different categories or disjoint, categories of partitions. 

Indeed that, is the case.  

 
So consider an arbitrary set 𝑋 consisting of 𝑛	elements which I denote as 𝑎! to 𝑎%. And I have to 

find out in how many ways I can partition this collection into 𝑘 disjoint subsets. Such that if I take 

the union of those subset I get the whole set 𝑋 and the subset should be pairwise disjoint. So I can 

have 2 categories of partitions. Category 1 where I divide or I partition the first 𝑛 − 1	elements 

into 𝑘	 − 	1 subsets; that means I am not considering 𝑎% right now.  

 
I am imagining that I have only 𝑛 − 1 elements and I want to partition them into 𝑘 − 1 subsets. 

And then create an extra subset which only has the element 𝑎%. That will now result in total 𝑘 

number of disjoint subsets which will whose union will cover the entire set 𝑋. So how many such 

partitions I can have? The number of such partitions is nothing but the number of partitions 

possible for partitioning the 𝑛 − 1 elements into 𝑘 − 1 disjoint subsets and as per the definition of 

𝑆 function 𝑆(𝑛 − 1, 𝑘 − 1) is the number of such partitions.  

 
Category 2 where I take the 𝑛– 1 elements and partition it into 𝑘 disjoint subsets not 𝑘 − 1. Now, 

I have to still put 𝑎% somewhere. In this category, what I am going to do is I am going to consider 



the case that 𝑎% is going to occupy any of these 𝑘 subsets. So this is clearly different from the case 

where we have explicitly reserved a whole partition 𝑃" for the n-th element. And the remaining 

𝑘 − 1 subsets where covering the remaining 𝑛 − 1 elements. 

 
Here the entire 𝑘 subsets are going to cover the 𝑛 − 1 elements and 𝑎% also is supposed to occupy 

1 of those subsets. So it is easy to see that the number of partitions in this category will be first we 

have to find out how many ways I can partition 𝑛 − 1 elements into 𝑘 − 1 subsets. And once I 

have decided the subset 𝑃! to 𝑃", I have the option of either putting 𝑎% namely the n-th element in 

𝑃! that is 1 option, or I have the option of putting 𝑎% into the second subset and so on. 

 
And that is why 𝑘 is multiplied here because of the product rule. And if I sum these 2 categories 

of partitions that will give me the overall number of partitions. So what will be the value of 

𝑆(𝑛 + 1, 𝑛)? The number of partition of an 𝑛 + 1 element set into 𝑛 non-empty disjoint subsets. 

It is nothing but 𝐶(𝑛 + 1,2) because if I have 𝑛 + 1 elements namely 𝑎! to 𝑎%+!. 

 

And if I want to divide it into 𝑛 subsets then that means that there will be only 1 subset with 2 

elements and remaining all other subsets will have 1 element each. So now I have to just find out 

the 2 special elements which are going to occupy that subset which is allowed to have 2 elements 

and that will automatically ensure that the remaining 𝑛 − 1 elements which are left each of them 

go to a single distinct subset. So that is why the answer here is 𝐶(𝑛 + 1,2) because there are 

𝐶(𝑛 + 1,2) ways of picking 2 elements from 𝑛 + 1 elements. 

 
So it could be either 𝑎!, 𝑎 2 which go together in one subset. And remaining all elements go to 

single distinct subset each or it could be 𝑎!, 𝑎' which go together in 1 subset and remaining 

elements go to single distinct subsets each and so on. That is why the answer is 𝐶(𝑛 + 1,2).  

(Refer Slide Time: 37:09) 



 
In question 7, we have to give a proof for combinatorial proof for this identity. So let’s see the 

following setting. You are given 𝑛 mathematics professor and 𝑛 computer science professor; you 

can imagine like that and say that your goal is to select the committee consisting of total 𝑛 

professors where the head of the committee is a mathematics professor. That is my goal. Now I 

will show that the number of committees satisfying this goal is the expression both in your LHS 

as well as in the RHS.  

 
So why LHS expression satisfies or gives a number of committees satisfying my goal? Because 

suppose the committee has 𝑘 mathematics professors and 𝑘 will range from 1 to 𝑛. Definitely I 

have to include 1 mathematics professor because the head will be a mathematics professor and in 

the worst case I can have all the committee members being the mathematics professors. In that 

case the remaining 𝑛 − 𝑘 committee members will be from computer science.  

 
So that tells you that how many ways you can pick the committee. You first pick the	𝑘 mathematics 

professors; that automatically ensures that the remaining 𝑛 − 𝑘 committee members are from 

computer science. So they can be selected in 𝐶(𝑛, 𝑛 − 𝑘) = 𝐶(𝑛, 𝑘) many ways. And once you 

had decided which 𝑘 mathematics professors are going to be there and which 𝑛	 − 	𝑘 computer 

science professor are there the committee head itself can be selected out of those 𝑘 chosen 

mathematics professors in 𝑘 ways. 

 



It could be either the first chosen mathematics professor or the second chosen mathematics 

professor or the k-th chosen mathematics professor. So that is why you multiply it with 𝑘 because 

of the product rule and that tells you that why the LHS expression gives you the number of 

committee members satisfying my goal. Let us see the RHS expression. I can say that in order to 

satisfy my goal I have to do the following. I have to first select the committee head and this can be 

done in 𝑛 ways because there are 𝑛 mathematics professors. 

 
So that is why this 𝑛 here. Now once I have decided the committee head I have to still choose the 

remaining 𝑛 − 1 committee members. And they can be chosen from 𝑛 computer science professors 

and the remaining 𝑛 − 1 mathematics professors. Namely I have still 2𝑛 − 1 professors left. I have 

to choose 𝑛	– 	1 members out of them which can be done in 𝐶(2𝑛 − 1, 𝑛 − 1) many ways. And 

now by the product rule, if I multiply the number of ways in which I can select the committee head 

and the number of ways I can pick the remaining committee members I get the number of 

committees satisfying them. So with that we end our part 1 of tutorial 6. Thank you.  


