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Hello everyone, welcome to this lecture on permutations and combination. 
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Just to quickly recap, in the last lecture we started our discussion on combinatorics and we 

discussed the basic counting rules like the sum rule and the product rule. So in this lecture, we will 

recall the concepts related to your permutation and combination that you might have studied during 

your high school. And we will also discuss about the combinatorial proofs. 
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So to being with, what is a permutation of a set of objects? As the name suggests, it is an ordered 

arrangements of objects and when I say the ordered arrangement of the objects, that means the 

ordering of the objects matter here. So for instance if I consider 2 persons, person number 1 and 

person 2 then these two orders are different. If I consider person number 1 followed by person 

number 2 then this order is different than the ordering where the person number 2 is appearing 

before the person number 1. 

 

So, we define what we call as 𝑟-permutation and 𝑟-permutation is nothing but an ordered selection 

of 𝑟 elements from a set. So you are given a set which has certain number of elements, of course 

it should have 𝑟 or more number of elements. If you select 𝑟 elements in an ordered fashion then 

that is called an 𝑟-permutation and the number of such 𝑟-permutations from a set consisting of n 

distinct elements is denoted by this quantity or this permutation function 𝑃(𝑛, 𝑟). 

 

So you are given a set with 𝑛 distinct objects and we want to find out how many 𝑟-permutations I 

can have from this set. So for instance if I consider 𝑛	 = 	3 and 𝑟	 = 	2 then 𝑃(𝑛, 2) = 6. Why? 

Say you have 3 persons; person 1, person 2 and person 3. So you have a set of 3 objects or 3 

persons here and I want to find out how many 2 permutations I can have; how many ordered 

selection of 2 elements I can have from this collection. 

 



 

 

So pictorially these are the 6 possible ordering. I can choose person number 1 followed by person 

number 2, that's one ordering. I can choose person number 1 followed by person number 3, that's 

another ordering. I can choose person number 2 followed by person number 1 as one of the 

orderings. 

 

I can have person number 2 followed by person number 2 as another ordering. In the same way I 

can have person number 3 followed by person number 2 as one of the orderings and I can have 

person number 3 followed by person number 1 as another order. So these are the different possible 

2 permutations that you can have from this collection of 3 people. So now it's easy to see that if I 

apply the product rule then I can derive the formula 𝑃(𝑛, 𝑟) = 𝑛 ∗ (𝑛 − 1) ∗ (𝑛 − 2)… (𝑛 − 𝑟 +

1). 

 

Of course, for this formula to make sense you require your 𝑟 ∈ {1, … , 𝑛}; otherwise you get into 

the issues of negative quantities. So how exactly we get from product rule the output of 𝑃(𝑛, 𝑟) 

function to be this? So, you can imagine that I have 𝑟 slots to be occupied. And I have 𝑛 objects 

to choose from. I have object number 𝑥! to 𝑥". Now when it comes to the first slot, here I can put 

either object number 𝑥! or object number 𝑥# or object number 𝑥". 

 

So that is why I have 𝑛 choice for the first object or first slot here. Now once I have decided which 

of the 𝑛 objects to put in the first slot corresponding to that I have now 𝑛 − 1 options or 𝑛 − 1 

objects to choose from to put in the second slot and so on.  

 

By the way here repetitions are not allowed because right now I am considering the case of 

selecting or forming 𝑟-permutations where in the permutations repetitions are not allowed. So that 

is why when I am considering the second slot here. I can't consider the object which I have already 

assigned to the first slot. So that is why I have only 𝑛 − 1 options instead of 𝑛 options to choose 

from when it comes to the second slot. The formula becomes different if in the permutation that I 

am forming repetitions are allowed. So now it is easy that by applying the product rule I get the 

output of this 𝑃(𝑛, 𝑟) function to be this value.  
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Now, we can define 𝑃(𝑛, 0) = 1, namely, no way of permuting 0 objects. So if you are given 𝑛 

objects and you don't want to select any objects or you don't want to permute any object then that 

can be considered as 1 way of doing that. Because there is no way; so no way is considered as the 

only way of permuting 0 objects. So that is why we define 𝑃(𝑛, 0) = 1. That is defined; it is not 

coming from the product rule, that is coming as part of our definition. 

 

So now we have the value of 𝑃(𝑛, 𝑟) where 𝑟 is non-zero and in the range 1 to 𝑛 and we have the 

value of 𝑃(𝑛, 𝑟) when 𝑟	 = 	0.  
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So if I unify these 2 values I get that 𝑃(𝑛, 𝑟) = 𝑛!/(𝑛 − 𝑟)!. You can easily verify that. 
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Now you consider the case when we are selecting objects but while selecting the objects the order 

does not matter. That means we are now interested in unordered selection of 𝑟 elements from a set 

and each such unordered selection is called as an 𝑟-combination. So that means if I am now 

selecting 2 objects out of 3 objects then it does not matter whether I pick 𝑥! before 𝑥# or whether 

I pick 𝑥# before 𝑥!. So the arrangement (𝑥#, 𝑥!) will be considered the same irrespective of 

whether 𝑥! comes before 𝑥# or whether 𝑥# comes before 𝑥!.  

 

So we use this notation 𝐶(𝑛, 𝑟). This is often treated as choosing 𝑟 objects from a set of indistinct 

objects. And this function basically denotes a number of 𝑟 combinations that we can have for a set 

which has 𝑛 distinct elements. 
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So again you must have studied it during your high school that the output of this function or the 

value of this function is nothing but $!
&!("(&)!

. So there are several ways of deriving that. The simplest 

way could be to find out a relationship between the permutation function and the combination 

function. So my claim is that 𝑃(𝑛, 𝑟) = 𝐶(𝑛, 𝑟) 	 ⋅ 𝑃(𝑟, 𝑟). Why so? 

 

Because if you see, the left-hand side it is nothing but the number of ordered selection of 𝑟 

elements. So you are given a set with 𝑛 objects and you are interested to find out how many ordered 

𝑟 permutations you can have over a set consisting of 𝑛 elements that's nothing but your function 

𝑃(𝑛, 𝑟). My claim is that the number of ordered selection of 𝑟 elements is nothing but the 

following. 

 

You first find out the number of unordered selection of 𝑟 objects or equivalently find out how 

many ways you can first select those 𝑟 elements which you want to order in your permutation. And 

that you can do in 𝐶(𝑛, 𝑟) ways. Now once you have decided which 𝑟 elements you are going to 

put in your permutation; right now you are considering the unordered selection of those 𝑟 elements, 

if you have decided the 𝑟 objects then the number of ordered arrangements of those selected 𝑟 

elements, if you multiply that with the number of unordered selection of 𝑟 elements that will give 

you the total number of ordered selection of 𝑟 elements. 

 



 

 

So it's like saying the following. You have {𝑥!, … , 𝑥"}. You first decide the 𝑟 objects for 

permutation. Where the order does not matter as of now. This can be done in 𝐶(𝑛, 𝑟) ways. Now 

once you have decided that I have selected object number 𝑥*! , 𝑥*" …𝑥*#. 

 

We have selected this 𝑟 objects. Every arrangement, every possible ordered arrangement of these 

𝑟 elements will give you 1 possible permutation. And how many ordered arrangement of this 𝑟 

objects you can have? You can have 𝑃(𝑟, 𝑟) such ordered arrangements. So that will give you the 

total number of 𝑟 permutations that you can form from this subset of 𝑟 elements 𝑥*! , 𝑥*" …𝑥*#. 

 

So that's a relationship between the 𝑃 function and 𝐶	function. So now your goal is to find out the 

value of the 𝐶(𝑛, 𝑟) function so you just take this 𝑃(𝑟, 𝑟) in the denominator. And 𝑃(𝑟, 𝑟) is 

nothing but 𝑟!. That's how we get the value of the 𝐶 function.  
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Fine, so till now we considered the case of permutations and combinations where repetitions were 

not allowed. Now we will consider the case where even in the selection the repetitions are allowed 

as well. So we are now interested to first find out the number of 𝑟 permutations of a set of objects 

where I am allowed to have repetitions. So for instance if I consider a set with 3 persons; person 

1, person 2, and person 3.  

 



 

 

Now if I ask you how many 2-permutations I can have over this set where, I can repeat the person 

when I am forming the permutation. It now turns out that instead of 6 possible permutations I will 

now 9 possible permutations. The 6 possible permutations which we had earlier where repetitions 

were not allowed they will be still present. So those permutations are still present here. 

 

So these were the 6 permutations which were there earlier when the repetitions were not allowed 

but now since I am allowing you repetition I can have a permutation where I have 𝑃! followed by 

𝑃!. I can have a permutation where I have 𝑃# followed by 𝑃# and I can now have a new permutation 

where I have 𝑃+ followed by 𝑃+. These are all allowed now because repetitions are allowed in this 

case. So now again if I want to find out the number of 𝑟-permutations of a set of 𝑛 distinct elements 

where repetitions are allowed then it turns out to be the product of 𝑛, 𝑟 number of times. Because 

I have to fill 𝑟 slots and the first slot can be occupied in 𝑛 ways. 

 

And for each of those 𝑛 ways in which I can occupy the first slot I can fill the second slot also in 

𝑛 ways. Because repetitions are allowed. And now corresponding to each of the ways in which I 

would have filled the first 2 slots, I have 𝑛 ways to fill the third slot and so on. So that is why the 

total number of 𝑟-permutations of 𝑛 distinct elements that I can form is 𝑛&. 
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Now let's try to find out number of 𝑟 combinations where repetitions are allowed and this is slightly 

tricky. So before going into the derivation of this formula let me give you a motivating example 



 

 

and then we will try to relate this example with the problem of coming up with the number of 𝑟-

combinations where repetitions are allowed. So consider the following, you must have seen cash 

box when you go to super market and do the billing. 

 

So in cash box you have various slots available each slot is occupied with the currency of some 

specific denomination. So imagine you have cash box which has 4 slots; the first slot has bills of 

1 dollar right, many bills of 1 dollar, the second slot has many bills of 2 dollars, the third slot is 

for 5 dollar bills and fourth slot is for 10 dollar bills. By the way in this problem when we are 

finding the number of 𝑟-combinations with repetition, so I consider that the objects in the set from 

which you want to find out the r-combinations each object has many copies available and each of 

those copies are indistinguishable. 

 

So for instance in this example I assuming that in the 1 dollar bill slot you might have several 1 

dollar bills and all those 1 dollar bills are indistinguishable that means you can't say that if I choose 

the 1 dollar bill which is on the topmost position then that will consider different from the 1 dollar 

bill which is present at the bottom right. 

 

So I won't consider those things here because I will be making the assumption here that the bills 

of each denomination are indistinguishable. That is important while deriving the formula. Now 

suppose my problem is the following, I want to select total 3 bills from the bills which are available 

in the cash box and here order does not matter because I am interested to find out the number of 

𝑟-combinations where 𝑟	 = 	3 here and 𝑛	 = 	4 here. 

 

You have 4 types of objects namely object of type 1 dollar bill, bills of type 2 dollars, bills of type 

5 dollars, and bills of type 10 dollars. And you have many copies of them. At least 3 copies of bills 

of each denomination is available and your goal is to find out how many ways you can pick 3 bills 

in total where the order does not matter. So for instance one way of picking 3 bills is you pick all 

1 dollar bill that means you pick 3, 1 dollar bills or you may decide to pick 1 bill of 1 dollar and 1 

bill of 2 dollar. 

 



 

 

Or you may decide to pick one 5 dollar bill, one 2 dollar bill and one 1 dollar bill. Or you may 

decide to pick all the 3 bills of 10 dollar type and so on. So these are the various ways. Our goal is 

to find out how many such selections are possible? So for finding that consider the following 

mapping. So what I do is I think in my mind that in your cash box the bills of various denominations 

are separated by a boundary. 

 

So you can imagine that boundary is nothing but a vertical line so you have a vertical line or a 

boundary between the 1 dollar bills and the 2 dollar bills in the cash box. Similarly you have a 

boundary here, you have a boundary here. Now suppose I pick bills of 1 dollar in 3 numbers. So 

remember my goal is to pick 3 bills in total. So one way of doing that is I pick three 1 dollar bills.  

So I represent this selection by saying that I have picked three 1 dollar bills. 

 

So I put 3 cross under the heading 1 and I don't put any cross under 2 dollar denomination, 5 dollar 

denomination, and 10 dollar denomination. So I can say that there is mapping here between a 

possible way of selecting 3 bills. So here is a way of selecting 3 bills where I have picked three 1 

dollar bills and corresponding to that I am giving you a string consisting of 3 crosses or 3 cross 

and 3 vertical lines.  
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Now consider this way of selecting 3 bills; I pick two 1 dollar bills and I pick one 2 dollar bill. So 

my claim is corresponding to that I can associate this string where I put 2 cross under 1 dollar 



 

 

because I have chosen 2 bills of type 1 dollar and I put 1 cross under the 2 dollar denomination 

because I have chosen 1 bill of 2 dollar. Under, 5 dollar and 10 dollar I do not put any cross. So I 

can say that corresponding to this way of selecting 3 bills I can associate this string of 3 cross and 

3 vertical lines.  

(Refer Slide Time: 20:54) 

 
In the same way if my way of picking 3 bills is the following namely picking one 1 dollar bill, one 

2 dollar bill, and one 10 dollar bill then the corresponding string will be, you put 1 cross under 1 

dollar 1 cross under 2 dollar and 1 cross under 10 dollar.  
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And now I can say that I have a bijective mapping, namely one-one and onto mapping. So whatever 

mapping I have discussed till now my claim is that, that is a bijective mapping; namely a one-to-

one onto mapping between the set of all possible ways of selecting 3 bills out of bills of 4 

denominations in an unordered fashion. And a set of all strings of length 6 where there are 3 crosses 

and 3 vertical lines. My claim is that the mapping that I have discussed is a bijection. 

 

Of course it is an injective mapping; from this direction to this direction. Why so? Because, you 

take 2 different ways of selecting 3 bills the corresponding string of 3 cross and 3 vertical lines 

will be different. And my claim is that this mapping is surjective as well. You give me any string 

of 3 cross and 3 vertical lines; I can tell you a corresponding way of picking 3 bills. So for instance, 

if you give me a string like say, “|xxx|”, then what is the corresponding way of picking 3 bills here? 

 

So here no bill of type 1 dollar will be picked and all the 3 bills of 2 dollar type will be picked and 

no bill of 5 dollar will be picked and no bill for dollar for 10 dollar will be picked. So this mapping 

is surjective as well. So since I have 2 sets here and I have defined the mapping one-to-one namely 

injective and surjective as well, this mapping is bijective function. And that means the total number 

of way of selecting 3 bills is equivalent to finding the total number of string of length 6 which has 

3 cross and 3 vertical lines. 

 

And it's easy to see the number of such strings is this. Why? Because your string is of length 6 and 

you have to choose 3 positions where the cross has to appear. Because once you decide the 3 

positions where the cross is going to appear, automatically at the remaining 3 positions from the 

problem definition the vertical line will be present. So you don't have to worry about the positions 

or the 3 positions where the vertical lines are going to appear because once you have chosen the 3 

positions where the cross are going to appear the remaining things are automatically frozen for 

vertical line to appear. 

 

And why I am writing it in this form “4 - 1 + 3” because in general, the general formula for general 

𝑛 and 𝑟 will be 𝐶(𝑛 − 1 + 𝑟, 𝑟). Because how many vertical lines will be there if the number of 

objects of various types is 𝑛? So you will have 𝑛 slots because you have objects of 𝑛 types. 

 



 

 

So you will have object of type 1 and then there will be a vertical line and then you will have object 

of type 2, you will have 1 vertical line, and like that you have an object of type 𝑛. So how many 

vertical lines will be there 𝑛 − 1 and how many cross positions you have to fill? You have to fill 

𝑟 number of cross positions. So that is why the length of the string will be 𝑛 − 1 + 𝑟 because it 

will have 𝑛 − 1 number of vertical lines and 𝑟 number of crossings. 

 

So that is why the general formula for 𝑟-combinations where repetitions are allowed is 

𝐶(𝑛 − 𝑟 + 1, 𝑟). 
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So now let's see some examples of combination with repetitions. This is a very interesting formula 

which is used in lots of counting problems. So suppose I want to find out the number of integer 

solutions for the equation 𝑥! + 𝑥# + 𝑥+ = 11 where𝑥!, 𝑥#, 𝑥+are allowed to be greater than equal 

to 0. So my claim is that this, the number of solutions is nothing but the number of all strings of 

11 crosses and 2 vertical lines. 

 

This is because you can interpret this formula; you can interpret this problem as the following. 

You have bills of type 𝑥!, bills of type 𝑥# and bills of type 𝑥+. Your goal to pick total 11 number 

of bills. You can pick all the 11 bills of type 𝑥!. That is one possible solution which corresponds 

to 𝑥! 	= 	11 and 𝑥# 	= 	0 and 𝑥+ 	= 	0. Or you can pick 10 bills of type 𝑥! and 1 bill of type 𝑥# 

which corresponds to 𝑥! in 10 and 𝑥# being 1. 



 

 

 

Or you could have 𝑥! = 6, 𝑥# = 4 and 𝑥+ = 1 which corresponds to picking 6 bills of type 𝑥!, 4 

bills of type 𝑥# and 1 bill of types 𝑥+. And here order does not matter. So that's why your problem 

now reduces to picking total 11 number of bills from bills of 3 possible denominations where order 

does not matter, and repetitions are allowed and we have derived just now that the formula for that 

is nothing but this quantity.  
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Now suppose I change the problem slightly. I am now interested to find out the number of solutions 

where 𝑥! ≥ 1, 𝑥# ≥ 2 and 𝑥+ ≥ 3. Earlier it was allowed that 𝑥! 	= 	0 but now 𝑥! is not allowed 

to be 0. 𝑥! has to be at least 1, 𝑥# has to be at 2, 𝑥+ has to be at least 3. So my claim is that this is 

equivalent to finding the number of solutions for a new equation, 𝑥! + 𝑥# + 𝑥+ = 5 where there is 

no restriction on 𝑥!, 𝑥#, 𝑥+. 

 

That means any of them can be 0. Why so? Because again if I consider the bill analogy you have 

bills of denomination 𝑥!, 𝑥! type bills, you have 𝑥# type bills and you have x_3 type bills. Now 

𝑥! ≥ 1 means definitely I have to choose 1 bill of type 𝑥!. My goal is to pick 11 bills right out of 

those 11 bills 1 bill has to be of type 𝑥!. 2 bills have to be of type 𝑥# and 3 bills have to be of type 

𝑥+. 

 



 

 

That means the problem already states that I have already chosen 6 bills definitely I have chosen 

1 bill of type 𝑥! and 2 bills of type𝑥#. So total 3 bills I have already chosen. And 3 bills of type 𝑥+ 

that means 3 more bills are already chosen. So 3	 + 	3	 = 	6 so 6 bills are already chosen. My goal 

was to pick 11 bills. So now I am left with the problem of choosing 5 bills and now for choosing 

these 5 remaining bills I have no restriction.  

 

I can pick all of them of type 𝑥! or all of them of type 𝑥# or all of them of type 𝑥+. Or 1 bill of type 

𝑥! and 4 bills of type 𝑥# or 1 bill of type 𝑥!, 2 bills of type 𝑥# and 2 bills of type 𝑥+ and so on.   
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And now we know how many ways I can satisfy this equation where there are no restriction on 

𝑥!, 𝑥#, 𝑥+. That will be nothing but 𝐶(3 − 1 + 5, 𝑟).  
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Now let us go to the last topic for today's lecture namely combinatorial proofs and again I am sure 

that you have studied it during your high school. So what exactly are combinatorial proofs. This 

are some common proof strategy which we often use in combinatorics. Namely it's a counting 

argument to prove identities where you have something on the left-hand side and something on 

your right-hand side and you want to prove mathematically that your expression in the left-hand 

side and the right-hand side are same. 

 

But to do that we use a counting argument and we prove that the expression in the left-hand side 

and the expression on the right-hand side count the same number of objects but in different ways. 

But nowhere in the proof we actually expand our expressions on the left-hand side or right-hand 

side and show by simplification that left-hand side is same as right-hand side. We do not do that. 

 

That is not the goal of a combinatorial proof. So let us see a very simple combinatorial proof which 

you must have definitely studied. We will want to prove that the value of 𝐶(𝑛, 𝑟) is the same as 

the value of 𝐶(𝑛, 𝑛 − 𝑟). Of course one way of doing that is I expand 𝐶(𝑛, 𝑟) and rewrite it as 
$!

&!("(&)!
. And I expand my right-hand side. And in this case actually both the expressions are same. 

 

So I could have simply said that they are same. But that is not the goal of combinatorial proof. In 

general when we are giving a combinatorial proof for proving LHS and RHS are same we do not 

expand or simplify the expressions in the left-hand side and right-hand side. If you do that, that's 



 

 

not a combinatorial proof. You will get 0 marks if you are asked to prove something by 

combinatorial proof and you end up simplifying expressions. 
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The way we are going to prove this equality using combinatorial proof, is the following. Suppose 

you are given 𝑛 objects then your left-hand side is nothing but the number of ways in which you 

can pick 𝑟 objects out of those 𝑛 objects. That's the interpretation of 𝐶(𝑛, 𝑟) function. Now it turns 

out for each of the ways in which you can select 𝑟 objects there is a way of excluding 𝑛 − 𝑟 objects. 

 

So I can reinterpret my problem and say that instead of worrying about how many ways I can pick 

𝑟 objects out of 𝑛 objects, I instead count the number of ways I will decide or the number of ways 

I will choose the 𝑛 − 𝑟 objects which I want to leave. Because once I decide that these are the 𝑛 −

𝑟 objects which I am going to leave that automatically gives me the r objects which I will be taking 

or considering. 

 

So that's why it is easy to see that the LHS expression and RHS expression are same. And we are 

counting 2 different things here. The left-hand side expression basically counts the number of ways 

you would have selected the objects. Whereas the right-hand side expression counts the number 

of ways in which you would have left objects. And there is a mapping. Whatever you left 

corresponding to that you are left with object which you are picking.  
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Now let's prove an interesting combinatorial identity using combinatorial proof. This is often 

called as Pascal's identity. So to prove this consider a collection of 𝑛 + 1 objects. So I am calling 

those 𝑛 + 1 objects as say 𝑥! to 𝑥",! they are distinct. Now what is my left-hand side expression? 

That denotes the total number of 𝑘-combinations I can have out of those 𝑛 + 1 objects. I have to 

pick 𝑘 objects. I can do that in 𝐶(𝑛 + 1, 𝑘) ways. That is the left-hand side. 

 

Now I have to show that the same thing can be counted by adding these 2 quantities that are there 

in the right-hand side. How do I do that? So my claim is that different 𝑘-combinations that I can 

have out of 𝑥! to 𝑥",! can be divided into 2 groups. That will take care of the addition that we 

have on your right-hand side expression. I have to somehow show that the total number of different 

𝑘-combinations that I can have can be divided into 2 categories, 2 disjoint categories to be more 

specific and those 2 disjoint categories are the following. 

 

You consider all k-combinations that you can form out of those 𝑛 + 1 objects where a specific 

object is always present. Say the object 𝑥! is always present. And the number of such 𝑘-

combinations is nothing but 𝐶(𝑛, 𝑘 − 1). Because if the object 𝑥! is always going to be included 

in the 𝑘 objects which you are finally choosing, then you have to worry about how many ways you 

can pick the remaining 𝑘 − 1 objects out of 𝑥! to 𝑥". 

 



 

 

So you had 𝑥! to 𝑥",! so you are always going to choose 𝑥! that is the category we are right now 

considering. So now you are left with 𝑛 objects namely 𝑥# to 𝑥",! and you have to choose 𝑘 − 1 

objects out of this remaining 𝑛 objects which you can do in these many ways. In each such 𝑘-

combination you include the object 𝑥! that will give you category 1 of 𝑘-combinations. 

 

Whereas category 2 𝑘-combinations are the one where the object 𝑥! is never included. And it is 

easy to see that the number of different 𝑘-combinations of this category is 𝐶(𝑛, 𝑘). Because if you 

are not going to include𝑥! then your problem is still to choose 𝑘 objects and now you are left with 

only 𝑛 objects to choose for those 𝑘 objects. You can choose your 𝑘 objects only from the 

collection 𝑥# to 𝑥",!. 

 

So you are left with only with 𝑛 possibilities and the number of 𝑘-combinations that you can now 

have in the second category is this. And now if I focus on the total or the different 𝑘-combinations 

that I can have out of this 𝑥! to 𝑥",!, I can have either a 𝑘-combination of category 1 or a 𝑘-

combination of category 2. Namely in the 𝑘 combination either, 𝑥! is there or 𝑥! is not there. I 

cannot have any third possible category. 

 

And these 2 categories are disjoint. There is no 𝑘-combination where 𝑥! is present as well as 𝑥! is 

absent. So if I sum the total number of 𝑘-combinations that I have in category 1 and the number 

of 𝑘-combinations that I have in category 2 that will give me the total number of 𝑘-combinations 

that I can have for a set consisting of 𝑛 + 1 objects. And that's precisely your right-hand side. And 

this is a combinatorial proof because now I have not expanded my left-hand side expression, I have 

not expanded my right-hand side expression and simplified them. I am just giving a counting 

argument and proving that LHS and RHS are counting the same things. 
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So that brings me to the end of today's lecture. These are the references used for the today's lecture. 

Just to summarize, in this lecture we introduced permutations, combinations, we saw the formula 

for permutations and combinations both with repetitions and without repetition. And we also 

discussed about combinatorial proofs. 


