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Hello everyone, welcome to this lecture. The plan for this lecture is as follows. 
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In this lecture we will introduce the basic rules of counting namely the sum rule and product rule. 

And we will discuss about the Pigeon-hole principle. 
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So we will start with the problem of counting and counting is a very fundamental problem in 

discrete mathematics. The reason is that in discrete mathematics we are dealing with discrete 

objects and since the objects that we are dealing with are discrete we can count them. So very often 

we will encounter questions like how many; and our main aim is to come up with methodologies 

to address those questions.  
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So we will introduce some basic counting rules in this lecture. So the first basic rule is the product 

rule. And I am sure all of you are aware of this product rule so let me demonstrate the product rule 

first with an example. So here the problem description is the following. You have 2 employees say 



employee number 1 and employee number 2 and they are going to join our office and there are 3 

office spaces available. 

 
So I call it office 1, office 2 and office 3; so 3 rooms are available and our goal is to identify in 

how many ways we can allocate disjoint offices to these 2 employees. So pictorially these are the 

various ways in which I can assign disjoint office to employee number 1 and employee number 2. 

So I can assign office number 1 to the employee 1 and given that I have assigned office number 1 

to the employee 1, I cannot assign the same office to the second employee. 

 

Because they need to be allocated disjoint offices, so I can either allocate office number 2 or office 

number 3 to the employee number 2. Or I can assign office number 2 to the employee 1 but in that 

case I cannot assign office number 2 to the employee number 2 in which case I can only assign 

office number 1 and office number 3 to the second employee. And similarly, I have an option of 

assigning the third office to the employee 1 in which case I have the options of either assigning 

office number 1 or office number 2 to the second employee. 

 
So in total we have 6 ways but if you see here closely what's happening is we have a task T, a 

bigger task. In this example the task T was that of allocating disjoint offices to the 2 employees. 

And we can break that task into a sequence of 2 subtasks: subtask 1 and subtask 2. Subtask number 

1 basically requires allocating office space to the first employee and subtask 2 is the problem of 

allocating office space to the second employee. 

 
Suppose 𝑛! is the total number of ways in which we can solve the subtask 1. So in this example 

there are 3 ways; either I can assign office number 1 to the first employee or office number 2 to 

the second employee or office number 3 to the second employee. So there are 3 ways of solving 

the first subtask, so 𝑛! = 3 in this case and for each of these ways of solving the first subtask I 

have 𝑛" ways of solving the subtask 2. 

 
So for instance in this example, once I have assigned office number 1 to the employee 1, I have 

the option of either assigning office 2 or office 3 to the second employee. So corresponding to this 

method of solving subtask 1; namely that of assigning office number 1 to the first employee I have 



2 ways of solving subtask 2.  So 𝑛" = 2 here. In the same way if I consider the method of assigning 

office number 2 to the second employee. 

 
Then corresponding to this way I have 2 ways of solving subtask 2 and in the same way 

corresponding to the method of assigning office number 3 to the first employee. I have 2 ways of 

solving the subtask 2. So if this is the case then I can say that the total number of ways of solving 

the overall task or the bigger task is 𝑛! ∗ 𝑛". And that is why in this case the answer, namely, the 

total number of ways of assigning the disjoint office space to the 2 employees is 6. 

 

𝑛! = 3 in this case, because I can either assign office number 1 to the first employee or office 

number 2 to the first employee or office number 3 to the first employee. So there are 3 ways and 

for each of these 3 ways I have 2 ways of solving the subtask 2. And that is why the total number 

of ways of solving the bigger task is 𝑛! ∗ 𝑛". So that is the product rule. So in this case I have 

considered the scenario where the task T was divided into 2 subtasks. 

 
But in general, the product rule can be applied even for cases where your task 𝑇 can be divided 

into subtask 𝑇!, 𝑇", … , 𝑇#. So, if you have 𝑛! ways of solving subtask 𝑇! and for each of this 𝑛! 

ways you have 𝑛" ways of solving 𝑇", and for each of these ways of solving subtask 𝑇!, 𝑇", … , 𝑇$%! 

you have 𝑛$ ways of solving subtask 𝑇$ till 𝑛 ways of solving subtask 𝑇#. Then the total number of 

ways of solving task 𝑇 will be 𝑛! ∗ 𝑛" ∗ 𝑛& ∗ … ∗ 𝑛$ ∗ … ∗ 𝑛'. That is the generalized product rule. 
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So now let us see some examples of product rule. So suppose we want to count the number of 

possible functions from a set 𝐴 to a set 𝐵. My set 𝐴 has 𝑚 number of elements which I am denoting 

as 𝑎! to 𝑎' and my set 𝐵 as 𝑛 number of elements namely 𝑏! to 𝑏'. So we have already answered 

this question when we discussed functions. But now let us see how exactly product rule is 

applicable to solve this problem. So your bigger task is to find out the number of functions here. 

 
And the bigger task is basically to assign images to each element from the set 𝐴. But now I can 

divide that bigger task into subtask; namely I can identify the subtask 𝑇$ which is that of assigning 

an image to the element 𝑎$. And it is easy to see that the subtask 𝑇$ can be solved in 𝑛 ways because 

if I consider the element 𝑎$ then its image can be either 𝑏! or its image can be 𝑏" or its image can 

be 𝑏( or its image can be 𝑏#.  

 
So they are n ways of solving the subtask 𝑇$ and each of this sub task are independent so that is 

why the total number of ways of solving the bigger task namely that of assigning image to each of 

the elements from the set A is 𝑛	 ∗ 	𝑛	 ∗ 	… ∗ 	𝑛, m number of times. And that is why the total 

number of functions will be 𝑛'.  

 

Now let's see another example. Namely we are interested to find out the total number of bit strings 

of length 𝑛. And there are plenty of ways to come up with an answer for this question but let us 

see how we can apply the product rule here. And what we will do here is instead of counting the 

number of bit strings of length 𝑛 let's see a related problem. Namely, finding the number of binary 

functions; namely the number of functions from a set 𝐴 consisting of 𝑛 elements to a set 𝐵 

consisting of only 2 elements namely 0 and 1. 

 
And from the previous exercise, here we know that the number of possible binary functions will 

be 𝑛'. So the notations are actually swapped here. So we have 𝑛 elements here and |𝐵| = 2 so 𝑎! 

can have 2 possible images either 0 or 1, 𝑎" can have 2 possible images either 0 or 1, and similarly 

𝑎# can have 2 possible images either 0 or 1. So that is why we have 2 ∗ 2	 ∗ 	… ∗ 2, 𝑛 number of 

times namely 2# possible functions.  

 
But our goal is to find out a number of bit strings of length 𝑛 but what we have counted here is the 

number of binary functions.  
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So what we are now going to do is we will show here that the problem of finding the number of 

bit strings of length 𝑛 is equivalent to finding the number of binary functions. Namely we can 

show that there exists an injective function from the set of bit strings of length 𝑛 to the set of binary 

functions. And it is also easy to see that we can establish an injective function from the set of all 

possible binary function to the set of binary strings of length 𝑛. 

 
And since we have established injective functions in both the directions that shows that the number 

of bit strings of length 𝑛 is exactly the same as the number of binary functions. And the number of 

binary functions is 2#. So if you are wondering what are the injective functions here, so consider 

you are given binary string of length 𝑛. Some arbitrary binary string of length 𝑛 say 0, 1	0, 1… like 

that. 

 
Then the corresponding binary function is the following: the mapping of 𝑎! is 0, the mapping of 

𝑎" is 1, the mapping of 𝑎& will be 0, the mapping of 𝑎) will be 1 and so on. That is the 

corresponding binary function. Whereas if you want to go from a binary function to a binary string 

just we do the reverse thing. So imagine you are given a binary function say where 𝑎! is mapped 

to a bit 𝑏!, 𝑎" is mapped to a bit 𝑏" and like that 𝑎# is mapped to a bit 𝑏#. 

 



Then the corresponding binary string will be 𝑏! to 𝑏#. That is the injective mapping in this 

direction. So that shows that the number of binary strings of length n is same as the number of 

binary functions.  
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Now let us consider another fundamental counting rule which is the sum rule and again let me 

demonstrate it first with an example. So imagine you have a set of students in a university and a 

set of faculty members. Of course they are disjoint because you can't have a student who is also a 

faculty member. And our goal is to find out the number of ways in which we can form a committee 

of just 1 member. 

 
That 1 member can be either a student or a faculty. There is no restriction. We are just interested 

to find out how many distinct committees consisting of 1 member we can form. And it is easy to 

see that there are 12 ways. Why 12 ways? Because I can have a committee which consists of only 

a student and it could be either this student or the third student or the fourth student or the fifth 

student or the sixth student each of them is a distinct committee. 

 
Or I can have a committee which has this faculty member, or this faculty member, or this faculty 

member, or this faculty member, or this faculty member, or this faculty member, each of which 

will be a distinct committee. So there are 12 different committees which we can form here. So now 

how we can view this as a counting rule? So the rule is the following: you have a task 𝑇 which can 



done either in one of the 𝑛! ways or in one of the 𝑛" ways. Of course, so there is another restriction 

and the case here is that none of the 𝑛! ways is the same as the 𝑛" ways. 

 
So for instance if you take this example, 𝑛! ways is correspond to the case when the committee 

consists of a student and 𝑛" ways correspond to the case and the committee consists of a faculty 

member. And both these cases are disjoint. You cannot have committee member which is 

simultaneously a student as well as a faculty member. So if both these 2 conditions are satisfied 

then I can say that the total number of ways of solving the task 𝑇 is 𝑛! + 𝑛". 

 
Of course in this case I have considered the scenario where the task 𝑇 can be divided into 2 disjoint 

cases. If you have multiple disjoint cases then I can have a generalized sum rule.  

(Refer Slide Time: 15:32) 

 
So we have now seen 2 basic counting rules but it turns out that we encounter scenarios where we 

have to combine both these 2 rules that, means we can encounter problems which will require us 

to apply both the sum rule as well as the product rule. So let me demonstrate an example. So 

suppose we are interested to find out the number of passwords of length either 6 or 7 or 8 

characters. That means the password can be either of length 6 or of length 7 or of length 8. 

 
And the restriction is that each character can belong to the set A to Z or the numeric 0 to 9. That 

means the characters could be your English alphabets or digits and we also want passwords to have 

at least 1 digit. So these are the various requirements on the password. So it should be of length 



either 6 or 7 or 8. The character should be either English characters or digits and the password 

should have at least 1 digit. 

 
And we are interested to find out how many such passwords we can have. So again this is a very 

common problem we encounter. So for instance if you consider net banking password then we 

have certain restrictions on the net banking password. It should be of at least this much length, it 

can be at most of this much length, it should have some special character etc., 

 
So in that case one can often ask how many such valid passwords we can form? So let us see how 

we can apply the sum and the product rule in this particular example. So our password, the set of 

all valid passwords I am denoting it as the set 𝑃 and this set 𝑃 actually can be divided into 3 

disjoints subsets. The subset 𝑃* which is the set of all valid passwords of length 6; by the way by 

valid I mean that it has at least 1 digit and all the characters belongs to this set. That is what I mean 

by valid in this explanation. 

 
So my 𝑃* is the set of all valid passwords of length 6, 𝑃+ is the set of all valid passwords of length 

7 and 𝑃, is the length set of all valid passwords of length 8 and it is easy see that these 3 sets are 

disjoint and by the sum rule I can say that the set of valid password, its cardinality is same as the 

cardinality of the set 𝑃* and 𝑃+ and 𝑃,. And there is no overlap; you can't have a password which 

is simultaneously of length 6 as well as length 7 as well as of length 8. 

 
So that is why we can apply the sum rule here. Now how do we find the cardinality of the set 𝑃*, 

𝑃+ and 𝑃,. So let's see the logic of counting or finding the cardinality of the set 𝑃*, the same logic 

is applicable to find the cardinality of the set 𝑃+ as well as cardinality of 𝑃,. So what exactly is the 

set 𝑃*? The set 𝑃* is the set of all valid passwords of length 6. That means it should have exactly 

6 characters, which could be either English characters or the digits, and it should have at least 1 

digit. 

 
So it can have 1 digit or it could have 2 digits or it could have 3 digits or it could have 4 digits it 

could have 5 digits or it could consist of all 6 digits. All these are valid passwords. So you might 

be attempting to apply the sum rule here but it turns out that if I apply the sum rule to find the 

cardinality of the set 𝑃* then there might be some overlaps which I have to take care off. So instead 



what I can do here is, I can apply the following logic. The cardinality of the set 𝑃* is nothing but 

the following. 

 
It is the difference of the following two sets. You take the set of all strings of length 6. When I say 

all strings of length 6 that means they have 6 characters. But those 6 characters may or may not 

constitute a valid password. So for instance I may have a string of the form 𝐴𝐴𝐴𝐴𝐴𝐴; 6 As 

belonging to the set of all strings of length 6 but this is not a valid password because it does not 

have a digit which is a requirement for a valid password. 

 
So that is why the set of all strings of length 6 have both valid passwords of length 6 as well as 

invalid passwords of length 6. Now from this set if I subtract the set of all invalid passwords of 

length 6 and by invalid passwords of length 6 I mean strings of length 6 which do not have any 

occurrence of a digit. Those will be the invalid password. So if I subtract those strings from this 

set then it is easy see that I will get the cardinality of the set 𝑃*. 

 
So now what is the cardinality of the set of all strings of length 6? Well it is 36* and this I get by 

applying the product rule. Why 36*? Because I have 6 positions to fill. That means I can identify 

6 sub tasks and at each position I have 36 options. I can either fill a character, English character, 

so 26 possibilities or I can fill any of the 10 digits. So imagine you have 6 slots here; at the first 

slot I have 36 options to fill, at the second slot I have 36 options, and like that at each of the slots 

I have 36 options. 

 
So that is why 36* and what is the cardinality of invalid passwords of length 6? It is 26^6. Because 

here I am interested to find out in how many ways I can fill 6 slots such that none of those 6 slots 

is occupied with a digit. Because then only that strings of 6 characters can be considered as an 

invalid password. So I have 26 options now for each slot because I cannot fill any slot with a digit. 

 
So that is why I have 26* options. So again here I am applying the product rule. And now if I 

subtract 26* from 36* that will give me the cardinality of 𝑃*. The same logic you can apply to find 

out 𝑃+ and similar logic you can apply to find out 𝑃,. And if you sum those 3 quantities that will 

give you the required answer.  
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Now let's see another interesting counting rule which we encounter very often in discrete 

mathematics and this is called pigeon-hole principle. So what is the scenario here? So in this 

example you have 13 pigeons and you have 12 holes and suppose the pigeons are going to 

randomly occupy these 12 holes. We don't know in what order they will be going and occupying 

these holes. But irrespective of the way they are going to occupy these 12 holes we can say that 

there always exists at least 1 hole which will have 2 or more pigeons. 

 
A very simple common sense. And how we can prove that? We can simply prove it by 

contradiction. The contradiction will be, if each hole is occupied by exactly 1 pigeon then since 

we have 12 holes we get 12 pigeons. But we have 13 pigeons; so that automatically implies 

definitely there will be 1 hole which has more than 1 pigeon. So very simple common sense here. 

So now how do we apply; how do we generalize this rule as a counting principle? 

 
So the generalized pigeon-hole principle is the following. So imagine you have 𝑁 objects, in this 

case you had 𝑁 pigeons, and suppose those 𝑁 objects are assigned to 𝐾 boxes in a random fashion, 

then the pigeons-hole principle states that there will be at least 1 box which will have ⌈N/K⌉ many 

objects. 

 
So this notation is called as the ceil notation. We have ⌈2.3⌉ = 3. Basically you take the integer 

which is higher than the integer 2 here, that will be the ceiling of 2.2. ⌈2.1⌉ 	= 	3; basically you 

take the next integer which is a complete integer and larger than the current number. Whereas the 



⌈2.0⌉ = 2 only. So in this example if I apply the generalized pigeon hole principle it basically says 

that there will be at least 1 box with 13/12 pigeons and 13/12 will be a real number. 

  
And if I take the ceil of that I will be take the next higher integer which is 2. So the proof is by 

contradiction.  
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So let's see an application of pigeon-hole principle. So what we are now going to show is a very 

interesting result. So imagine you have 6 people present in a party and it is guaranteed to you that 

you take any pair of individuals then they will be either friends or enemies. You don't know what 

exactly is the situation because the party consists of 6 random people but whichever 6 random 

people are there in the party it is guaranteed that you take any 2 people in that party they will be 

either mutually friends or enemies.  

 
Then our claim is the following: our claim is that irrespective of the way the people are mutually 

friends or enemies there always exist either 3 mutual friends in the party or 3 mutual enemies. One 

of these 2 will definitely be the case. So how we are going to prove this? We are going to prove it 

by applying the pigeon-hole principle and various other proof mechanisms. 

 
And remember, and I am making this claim; the claim is irrespective of the way of those 6 people 

are friends or enemies with each other. It might be the case that all of them are mutually friends 

then automatically the claim is true. It might be the case that none of them are friends with each 



other then again the claim is true. The claim is if you have 6 people definitely one of these 2 cases 

will always hold. 

 
So how we are going to prove this? So we will consider an arbitrary party consisting of 6 people 

and out of those 6 people let's randomly choose 1 person. So we are now left with 5 people. So 

what can I say about those remaining 5 people. By pigeon-hole principle I can say that out of those 

remaining 5 people at least 3 people will be mutually friends with this person that I have chosen 

or there will be 3 people who are enemies, mutually enemies, with this chosen person. 

 

I do not know what exactly is the case because that depends upon the exact way in which the 

persons or the people are mutually friends or enemies in the party but irrespective of the case one 

of these 2 will always hold. Because I have 5 people; so even if out of those 5 people say 2 are 

friends with this person and 2 are enemies with this person I'm left with 1 person who has to be 

either a friend or has to be a enemy with this person. That is a simple logic. So that is what I am 

saying here. So you have 2 possible cases. 
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So what I can say is the following: without loss of generality imagine that out of those remaining 

5 people there are 3 people who are friends with this person. And since I am applying this argument 

without loss of generality, the same argument can be applied for the second case as well when 

there are 3 people who are enemies with this person. So again since there are 3 persons who are 

friends with this person I am taking any 3 person here who are friends with this fixed person. 



 
Now my claim is not yet proved here because individually these 3 people are friends with this 

person that does not mean that I have the existence of 3 people who are mutually friends with each 

other that means they all have to be friends with each other that is not guaranteed as of now. As of 

now I have just guaranteed that this person is a friend with this fixed person, this second person is 

a friend with a fixed person and the third person is a friend with a fixed person.  

 

So this notation basically denotes friendship. Now I can say that the following 2 cases hold. The 3 

people who are friends with this fixed person, they can be mutually enemies. That means, these 2 

are enemies and these 2 people are enemies and these 2 people are also enemies. So let me;  these 

2 are enemies and this too. So if this is the case then I got 3 people who are mutually enemies with 

each other and my claim is true. 

 
Whereas I can have a second case where those 3 people they are all new not mutually enemies but 

there exist a pair among those 3 people who are friends. Say the first 2 people are friends with each 

other. Then I got 3 people who are all friends with each other. This proves my claim. So now you 

can see I have proved my claim irrespective of the way that 6 people would have been friend or 

enemies.  

 
Now the question is what is the specialty of the number 6 here. I took, I proved my claim for the 

case when there are 6 people in the party. 
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What if there would have been 5 people in the party? Then can I say that irrespective of the way 

those 5 people are mutually friends or enemies I will always have either 3 mutual friends or 3 

mutual enemies. And answer is no. The claim is not true for the case when there are 5 people in 

the party. So consider the case when I have these 5 people and there is a fixed person, who is 

friends with this person, this person. But he is not friend with this person, who is not friend with 

this person and these 2 people are friend with each other and these 2 people are friend with each 

other so on, and these 2 people are friend with each other and so on. So in this case you can see 

that among these 5 people I neither have the presence of 3 mutual friends nor I have the presence 

of 3 mutual enemies. So for instance, if I take these 3 people then this girl is a friend with this 

person but that girl is not a friend with this person. 

 

Whereas I require for my claim all the 3 people to be mutually friend or mutually enemies with 

each other. So when there are 5 people in the party my claim is not true. 

(Refer Slide Time: 33:49) 



 
So now let us generalize this example to a beautiful theory of Ramsey numbers. So I defined this 

function 𝑅(𝑚, 𝑛) so this function 𝑅 is attributed to Ramsey who invented these numbers and here 

𝑚, 𝑛	 ≥ 	2. So what exactly is the value of Ramsey function 𝑅(𝑚, 𝑛)? It is the minimum number 

of people required in a party such that you either have 𝑚 mutual friends or 𝑛 mutual enemies 

irrespective of the way the people are friends or enemies with each other in that party. 

 
Assuming that every pair of people are either friends or enemies. So for instance what we have 

demonstrated is that 𝑅(3,3) = 6. Why 6? Because only when you have 6 people in the party then 

you can claim that you will either have the presence of 3 people who are all friends with each other 

or you will have the existence of 3 people none of them are friends with each other. 

 
𝑅(3,3) ≠ 5. It is not 5 because we have given a counter example namely we can have a scenario 

where we have 5 people in a party such that we might have the presence of 3 mutual friends or 3 

mutual enemies. So it turns out that even though this function is well defined we do not have any 

generic formula to find out the value of the Ramsey number or the output of this Ramsey function 

𝑅(𝑚, 𝑛) for any given value of 𝑚 and 𝑛. It is only for certain values of 𝑚 and 𝑛 that we can 

compute the value but there is no pattern or relationship or any observation which is there in the 

output of the Ramsey function due to which we do not have any generic formula.  
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So that brings to the end of today's lecture. These are references used for today's lecture. Just to 

summarize, in this lecture we started our discussion on counting. We introduced 2 fundamental 

counting rules namely the sum rule and the product rule and we also discussed the pigeon-hole 

principle. Thank you. 


