
Discrete Mathematics

Prof. Ashish Choudury

IIIT, Bangalore

Module No # 06

Lecture No # 30

Uncomputable Functions

(Refer Slide Time: 00:26)

Hello everyone, welcome to this lecture so just a quick recap; in the last lecture we discussed

about Cantor’s diagonalization argument. And we saw examples of uncountable sets; the plan for

this lecture is as follows. We will discuss about computable and uncomputable functions and we

will discuss about the existence of uncomputable functions.

(Refer Slide Time: 00:47)

So what exactly are uncomputable functions; so they are some special type of functions. So say I

have function f defined from a set X to a set Y then I will call the function f to be computable if

there exists some computer program in a programming language which can compute or give you

the value of this function for every possible input from the domain of that function. So mind it I

am not focusing here on the running time of the computer program or the resources utilized for

the program to give you the value or the output of that function.

I am interested whether there exists a program or not which can give you can give you the output

of that function for every input from the domain. If you can write a program in the programming

language for such a function I will call that function to be a computable function. Otherwise I

will call it uncomputable function. So as per the above definition a function which is not

computable will be called an uncomputable function.

(Refer Slide Time: 02:00)

So what we now want to prove is that there indeed exists uncomputable function that means it

does not matter how much resources time and memory space you provide. And write down a

program there always exist some function such that you cannot write down a program respective

of resources allowed to compute the output of that function for every possible input. And what

will be proof strategy that we will follow to prove this theorem?

So we will begin with some known fact; so just recall that in one of our earlier lectures we

proved that the set of all valid programs in any programming language is countable. That means

we can enumerate them even though they are infinitely many valid programs. When I say

programs I mean to say the valid programs; which complies and give you an output. That means

it has a begin instruction and an end instruction and a sequence of arbitrary number of

instructions in between the begin and end instructions and it complies and it gives you an output.

So the collection of such programs is denoted by the set P calligraphic P, so in one our earlier

lectures we proved that even though we can have infinitely many programs we can always

enumerate them. Namely the cardinality of the set of all valid programs in a programming

language is 0א. So this is a known fact. What we will prove is we will prove that the set of all

possible functions from the set of positive integers to the set of integers {0,…,9} call that set to

be calligraphic set F.

We will prove that the cardinality of this collection of all possible functions is not 0א that is what

we are going to prove. That means what we are going to show is that we have more functions

than the number of possible programs. Because the number of possible programs is 0א but we

will show that we will have more number of functions from the set of positive integers to the

integers {0,..,9}.

Now any program from your collection of valid programs can compute a single function from

this collection F. We cannot have the same program which gives you the value of both, function

f1 as well as function f2. Because function f1 and function f2 will have different characteristics

how can it be possible that you have a common program P1 which simultaneously gives you the

output of function f1 as well as it gives you the function output for f2.

You cannot have such special programs; that means if we prove this claim then based on the

known fact we come to the conclusion that you have some function in this collection of all

possible functions for which you cannot find a matching program in the list of all valid programs

in your programming language. That means, there is no program in programing language which

can help you to compute the output of that specific function and that is the specific function will

be an uncomputable function.

So what is the proof strategy we are using here we are actually arguing about; we are giving here

a non-constructive proof. Just to recall what is a non-constructive proof? Non-constructive

proofs are used for proving existentially quantified statements. So this statement is an

existentially quantified statement because it says that there exists at least one uncomputable

function.

And we are logically arguing that indeed one such function exist we are not giving a concerte

function for which you can never write a function. We are logically arguing the existence of such

a function so that is why this is a non-constructive proof here.

(Refer Slide Time: 06:09)

So the set calligraphic F denotes as I said the set of all possible functions from the set of positive

integers to the set {0,…,9}. And my claim is that this set is not countable that means its

cardinality is not 0א or in other words you cannot enumerate out, list down all the functions in

this collection. How we are going to prove this? Well we already know a set which is not

countable. What is the set?

This is the set of all real numbers between [0,1) including 0 that is why you have the square

bracket within 0 but excluding one. So this set is already known to be uncountable what we will

show is, we will show an injective mapping from this set to the collection calligraphic F which

will prove that the cardinality of this set of all real numbers between 0 and 1 is strictly less than

equal to the cardinality of the set of all possible functions.

And since this collection is uncountable any set which has more cardinality than that collection

also will be uncountable. So how do we show the existence of the injective mapping? The

mapping is very simple you take any real number x between 0 and 1 possibly including 0. So it

will have a decimal representation; let the digits in decimal representation d1, d2, d3, dn and so on.

And again I am assuming here that the number of digits in the decimal representation is infinite

why is that? Because even if x as finite number of digits in its decimal representation say for

instance x is equal to 0.25 I can always interpret that 0.25 to be 0.2500; I can always plugin

infinite number of zero’s at the end. So that way I am assuming here that the number of digits in

the decimal representation of every element x of the domain here is infinite.

Now I have to tell you the corresponding image for this element x, the image is computed as

follows and remember the image will be a function. Because this set calligraphic F denotes the

set of all possible functions from the set of positive integers to the set {0,…,9}. So it will be this

set is basically a collection of functions so I have to show you one function from this collection

which will be the mapping of this element x.

So what will be that function? The corresponding function f which is the mapping of this element

x is as follows. The function f(1) will take the value d1 the function f(2) will take the value d2

and like that the function f(n) will take the value dn and so on. So what basically I am doing here

is that I am focusing on the function which gives basically the nth digit in the decimal

representation of your real number x.

That is the function f here, and since I am assuming that I have infinite number of digits in

decimal representation of x this function will take the values and input 1, 2, n up to infinity. And

possible values or outputs of these functions can be only between 0 to 9 because each of the

decimal digits in the decimal representation of x belongs to {0,..,9}. So that is the function which

will be the image for this element x and it is very easy to verify that this mapping is an injective

mapping.

Because if you take 2 elements x and y here which are different then their corresponding or

decimal representation also will be different. So x will be mapped to f and y will be mapped to a

different function f’. You cannot have 2 different numbers x and y getting mapped to the same

function f. So that is why clearly this function is an injective function. So we have shown here

that indeed the set of all possible functions from the set of positive integers to the set {0,…,9} is

an uncountable set.

That means if I go back to the previous slide in the proof strategy I have proved my claim that

means you have more number of functions than the number of programs which you can write in

a programing language. And since each program can give you the output of only a single

function from the set of all possible functions you have more functions that the number of

programs.

And hence here are some functions for which you do not have a corresponding matching

program and that is why you do have uncomputable functions that exist. So that is a very

interesting theorem because generally we believe that using computers we can compute

anything. You can always write down programs which can give you the output of any function

and any computational task in the real world you can think it you can abstract it out in terms of

function.

So the remarkable thing about this theorem is that it tells you that its computers are not kind of a

god I cannot compute everything using computers or writing programs. There always exist tasks

which you cannot compute or cannot compute or cannot find out their values you cannot solve

those tasks using computers irrespective of how much time or how much memory you are

allowed while writing down the program.

So and all these things we can prove that the theorem proved using the theory that we have

developed extensively regarding the cardinality theory. So till now you might be wondering

where exactly the concepts that we learnt till now regarding the cardinality theory will be useful.

So it is useful while proving the existence of uncomputable functions which is a very

fundamental fact in computer science.

(Refer Slide Time: 13:22)

So that brings me to the end of this lecture these are the reference for today’s lecture. Just to

summarize in this lecture we have introduced the notion of computable and uncomputable

functions and we showed non-constructively that indeed there exist uncomputable functions

which you cannot compute by writing down computer programs thank you.

