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Hello everyone, welcome to this lecture so just a quick recap; in the last lecture we discussed 

about Cantor’s diagonalization argument. And we saw examples of uncountable sets; the plan for 

this lecture is as follows. We will discuss about computable and uncomputable functions and we 

will discuss about the existence of uncomputable functions. 
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So what exactly are uncomputable functions; so they are some special type of functions. So say I 

have function f defined from a set X to a set Y then I will call the function f to be computable if 

there exists some computer program in a programming language which can compute or give you 

the value of this function for every possible input from the domain of that function. So mind it I 

am not focusing here on the running time of the computer program or the resources utilized for 

the program to give you the value or the output of that function. 

 

I am interested whether there exists a program or not which can give you can give you the output 

of that function for every input from the domain. If you can write a program in the programming 

language for such a function I will call that function to be a computable function. Otherwise I 

will call it uncomputable function. So as per the above definition a function which is not 

computable will be called an uncomputable function. 
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So what we now want to prove is that there indeed exists uncomputable function that means it 

does not matter how much resources time and memory space you provide. And write down a 

program there always exist some function such that you cannot write down a program respective 

of resources allowed to compute the output of that function for every possible input. And what 

will be proof strategy that we will follow to prove this theorem? 

 

So we will begin with some known fact; so just recall that in one of our earlier lectures we 

proved that the set of all valid programs in any programming language is countable. That means 

we can enumerate them even though they are infinitely many valid programs. When I say 

programs I mean to say the valid programs; which complies and give you an output. That means 

it has a begin instruction and an end instruction and a sequence of arbitrary number of 

instructions in between the begin and end instructions and it complies and it gives you an output. 

 

So the collection of such programs is denoted by the set P calligraphic P, so in one our earlier 

lectures we proved that even though we can have infinitely many programs we can always 

enumerate them. Namely the cardinality of the set of all valid programs in a programming 

language is 0א. So this is a known fact. What we will prove is we will prove that the set of all 

possible functions from the set of positive integers to the set of integers {0,…,9} call that set to 

be calligraphic set F. 

 



We will prove that the cardinality of this collection of all possible functions is not 0א that is what 

we are going to prove. That means what we are going to show is that we have more functions 

than the number of possible programs. Because the number of possible programs is 0א but we 

will show that we will have more number of functions from the set of positive integers to the 

integers {0,..,9}. 

 

Now any program from your collection of valid programs can compute a single function from 

this collection F. We cannot have the same program which gives you the value of both, function 

f1 as well as function f2. Because function f1 and function f2 will have different characteristics 

how can it be possible that you have a common program P1 which simultaneously gives you the 

output of function f1 as well as it gives you the function output for f2. 

 

You cannot have such special programs; that means if we prove this claim then based on the 

known fact we come to the conclusion that you have some function in this collection of all 

possible functions for which you cannot find a matching program in the list of all valid programs 

in your programming language. That means, there is no program in programing language which 

can help you to compute the output of that specific function and that is the specific function will 

be an uncomputable function. 

 

So what is the proof strategy we are using here we are actually arguing about; we are giving here 

a non-constructive proof. Just to recall what is a non-constructive proof? Non-constructive 

proofs are used for proving existentially quantified statements. So this statement is an 

existentially quantified statement because it says that there exists at least one uncomputable 

function.  

 

And we are logically arguing that indeed one such function exist we are not giving a concerte 

function for which you can never write a function. We are logically arguing the existence of such 

a function so that is why this is a non-constructive proof here. 
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So the set calligraphic F denotes as I said the set of all possible functions from the set of positive 

integers to the set {0,…,9}. And my claim is that this set is not countable that means its 

cardinality is not 0א or in other words you cannot enumerate out, list down all the functions in 

this collection. How we are going to prove this? Well we already know a set which is not 

countable.  What is the set?  

 

This is the set of all real numbers between [0,1) including 0 that is why you have the square 

bracket within 0 but excluding one. So this set is already known to be uncountable what we will 

show is, we will show an injective mapping from this set to the collection calligraphic F which 

will prove that the cardinality of this set of all real numbers between 0 and 1 is strictly less than 

equal to the cardinality of the set of all possible functions. 

 

And since this collection is uncountable any set which has more cardinality than that collection 

also will be uncountable. So how do we show the existence of the injective mapping? The 

mapping is very simple you take any real number x between 0 and 1 possibly including 0. So it 

will have a decimal representation; let the digits in decimal representation d1, d2, d3, dn and so on.  

 

And again I am assuming here that the number of digits in the decimal representation is infinite 

why is that? Because even if x as finite number of digits in its decimal representation say for 

instance x is equal to 0.25 I can always interpret that 0.25 to be 0.2500; I can always plugin 



infinite number of zero’s at the end. So that way I am assuming here that the number of digits in 

the decimal representation of every element x of the domain here is infinite. 

 

Now I have to tell you the corresponding image for this element x, the image is computed as 

follows and remember the image will be a function. Because this set calligraphic F denotes the 

set of all possible functions from the set of positive integers to the set {0,…,9}. So it will be this 

set is basically a collection of functions so I have to show you one function from this collection 

which will be the mapping of this element x. 

 

So what will be that function? The corresponding function f which is the mapping of this element 

x is as follows. The function f(1) will take the value d1 the function f(2) will take the value d2 

and like that the function f(n) will take the value dn and so on. So what basically I am doing here 

is that I am focusing on the function which gives basically the nth digit in the decimal 

representation of your real number x. 

 

That is the function f here, and since I am assuming that I have infinite number of digits in 

decimal representation of x this function will take the values and input 1, 2, n up to infinity. And 

possible values or outputs of these functions can be only between 0 to 9 because each of the 

decimal digits in the decimal representation of x belongs to {0,..,9}. So that is the function which 

will be the image for this element x and it is very easy to verify that this mapping is an injective 

mapping. 

 

Because if you take 2 elements x and y here which are different then their corresponding or 

decimal representation also will be different. So x will be mapped to f and y will be mapped to a 

different function f’. You cannot have 2 different  numbers x and y getting mapped to the same 

function f. So that is why clearly this function is an injective function. So we have shown here 

that indeed the set of all possible functions from the set of positive integers to the set {0,…,9} is 

an uncountable set. 

 

That means if I go back to the previous slide in the proof strategy I have proved my claim that 

means you have more number of functions than the number of programs which you can write in 

a programing language. And since each program can give you the output of only a single 



function from the set of all possible functions you have more functions that the number of 

programs. 

 

And hence here are some functions for which you do not have a corresponding matching 

program and that is why you do have uncomputable functions that exist. So that is a very 

interesting theorem because generally we believe that using computers we can compute 

anything. You can always write down programs which can give you the output of any function 

and any computational task in the real world you can think it you can abstract it out in terms of 

function. 

 

So the remarkable thing about this theorem is that it tells you that its computers are not kind of a 

god I cannot compute everything using computers or writing programs. There always exist tasks  

which you cannot compute or cannot compute or cannot find out their values you cannot solve 

those tasks using computers irrespective of how much time or how much memory you are 

allowed while writing down the program.  

 

So and all these things we can prove that the theorem proved using the theory that we have 

developed extensively regarding the cardinality theory. So till now you might be wondering 

where exactly the concepts that we learnt till now regarding the cardinality theory will be useful. 

So it is useful while proving the existence of uncomputable functions which is a very 

fundamental fact in computer science.  
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So that brings me to the end of this lecture these are the reference for today’s lecture. Just to 

summarize in this lecture we have introduced the notion of computable and uncomputable 

functions and we showed non-constructively that indeed there exist uncomputable functions 

which you cannot compute by writing down computer programs thank you. 


