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Hello everyone, welcome to this lecture on counting using recurrence equations. 
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Just to recap, in the last lecture we discussed about the rules of permutations and combinations 

used for counting. We also discussed about permutations with reputations and combinations with 

repetitions. And we also discussed about combinatorial proofs. So in this lecture we will introduce 

a new counting technique which is extensively used in discrete mathematics and in computer 

science and this is basically counting using recurrence equations. 
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So it turns out that there are plenty of instances or counting problems which gets significantly 

simplified by recurrence equations. And to recap, what exactly is a recurrence equation? So you 

must have encountered different equations of the following form: 𝘧𝘢𝘤𝘵(𝑛)! = 𝑛 ∗ 𝘧𝘢𝘤𝘵(𝘯 − 𝟣). So 

this is a recursive function in the sense that the value of the factorial function on input 𝑛 is 

expressed in terms of the value of the factorial function on smaller inputs. 

 

Similarly we are familiar with the famous Fibonacci function where we know that 𝘧𝘪𝘣(𝑛) =

𝘧𝘪𝘣(𝑛 − 1) + 𝘧𝘪𝘣(𝑛 − 2). So again this is an example of recurrence equation. So, our idea here 

will be that now we would like to count the number of things by formulating recurrence equations. 

And later we will discuss how to solve those recurrence equations. 
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There are many counting problems which gets significantly simplified by formulating the 

recurrence equations. So let us see an example here to clarify my point. So imagine I want to find 

out the number of 𝑛 bit strings that do not have an occurrence of 2 consecutive 0’s. That means 

the substrings 00 is not allowed to appear in such a string and we want to find out how many such 

strings can be there.  

 
And we want the general answer namely we want to find the number of such strings for any 𝑛. So 

the way we are going to count this is as follows. We say that let 𝐴(𝑛) be a function which on input 

𝑛 gives you the number of 𝑛 bit strings which do not have two consecutive 0’s. That is the 

definition of my 𝐴(𝑛) function. So if I say 𝐴(1) that will give me the number of bit strings of 

length 1 that will not have the occurrence of 2 consecutive 0’s. 

 
𝐴(2) will give me the value of number of strings of length 2 that do not have occurrences of 2 

consecutive 0’s and so on. That is a definition of my function 𝐴(𝑛). Now we want to find out what 

exactly will the 𝐴(𝑛) function look like or what will be the output of the function 𝐴 on input 𝑛. 

And I want to set up a recurrence equation for that. That means I would like to express the value 

𝐴(𝑛) in terms of the output of 𝐴 function on small size inputs. 
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So for that what we are going to see here is the following. If we consider any 𝑛 bit string which do 

not have 2 consecutive 0’s then there are only 2 possibilities for the starting bit of such a string. 

The starting bit of such a string could be 1 in that case the remaining 𝑛 − 1 length substring should 

not have any occurrence of 2 consecutive 0’s. Because if 2 consecutive 0’s occur anywhere in the 

remaining substring of length 𝑛 − 1 then the overall string cannot be a valid string of length 𝑛 bits. 

And without having any occurrence of 2 consecutive 0’s that is not going to happen. So that is one 

possibility.  

 

The second possibility could be that the string of length 𝑛 starts with 0. If the string starts with 0 

and if we want that overall string should not have any occurrence of 2 consecutive 0’s. Then 

definitely the second position of that string should be 1. Because if the second position of such a 

string is also 0 and anyhow the first position is 0 then that is a violation. Violation of the property 

that the string has no occurrence of 2 consecutive 0’s so definitely the second bit position has to 

be one.  

 

And now what can I say about the remaining 𝑛 − 2 bits in this string. I can definitely say that the 

remaining	𝑛 − 2 bits in the string should not have any occurrence of 2 consecutive 0’s. Because if 

00 occurs or appears anywhere in the remaining substring of length 𝑛	– 	2 then the overall string 

cannot be considered as a valid string of length 𝑛. 

 



And now you can see that these are the only 2 categories of string of length 𝑛: either the string can 

start with 1 or the string can start with 0. So now let us try to count the number of strings in both 

the categories. If I consider category 1 then the number of strains of this category is 𝐴(𝑛 − 1). 

Why so? 
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Because I am interested to count the number of strings of length 𝑛 − 1 which do not have an 

occurrence of two consecutives 0’s and as per the definition of my 𝐴 function the number of such 

string is nothing but 𝐴(𝑛 − 1). You take any string of length 𝑛	– 	1 which do not have an 

occurrence of two consecutive 0’s and you put a 1 at the beginning of such a string that will give 

a valid string of length 𝑛 that do not have an occurrence of 2 consecutive 0’s. 

 
So that is why I will have 𝐴(𝑛 − 1) number of strings in this category. And how many strings in 

the second category? My claim is that the number of strings in this category is nothing but 

𝐴(𝑛 − 2). Because as, per the definition of my 𝐴 function the number of strings of length 𝑛 − 2 

which do not have an occurrence of two consecutive 0’s is 𝐴(𝑛 − 2). And you take any string of 

length 𝑛 − 2 bits which do not have an occurrence of two consecutive 0’s and you put 0 and 1 at 

the beginning of such a string that will give you a valid string of length 𝑛 bits which do not have 

an occurrence of two consecutive 0’s. And as I said these are the only 2 categories of strings of 

length 𝑛 which do not have an occurrence of two consecutive 0’s in terms of that the number of 



strings of length 𝑛 will be the output of A function on input 𝑛 − 1 and the output of A function on 

the input 𝑛 − 2 i.e., 𝐴(𝑛) = 𝐴(𝑛 − 1) + 𝐴(𝑛 − 2). 

 
However the argument or the discussion that we had holds only if 𝑛	 ≥ 3. Because if I take 𝑛 = 2, 

then this argument would not hold because we 𝐴(0) upon substitution. A(0) does not make any 

sense since, as per the definition of my 𝐴 function, it is the number of strings of length 0 which do 

not have occurrence of two consecutive 0’s. 

 
So that is why this definition of this recursive function holds for all 𝑛	 ≥ 3. So now you might be 

wondering what about the output of the 𝐴 function on inputs which are less than 3. So we will be 

giving some initial conditions. They are called initial conditions because the recursive functions 

are not applicable for the case when 𝑛 = 1 and 𝑛	 = 	2. 

 
Because if 𝑛	 = 	1 then the number of bit strings of length 1 which do not have an occurrence of 2 

consecutive 0 is 2. Because both the strings, 0 as well as the string 1, will be considered as valid 

string. There is no occurrence of consecutive 0’s in this string, there is no occurrence of 

consecutive 0’s in this string. Similarly, if I consider 𝑛	 = 	2 then the possible strings of length 2 

which do not have occurrences of 2 consecutive 0’s are 11, 10 and 01. 

 
These are the valid string and how many strings you have? 3. That is why 𝐴(2) = 3. But for any 

𝑛	 ≥ 3 I can find out the value of 𝐴 of that particular 𝑛 by using this recurrence equation. 
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So now we know how to count using recurrence equations. The next thing that we would like to 

do now is how to solve those recurrence equations?  And when I say I want to solve a recurrence 

equation I mean finding a closed-form formula for that recurrence equation. So what exactly that 

means? So, suppose someone gives me this recurrence equation. The recurrence equation is 

𝐻(𝑛) = 2𝐻(𝑛 − 1) + 1 for all 𝑛	 ≥ 2 and initial condition is that 𝐻(1) = 1. 

  
Now, if suppose someone asked me can you find the value of this H function on the input 100. I 

can say well that is not difficult. As per my relation 𝐻(100) will be 2𝐻(99) + 1 and 𝐻(99) will 

be 2𝐻(98) + 1 and so on. But then this is a time consuming affair. I would not be able to do this 

or solve this very quickly using paper-pen. So that is a difficult thing. So in fact 𝐻(100) you still 

might be able to do but what if I ask to compute say 𝐻(10000). 

 
Then you will be stuck; you cannot find out the value of 𝐻(10000) very quickly. Now suppose I 

tell you that 𝐻(𝑛) = 2!– 1. We will verify if this is indeed the case or not. Now, as per this formula 

𝐻(1) = 2"– 1	 = 	1 and it is also easy to verify that 2!– 1 = 2(2!#"	-	1) 	+ 	1. That means I can 

say that this H(n) function satisfies this recurrence condition. Satisfies in the sense it has all the 

properties or characteristic that are specified by the recurrence equation. 

 
If I substitute 𝑛	 = 	1 here I get the same initial condition as given in the recurrence function and 

indeed this 2!– 1 is a function where if I substitute 𝑛 being 𝑛 − 1 then I get this recurrence 

condition. That means this 𝐻(𝑛) function will be considered as a solution for this recurrence 



equation. And why it is called as solution for this recurrence? Because it is a closed-form formula. 

Closed-form formula means it is just a function of 𝑛. Here 𝐻(𝑛) does not depend on the value of 

𝐻 function on previous inputs. 

 
It is a function of variable 𝑛. You just substitute the value of 𝑛 you will get the answer. That means, 

now, if I ask you what will be the value of 𝐻(100) you do not have to follow the complicated 

process. That means for computing 𝐻(100) you need not have to compute 𝐻(99), you need not 

have to compute 𝐻(98), you need not have to compute 𝐻(97) and so on. You will just go and 

substitute 𝑛	 = 	100 in this function and get the answer and that is all. 

 
That is what we mean by solving a recurrence equation. So when I say I want to solve a recurrence 

equation by that I mean I am interested to find out a closed-form formula for that recurrence 

equation. Namely a function; in 𝑛 which satisfies that the recurrence condition. 
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So now we will discuss about the general methods of solving recurrence equations. It depends 

upon the type of the recurrence equation. It is not the case that the same method of solving the 

recurrence equation will be applicable for every category of recurrence equation. So first of all you 

have to understand here that a recurrence equation basically specify a sequence of values. 

 
So the terms recurrence condition, recurrence equation, recurrence function etc., will be used 

interchangeably. All these are equivalent terms. So whenever I am specifying a recurrence 



equation basically I am talking about an infinite sequence of values. And the recurrence equation 

basically specifies the characteristic of the n-th term of that sequence. 

 
That n-th term you might either represent as 𝐻(𝑛) where 𝐻 is a function or you might omit the 

parentheses and you can instead write down 𝑛 in the subscript. Both these notations are equivalent. 

So, for instance we know that Fibonacci sequence is defined as follows: the first term is 0, the 

second term is 1, and then after that the next term is the summation of the previous 2 terms. 

 
If I somehow want to specify the n-th term of this sequence, I can use 2 notations. I can either use 

the notation 𝑓! to denote the n-th term of this infinite sequence. So remember this Fibonacci 

sequence is an infinite sequence. Or I can use the function 𝑓(𝑛); both means the same thing. If I 

am using this notation 𝑓! then I will use this notation: 𝑓! = 𝑓!–" + 𝑓!–% to denote that the n-th term 

of the sequence is related to the previous 2 terms of the sequence. 

 

Whereas if I am using the function notation for denoting the n-th term of this infinite sequence 

then I will characterize this property by saying that 𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2). Both these 

interpretations are equivalent. 

 
And that is why for the rest of our discussion on recurrence equation I will be interchangeably 

using the terms recurrence function or the n-th term of a sequence and so on. So whenever we are 

talking about a recurrence function we are talking about an infinite sequence and we are interested 

to specify the property of the characteristic of the n-th term of that sequence by saying how exactly 

it is related to the previous terms of the same sequence.  

 
So somehow someone gives me this infinite sequence; now I want to characterize the property of 

this sequence.  
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That means what exactly is the characteristic of the n-th term of this sequence. So it is easy to see 

that the n-th term of this sequence satisfies the following characteristics. The first term of the 

sequence is 1 and if you take the n-th term for any 𝑛	 ≥ 2, it is twice the (𝑛 − 1)-th term, that 

means twice the previous term plus 1. So for instance if you take 7 where 𝑛	 = 	3, 7	 = 	2	 ∗ 	3	 +

	1 i.e., it is one more than twice the previous term. Similarly, the fourth term 15	 = 	2 ∗ 7	 + 	1 

i.e., it is one more than twice the previous term. 

 
So that is what is the interpretations of a recurrence equation. If someone gives me a recurrence 

equation and does not give me the infinite sequence; solving a recurrence equation basically means 

finding the sequence which satisfies that recurrence condition. So, someone tells me “solve this 

recurrence equation” without telling me the infinite sequence then my goal will be to find out that 

infinite sequence. 

 
But I would not be finding the whole sequence because it is infinite, instead I will just find out the 

closed-form formula for the n-th term of that sequence as a function of 𝑛. That is what I mean by 

solving a recurrence equation. It turns out that a recurrence equation may have more than 1 

solution. So for instance if I take this recurrence equation namely I am talking about an infinite 

sequence where the n-th is the difference of twice the previous term and the previous-to-previous 

term. 

 



For all 𝑛	 ≥ 2, this sequence has this recurrence condition being satisfied. Now my goal is to find 

out a possible infinite sequence whose n-th term has this characteristic for every 𝑛 ≥ 2. So I will 

now show you 2 possible sequences. So consider this infinite sequence whose n-th term is 𝑎! =

3𝑛. You can easily verify that this infinite sequence satisfies this recurrence condition. You take 

any term, say 6, it is indeed twice the previous term minus the previous-to-previous term. 

 
So 6	 = 	2	 ∗ 	3	– 	0. The term 9	 = 	2	 ∗ 	6	– 	3 and so on. So, this is one of the infinite sequences 

which satisfies this recurrence condition. Now you take another infinite sequence namely the 

sequence where all the terms are 5 i.e., 𝑎! = 5. This is also a sequence where the values in the 

sequence are completely different from the values in the upper sequence. 

 
But the second sequence also satisfies the recurrence condition. You take any term of the sequence 

it will be 5. And 5 is indeed twice the previous term which is also 5 minus previous-to-previous 

term which is also 5. This shows that if someone gives me a recurrence condition then there can 

be multiple solutions or multiple sequences satisfying that recurrence condition. 
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So we will kick start our discussion with some simple methods of solving recurrence equations. 

We will discuss advanced methods in our later lectures. So we will discuss the simplest method 

called as the iterative method. What exactly we do in the iterative method? So consider this 

recurrence equation. I am supposed to find out an infinite sequence whose zeroth term or the 

starting term is 2 and from the next term onwards the term is the pervious term plus 3. 



 
So I have to find one such sequence satisfying this condition. And when I say I want to find out 

the sequence as I said I would not find the entire sequence but rather I will find a closed-form 

formula characterizing the n-th term of that infinite sequence. So this is how we can do that using 

iterative method. So we starting with 𝑎& which is the starting term. It is given to be 2. Then we 

will say that as per our recurrence condition the second term of the sequence will be the first term 

plus 3. And now we have already obtained the value of 𝑎" = 2 + 3, so I am substituting that. And 

if I substitute overall then I get 𝑎% = 2 + 2 ∗ 3. And now if I want to find out 𝑎', again I will apply 

the recurrence condition. 𝑎' will be summation of a_2 and 3. 𝑎% I have already obtained so I can 

substitute here and now you see that I start getting a pattern here that 𝑎! = 2 + 3𝑛. That is the 

general pattern that I am getting here and that is why if I solve and I keep on solving then I will 

get the fact that 𝑎! = 2 + 3𝑛. And this is now a closed-form formula. Why it is a closed-form 

formula? Because, here the value of 𝑎!is just a function of 𝑛.  

 
You substitute 𝑛	 = 	2, 𝑛	 = 	3; you get whatever we have derived till now. So this will be the 

solution of this recurrence equation. I can get the same closed-form formula as follows. So here 

what I did I start with the initial condition and derived the n-th condition. I can do it in the reverse 

direction as well. I will say that as per the recurrence condition 𝑎! is this, then I apply the 

recurrence can be condition again on 𝑎!#".  

 
I will say that as per the recurrence condition 𝑎!#" = 𝑎!#% + 3 + 3 and 𝑎! = 𝑎!#% + 2 ∗ 3. Now 

I will again solve 𝑎!#% by applying the recurrence condition and I will get the value of 𝑎! in terms 

of 𝑎!#'. And now if I continue like this I’ll obtain the initial condition which is 𝑎& and if I stop at 

𝑎& then I will get a closed-form formula for 𝑎!. 

 
So now you can see that it does not matter whether I go from 𝑎& to 𝑎! or whether I go from 𝑎! to 

𝑎&. In both the cases I obtain the same closed-form formula. The first method here is called the 

forward substitution iterative method. The second process here is called as the backward 

substitution iterative method. So this is one of the simplest methods of solving recurrence 

equations. 
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Now the recurrence equation that we considered here can be categorized as a linear homogenous 

recurrence equation of degree 𝑘 with constant coefficient. And why we are interested in this class 

of recurrence equations is that we will next see a generic method of solving this category of 

recurrence equations. So what exactly is this category of linear homogenous recurrence equations 

of degree 𝑘 with constants coefficients. 

 
So there are multiple terms here so let us, decode each of them one by one. The general form of 

recurrence equations in this category is the following. You will have 𝑎! being expressed as the 

linear function of previous terms. So that is why the name linear. So you can see that here 𝑎! here 

is a linear function of previous terms. What is the linear function?  

 
Because the combiners namely 𝑐", 𝑐%, 𝑐( are constants here and 𝑎! depends linearly on previous 

term. Namely, it depends only the first power of 𝑎!#%, only the first power of 𝑎!#%, first power of 

𝑎!#( and so on. Why it is called homogeneous because the dependency of 𝑎! is only on the 

previous terms and nothing else. We will see what exactly non-homogenous means very soon. 

 
Why it is called degree 𝑘? Because 𝑐( is not allowed to be 0 here. If 𝑐( = 0 then 𝑎! does not 

depend on 𝑎!#(. In that case the degree will not be called 𝑘. 𝑐", 𝑐%…𝑐(#" are allowed to be 0. But 

𝑐( cannot be 0 if the degree is 𝑘. That is what the degree means here. It is similar to what we say 

in the context of polynomials. If I say I have a polynomial in 𝑥 of degree 𝑡 then the coefficient of 

𝑥) should be non-zero. The coefficients of other powers of 𝑥 may be 0. But since the degree is 𝑡 



the coefficient of 𝑥) cannot be 0. In the same way when I say degree 𝑘 this 𝑐( is not allowed to be 

0. And the constants coefficients basically say is that my combiners are constants here; 𝑐" to 𝑐(. 

 

So let us see some examples of this category of recurrence equations. Your well-known Fibonacci 

function or Fibonacci recurrence equation falls in this category. Here the degree is 2. Because 𝑓(𝑛) 

depends on the previous 2 terms. Now the equation 𝑎! = 𝑎!#" + 𝑎!#%% is not falling in this 

category. The problem is that 𝑎! does not depends linearly on 𝑎!#%. It depends quadratically on 

𝑎!#%that is why it is a non-linear function. Whereas this third function or third equation is not 

falling in this category because we have a non-homogenous component here. 
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Now the next thing that we want to show here is that, I said few slides back that if you are given a 

recurrence equation then there might be multiple solutions for that recurrence equation and we saw 

an example as well. Now the question is, is it possible that a given recurrence equation has a unique 

solution. Well it is possible provided you are given initial conditions as well. More specifically, 

imagine you are given a linear homogenous equation of degree 𝑘. That means 𝑐( is not 0. 

 
Then my claim is that if you are also given 𝑘 initial conditions, that means you are given the value 

of say 𝑎&, 𝑎" and 𝑎(–", if these values are explicitly given to you which we call as initial conditions 

then there always exists a unique solution satisfying the recurrence condition as well as the initial 

conditions. See, the example that we considered, there the initial conditions were not given. You 

just were given the recurrence equation and that is why we found 2 different sequences satisfying 



the same recurrence conditions. But what I am saying here is that apart from the recurrence 

equation you are also given the initial conditions and my claim is that only when you are given 

those many initial conditions which are same as the degree of your recurrence equation then you 

always have a unique solution.  

 
And this can be proved very easily using strong induction. So my claim is that there is only a 

unique solution satisfying the initial conditions as well as the recurrence condition. This is because 

since you are given the initial conditions namely the 𝑘 initial conditions the first 𝑘 terms are 

explicitly given to you. You cannot substitute the first 𝑘 terms arbitrarily. Now since the first 𝑘 

term are given to you, I can say that by applying the recurrence condition on the first 𝑘 terms I get 

the next term. 

 
The next term cannot be an arbitrary term because my reference condition explicitly says that what 

will be the term V( once I have frozen 𝑉&, V"…V(–". 
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In the same way, once I have frozen or decided that what are 𝑉", 𝑉%…𝑉(–" and 𝑉(. That means 

these are the 𝑘 terms which I am considering. As per the recurrence condition by applying the 

linear function or the recurrence function here, that automatically freezes the next term which is 

𝑉(*". And now this process keep on going. You take the next 𝑘 terms apply the linear homogenous 

function, that will give you the unique value of 𝑉(*% and so on. 

 



That means since my initial conditions are fixed and the number of initial conditions that are given 

to me are same as the degree of your equation, I will be getting a unique sequence satisfying the 

initial conditions as well as the recurrence condition. If you take the example where I showed you 

2 sequences satisfying the same recurrence condition that was because you were not given any 

initial conditions.  

 
And that is why I can fill any initial conditions or any initial terms in those sequences. So in the 

previous example you were just given the recurrence condition, you were not given the initial term. 

So that is why I was freezing the initial terms here in 2 different ways. In my first sequence my 

initial terms were 0 and 3.  

 
And as soon as I froze the initial sequence or initial terms to be 0 and 3 that automatically froze 

my entire sequence. Whereas if I fit the first 2 initial terms with 5 and 5 and then apply the 

recurrence equation that will give me another sequence. So it is due to the absence of the initial 

conditions that I was getting 2 different solutions or sequences for the same recurrence condition.  

 
But if you are given the initial conditions as well and the number of initial conditions if they are 

same as the degree then there will be a unique sequence or solution satisfy your recurrence 

condition. 
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So that brings me to the end of today’s lecture. These are the references used for today’s lecture. 

Just to summarize, in this lecture we introduced a new counting method called counting by 

recurrence equations. And we discussed a very simple method of solving linear equations (as well 

as non-linear equations depending upon the structure of the equation) called as the iterative method 

and we saw the forward substitution as well as the backward substitution method under the iterative 

method. We also discussed about an important category of recurrence equations namely linear 

homogenous recurrence equations of degree 𝑘 with constant coefficients. Thank you. 

 


