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Hello everyone welcome to this lecture on examples of countably infinite sets. 
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So just to recap in the last lecture we introduced the notion of countable and uncountable sets. 

Countable sets are those sets whose cardinality is either finite or whose cardinality is same as the 

set of positive integers. So the plan for this lecture is as follows. We will see several examples of 

countably infinite sets and we will also discuss some properties of countable sets specifically in 

the context of infinite sets.  
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So we first prove that the Cartesian product of the set of integers is a countable set. So again this 

might look non-intuitive, you have many elements in the Cartesian product of the set of integers 

compared to the set of integers itself because when I say that Cartesian product it is going to 

consist of all ordered pairs of the form (i, j) where i can be any integer, j can be any integer. But 

what this theorem says is that the number of elements in the set ℤ x ℤ is same as the number of 

elements in the set of positive integers. 

 

So we are going to prove that. So remember in the last lecture we proved that whenever you 

want to prove that an infinite set is countable either you gave an explicit bijection between that 

set and the set of positive integers. Or you give a well-defined sequence or a rule according to 

which you specify or list down the elements of the given set which you want to prove to be 

countably infinite. And argue that every element in that set will appear in the sequence that you 

are specifying.  

 

So what we will do is to prove this theorem we are going to show a sequence or a way to 

enumerate all the elements of the set ℤx ℤ. But the question is how exactly we find out one such 

sequence? So that we do not miss any element of set ℤ x ℤ. So the idea is very clever here what 

we do is, So since we are considering the Set ℤ x ℤ it is nothing but the collection of all points in 

your 2 dimensional plane. 

 



So imagine that you have that infinite 2 dimensional plane where you have all the points 

belonging to the ℤ x ℤ. And our goal is basically to give an enumeration of all the points in that 

infinite plane such that the enumeration should be well defined and we do not miss any point in 

the enumeration process. So here is the enumeration process I start with the center namely 

coordinate (0, 0) which is the element of ℤ x ℤ. So imagine this is your (0 ,0) this point.  

 

Then my next point is which I am going to enumerate in my sequence; which I am going to list 

down in my enumeration is the point (1, 0). That means I move from my current point 1 unit to 

the right hand side then from my current point I move 1 unit in the positive direction and get the 

point (1, 1) and list it in down. And then I traverse or go 1 unit to the left hand side from the 

current point so I will get the point (0, 1). 

 

And now I cannot come down because if I come down then I will be coming to the element (0, 0) 

which I have already listed down which I do not want to do. So what I am going to do is instead 

of going down from (0, 1) I will continue left further 1 unit. And due to that I will get the point  

(-1, 1) and I will list it down. And now I will come down because if I come down from my 

current point the point which I am going to get I have not enumerated it already. 

 

So I will get a new point will be (-1, 0) and then I continue this process I go down further 1 unit 

and obtain the point (-1, -1). And then I will make this whole trip again. So what was the trip? I 

started with (0, 0) go right go up go left left down down and then I will again make this circular 

rotation. So what I will do is from my current point I will go right 1 unit again right 1 unit again 

right 1 unit. And then go up up. and then continue this process. 

 

So I will be next enumerating this… and the next point and then I will go up….. and then 

continue left. So this is the process which I will follow and the idea here is that if I enumerate the 

various points in this infinite 2 dimensional plane according to the procedure that I have 

demonstrated here, any point in this infinite 2 dimensional plane will eventually appear along the 

spiral. That’s the idea here, you will not miss any point in the infinite 2 dimensional plane. 

 

So that is why this is a valid enumeration of all the elements in the Cartesian product of the set of 

integers, which shows now; that the set of the Cartesian product of the integers of all points in 

infinite 2 dimensional plane is a countable set.  
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Now, we will see next whether the set of rational numbers which I denote by this ℚ notation is 

countable or not. Now intuitively it might look the answer is no because definitely rational 

numbers is a super set of the set of the integers. And looks like there is no way of sequencing 

because the fundamental fact about rational numbers is that you take any 2 rational numbers 

there are infinitely many more rational numbers between the same 2 rational numbers.  

 

That means if I consider 2 rational number x and y between x and y there are infinitely many 

rational numbers. So how exactly we are going to list down or sequence all possible rational 

numbers. So looks like that is not possible. But what we can do is we can show a very clever 

enumeration of the set of rational numbers which will prove that the set of rational numbers is a 

countable set.  

 

And the sequencing that we are going to see here will be based on the sequencing of the elements 

of the point in the 2 dimensional integer plane based on enumerating all the points along the 

spiral that we had been seen in the last slide. So just to recall, this was the enumeration of the set 

of all elements or points in the set ℤ x ℤ. And based on this enumeration we will get an 

enumeration of the set of all rational numbers.  

 

So the idea is if we consider any rational number and if it is a rational number it will be of the 

form p / q, where p is some integer and q is some integer and q will not be 0. So the idea is you 



traverse or you follow the enumeration of all the elements in the set ℤ x ℤ namely this 

enumeration here. And based on this enumeration you come up with an enumeration of the 

elements in the set of rational numbers as follows.  

 

If you are at a point (p, q), then you list down the rational number (p / q) in your enumeration 

provided q is not 0 because if q is 0 definitely that is not a rational number. And the rational 

number (p / q) is not listed earlier as per your enumeration. Else you go to the next element (p, q) 

in the listing of ℤ
2
 that is the idea. So what I am saying is demonstrated as follow. So if I apply 

the rule on (0, 0) so if I start with (0, 0) so my p is 0 and q is 0.  

 

So my rule says that if q is 0 do not do anything go to the next element. And my next (p, q) is (1, 

0) and again q is 0. So my rule says do not do anything. Then I go to my (p, q) which is (1, 1) 

and I will be applying the first rule here because here q is not 0 namely q is 1 and my (p / q) is (1 

/ 1) which is the rational number 1 and which is not yet listed. So that is why I will list down the 

element 1 then I will go to the next (p, q). q is not 0. 

 

So again will be applying the first rule and (p / q) will be 0 in this case. Then my (p / q) will be (-

1 / 1) which has not been listed earlier. So I will list it down. Then my next (p / q) is not defined 

because q is 0 so ignore this. Then if I go next my (p / q) is (-1 / -1) which is nothing but 1 and 

which has been already listed. So that is why I will apply the rule in the else part. So that is why I 

will miss this element as well and if I continue then when I go to the element (2, -1) it will be (2 / 

-1) which is the rational number -2 which has been not listed earlier. 

 

So now you can see even though there are infinitely many rational numbers if I follow these 2 

rules of enumerating the rational numbers I will not be missing any rational number because you 

take any rational number it will be of the form (p / q). And if will be eventually listed down in 

the sequencing that I have specified here. So that means we now have a method of listing down  

all the elements of the set ℚ in a well-defined fashion and that is why this set of rational numbers 

will be a countable set. 

 

It has infinitely many element but we can count it in the sense we can sequence down we can 

write down all the elements in that set. So this will be the sequencing of the elements in the set of 

rational numbers.  
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Now let us consider the set of binary strings of finite length. What exactly that means? So, 

imagine a set Π consisting of 2 elements namely the element 0 and 1 and why 0 and 1? Because I 

am considering binary strings so, binary strings will be just a string of 0’s and 1’s. And I used 

this notation Π* to denote the set of all binary strings of finite length. What do I mean by that? 

So more formally Π* is defined to be the union of the sets Π
(i)

 where i is within parenthesis. 

 

And i belongs to the set of natural numbers namely i ranges from 0 to infinity. And what is this 

set Π
(i)

 within parenthesis it is set of all possible binary strings. So I should specify here it is the 

set of all possible strings of length exactly i over the alphabet Π. And since Π consists of only 

symbol 0 and 1 what does Π
(i)

 denote? It denotes the set of all possible binary strings of length 

exactly i. 

 

So if I consider the set Π
(1)

 it will have only the binary strings of length 1. So it will have only 2 

elements. If I consider the set Π
(2)

 it will have all binary strings of length 2 and so on. So what is 

this set Π*? It is the set which is obtained by taking the union of Π
(1)

 Π
(2)

 and so on including 

Π
(0)

 and where Π
(0)

 denotes all possible binary strings of length 0.  

 

So we use this special notation ε to denote the set of to denote an empty binary string. So based 

on this fact it should be now clear that each subset Π
(i)

 is finite. Why it is finite? Because it has 



exactly 2
i
 elements because Π

(i)
 denote a set of all possible binary strings of length exactly i and I 

can have 2
i
 such binary strings.  

 

And if I take the union of all such sets I get the set Π*. So it is easy to see that the set Π* is an 

infinite set because the number of element is infinite. But it is the union of several subsets where 

each subset is finite in the sense it has finite number of elements. So now the question is, is this 

the Π* countable even though it has infinitely many elements it has infinite number of binary 

strings can we numerate down all such strings in a well defined fashion.  

 

So the answer is yes we can prove that the set Π* is indeed countably infinite. And what we will 

do is to prove this theorem we will show a possible valid listing of the elements of Π*. And the 

idea is to arrange or list down all the elements of Π* according to their length. So we start with 

the length 0 strings and length 0 string will be the empty string denoted by the special notation ε.  

 

Then we will go and enumerate or list down all valid string, binary strings of length 1. And there 

are multiple strings of a particular length. We arrange them according to the binary order. So for 

example here we have 2 possible binary string of length 1 : 0 and 1. But since numerical is 0 is 

less than 1 we will list down 0 followed by 1. Then so basically what I am saying here is that you 

go to the set Π
(1)

 and list down the elements of the set Π
(1)

 in binary order.  

 

Next go to the set Π
(2)

 and it will have 4 elements, list down those elements in binary order. So 

we have 0 listed first followed by 1, followed by 2, followed by 3 and continue this process. 

Next go the set Π
(3)

 which will have 8 strings list down those strings in binary order and so on. 

So, why this is a valid listing? The idea is you take any binary string x belonging to Π*.  

 

It will have finite length because as per the definition of Π*, x will be belonging to some set Π
(i)

. 

We do not know what exactly is that index i it depends upon the number of bits or number of 

characters in your string x but it is a well defined value that means x belongs to some Π
(i)

. And 

eventually after listing down all the elements in the set Π
(0)

 to Π
(i-1)

 when we will be listing down 

the elements of the set Π
(i)

 x will appear somewhere in our listing.  

 

So we will not be missing the element x. And we know that after some step eventually the 

chance for x will come as per this listing to be listed down in our enumeration. So that is why 



this is the valid enumeration it shows that the set Π* even though it has infinite number of 

elements it is possible to list down those elements in a well-defined way and hence proving that 

the set Π* is countable.  
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So till now we had been seen several infinite sets and magically we have proved that they have 

same cardinality. Now we will prove some general results about the cardinality of sets both with 

respect to finite sets and infinite sets. So the first theorem is that if you have 2 sets A and B and 

if they are countable then their union is also countable. So I am not saying anything about the 

number of elements in the union A and B. 

 

Of course, what I am saying is that it is always possible to list down the elements of A U B. So 

how we are going to prove it? First of all there might be a possibility that A and B are not 

disjoint but to keep our proof simple without loss of generality we assume that A and B are 

disjoint. The proof can be simply adapted for the case when A and B are not disjoint. Now we 

can have various cases depending upon whether A, and B are countably finite or countably 

infinite. 

 

So the theorem statement was that A and B are countable and the definition of countable set is 

that either its cardinality is finite or its cardinality is same as 0א. So we can have 3 possible cases 

here. Case 1 when both A and B are finite that means say if the cardinality of A is m and the 



cardinality of B is n then it is easy to see that the cardinality of union of A and B will be m + n 

which is a finite number and hence A U B is also countable. 

 

Case 2 is when exactly 1 of the set A and B is finite whereas the other set is countably infinite. 

Now again we can have 2 possible cases depending upon which of the 2 sets is countably 

infinite. So what we can do is we assume without loss of generality that it is A set which is 

countably infinite that means the cardinality of A is 0א. And the set B is finite that means it has 

exactly m number of elements where m is some natural number.  

 

So what we are now going to show is that even in this case the union of A and B is countable. Of 

course the union of A and B will have infinite number of elements because A is infinite here. But 

what we are going to do is we are going to show here a valid sequencing for the elements in the, 

set A U B. So the idea here is that since A is countably infinite, it will have some valid 

sequencing of its elements. So let that valid sequencing be a1, a2, an and so on. And of course we 

know that set B has m number of elements. 

 

So let the elements be, b1 to bm. So what we do is we list down the elements of; we can say that 

we can list down the elements of A U B as follows. First list down the elements of B set which 

are finite in number, m in number followed by the elements of the set A. Now you might be 

wondering why we cannot do the following. Why we cannot we enumerate the elements of the 

set A first and then followed by the elements of the set B. My claim is that this is not a valid 

sequencing of the elements in the set A U B. 

 

Why it is not valid is because since you are first listing down the elements of the set A you do 

not know when you are going to return and come back and list down the elements of the set B 

because that sequencing of the elements of the set A is an infinite process and you can get stuck 

there forever. So you do not know when exactly you will finish the process and will come and 

start listing down the elements of the set B.  

 

So now what I mean here is that if I ask you, can you tell me where exactly b1 is going to appear 

in this sequence? You cannot tell me because we do not know when exactly we will finish listing 

down the elements of the set A and then we will come to and list down element B. But if I 



consider this sequencing which I have listed here I know where exactly when exactly the element 

will appear irrespective of whether it belongs to the set A or the set B in the sequencing.  

 

If you are asking me to specify where exactly an element from the set B belongs to I can give 

you that position. Whereas if you ask me where exactly is the position of an element from the A 

set in this sequencing again I can tell you that it will appear somewhere because as per my 

assumption that element has some position in the sequencing of the elements of the setting. So 

that is why it is this sequencing which is valid and not this sequence. 

 

The third case is when both A and B set are infinite and countable, because I am assuming my A 

and B sets are countable and if A; and B are both infinite that means both the cardinality of A as 

well as the cardinality of B is 0א. And I want to show that A U B is also countable by giving you 

a valid sequencing for the elements in the union of A and B. So since A and B are countably 

infinite they will have individual valid sequencing of the elements of the respective sets. 

 

So, image that this is the sequencing of the elements of the set A and this is the sequencing of the 

elements in the set B. We want to find out a valid sequencing of the elements in A U B so that 

we do not miss any element in the union of A and B. And we know when exactly an element in 

the union of A and B is going to appear in the sequence. So a valid sequencing of the elements in 

union of A and B is as follows.  

 

First list down first element in the A sequence followed by the first element in the B sequence. 

Then go and list down the second elements of A sequence and B sequence and like that continue 

and write down or list down the nth element in the A sequence and B sequence and so on. So 

now you can see that you ask me any element belonging to the union of A and B it will 

eventually appear in this sequence. It would not be the case that we get stuck infinitely for listing 

down the element.  

 

Whereas if I would have listed down first elements of the A set and then list down the element of 

B set then this is not a valid sequencing for the elements of the A U B why? Because if you now 

ask me, when exactly I am go to list or when exactly I am going to see b1 and the sequencing. I 

do not know because the process of listing down all the elements of A set is a never ending 



process. So we do not know when exactly we will finish that process and come and write down 

or list or find the element b1. 

 

So that is why this is not valid sequencing but the same problem would not happen with the 

sequencing that I have specified here namely listing down the elements of A and B sets 

alternatively because it does not matter what is the element in the A U B that will appear 

somewhere in the a sequence or in the b sequence depending upon whether it belongs to the, A 

set or the B set. Accordingly since I am listing down the elements of A set and B set alternately it 

will appear somewhere in this sequence.  
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Now second interesting result about the cardinality theory is what we called as the Schroder 

Bernstein theorem which says the following. If you have 2 sets such that the cardinality of A is 

less than equal to cardinality of B and simultaneously the cardinality of B is less than equal to the 

cardinality of A. Then we can conclude that both set A and B have the same cardinality. In terms 

of function what we are saying here is that if |A| is less than equal to |B| then as per the definition 

we have an injective mapping say the mapping f from the set A to B.  

 

And since the cardinality of B set is less than equal to the cardinality of A set we also have a 

injective function say g from the set B to set A. Now if we have these 2 individual injective 

mappings, what this theorem basically tells you is that, using the injective mappings f and g you 



can come up with the bijective mapping between the set A and B. That is the idea behind the 

proof of this theorem.  

 

However the proof is slightly involved and due to the interest of time I will not be going through 

the proof of this theorem. But this is a very important theorem which we should keep in our 

mind. What this theorem basically says is, if you want to show that the cardinalities of 2 sets are 

same then one way of doing that is you show one injective mapping from the first set to the 

second set and another injective mapping from the second set to the first set.  

 

That automatically will conclude that you have; you can have a bijection also between the 2 sets. 

And if you have a bijection between the 2 sets then as per the definition of (cardinality) equality 

of 2 sets they have the same cardinality not equal not sorry equality of the cardinality of the 2 

sets, they have the same cardinality. The sets A and B might different. They may have different 

elements. But cardinality wise they will be the same. 
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Now the third result about the cardinality is the following. If I take any subset of a countable set 

then it should be also countable. So, there are 2 cases the above statement is obviously true if the 

set A is a countably finite set. That means if the set A has say n number of elements and if I take 

subset B of the set A of course the cardinality of B will be upper bounded by n. So this statement 

is obviously true statement is obvious also true even if the set A is infinite but countable.  

 



So I can prove that even if the set A is infinite but countable that means its cardinality is 0א. Then 

the cardinality of any subset B of that set A is also 0א, we can prove that. The idea behind the 

proof is as follows. We can prove the theorem by contrapositive and the simple way to 

understand the proof is that if the set B is not countable. That means if it is not countable that 

means it is not possible at all to list down the elements of the set B.  

 

So if you do not know any method of listing down the elements of the subset B how come it is 

possible to list down the elements of the superset A. And that goes again the assumption that my 

set A is countably infinite. If I assume that my set A is countably infinite that means I know how 

to list down the elements of set A in a well defined fashion. So that is the proof for this fact. So 

as a consequence of this statement I can also state that if you have any set which has an 

uncountable subset, then the set is also uncountable. 

 

So what I am saying is that if you have a scenario where B is the subset of A and you do not 

know how to list down the elements of the set B that means the cardinality of B is not 0א. Then I 

can conclude that the cardinality of A is also not 0א. This is because if I do not know how to list 

down the elements of set B I do not know how to list out the elements of the set superset A as 

well.  

 

Because while listing down the elements of the superset A I need to list down the elements of the 

subset B as well. But I do not know how to list down the elements of the subset. 
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Now what we now going to prove is that the set of all strings over a finite alphabet is also 

countable. So what do I mean by that is just few slides back I took a binary alphabet which has 

only 2 symbols 0 and 1. And I proved that the set Π* which is the set of all possible strings of 

finite length which are binary is countable. Now I am generalizing this result to a bigger alphabet 

which may have more than 2 symbols or 2 characters. 

 

So I am assuming that I have an alphabet Π consisting of m number of characters s1 to sm or m 

number of symbols. And Π* denote the set of all possible strings finite length strings over this 

alphabet. So my claim is that is that Π* is countable. So again what is Π*, the way we have 

defined Π* for the case of the binary alphabet we are going to follow the definition:  Π* will be 

the union of the various subsets Π
(i)

.  

 

Where Π
(i)

 denote the subset of all strings of length exactly i over the alphabet Π. So, for 

instance if my Π is consisting of alphabets a, b and c, 3 characters. Then Π
(0)

 of course will be 

the empty string, Π
(1)

 will have all the strings of length 1. So I will have 3 strings.   Π
(2)

 will have 

all possible strings of length 2. So I can have strings like this and so on. So it is easy to see that 

each subset Π
(i)

 is finite because each subset will have m
i
 number strings. 

 

And the set Π* is the union of all such subsets. So it will have infinite number of elements. But 

now we want to show a valid sequencing of the elements in the set Π* . So here is how we can 

list down all the elements of the set Π* without missing any of them. So since the set Π
(1)

 is 



finite it will have an enumeration of the elements of its set. So let that enumeration be this. So 

the first string in Π
(1)

 is denoted as str11, the second string is denoted by str12 and so on. 

 

So in the subscript I have 2 variables. The first index here denotes the subset in which the string 

belong. And the second subscript denotes the ordering of that element within that subset. In the 

same way I will have a sequencing for the elements in the subset Π
(2)

. So you can see here each 

string the first index is 2 2 2 denoting that each such thing belonging to the second subset and 

then we have the second level of indexing.  

 

And the second level of indexing is from 1 to m
2
 because this because the subset Π

(2)
 will have 

m
2
 number of elements. And in the same way if I consider the subset Π

(n)
 it will have m

n
 number 

of strings and like that. So now what we have to do is we have to come up with a valid 

mechanism or valid sequencing for listing down the elements of set Π*. And that I can do by 

following the sequencing by following this ordering what exactly is this ordering. 

 

The idea is that you first list down all strings of the form strij where the sum of the indices i and j 

is 2. Why we are starting with the summation of indices being 2, because you can see that my 

first string here the least indexing I can have here is str11 and the summation of the indices will 

be 1 + 1 namely 2. So I will start with str11. Then I will list out all the elements; all the strings 

where the summation of the indices will be 3.  

 

So that is why str12 and str21 because the summation of these 2 indices will be 3 and the 

summation of these 2 indices also will be 3. Now if you have many strings where the summation 

of their indices are the same value then you will follow the ordering among the subsets itself. So 

since str12 appears in the subset Π
(1)

 and the str21 follows comes in as the subset Π
(2)

 and Π
(1)

 is 

appearing before Π
(2)

 that is why I have listed down str12. 

 

And then I have listed on str21. Then I will list down all strings such that the summation of the 

indices is 4. And again you can see here there are 3 strings. So what I have done is I have first 

taken the string from the set Π
(1)

 and then I have taken the string from the set Π
(2)

 and then I have 

taken the string from the set Π
(3)

 and so on. So you can see here if I follow this ordering this is a 

well-defined ordering. 

 



Why it is well defined ordering? Because you take any string x belonging to Π* it will belong to 

some Π
(i)

. That means it will be appearing somewhere in the listing of the elements of Π
(i)

 and it 

will have a form strα,β. So x will be of the form say strα,β. And α+β will be some integer. So say α 

+ β is say γ. So once I have listed down all the strings where the summation of its indices is γ-1. 

 

Next I will be listing down all the elements all the strings with such that the summation of the 

indices is γ and during that process x will be appearing in my sequence. So I will not be missing 

x and I know definitely we will not be waiting infinitely for listing down the element x. That 

means we will never get stuck in this process of listing down or enumerating down the elements 

of the set Π* and that is why this is the valid sequence. 
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So now based on the previous theory what we can prove here is that the set of programs or set of 

valid programs in any programming language is also countable. So what do I mean by that, you 

take Π to be the set of all keyboard characters. It is a finite alphabet because you have only finite 

number of keyboard characters; even if you take various combination of keyboard characters that 

will give you a new character. 

 

But even if you take all such combinations the set of  all the characters which you can type using 

the keyboard in a finite alphabet, I am calling it Π. We already proved that Π* is countable if Π 

is a finite alphabet. We just proved that because Π
(i)

 will be the set of all possible strings of 

length exactly i and we know how to enumerate out all the elements, all the strings of the set Π*.  



 

Now imagine you have a programming language L, it can be C C+ +, java, python any 

programming language. And let this calligraphic P denote the set of all valid programs in your 

programming language. What do I mean by a valid program? I mean to say it has a start 

instruction or a begin instruction and it has an end instruction. And in between the begin and the 

end instruction or the start end instruction and you have arbitrary number of syntactically correct 

instructions in that programming language. 

 

Valid instructions in the sense when you compiled the program you do not get any error you get 

some output. How many instructions you can have between the begin and end well that can be 

arbitrary large but it will be finite. It would not be the case that you have infinite number of steps 

between the begin and the end instruction. Why that is the case because if you have infinite 

number of instruction between the begin and end instruction how can your program be valid.  

 

How can your program will give you some output because to get the output from your program 

you need to reach that end instruction you compiler need to reach the end instruction. That 

means after parsing all the steps between your begin and end instruction the program has 

compiled and given you an output. And that is possible only if your number of instructions 

between the begin and end instruction is a finite quantity. 

 

That means the number of steps is some natural number positive number. So this is my set P you 

can imagine it as many programs but the claim is that set P is countable even though the number 

of programs is infinite. Because you can keep on inserting, you can keep on taking existing 

programs and keep on increasing the size of the program by inserting a new valid instructions in 

the existing valid programs. That way you can keep on creating new programs, this process will 

never stop. 

 

You cannot say that after this program I cannot find a new program or new valid program. There 

is no end point here you can always keep on coming up with new programs based on existing 

program. The simple thing will be just take any existing valid program and just before the end 

instruction insert a new valid instruction, that will give you a new program which is different 

from the previous program.  

 



And that is why this set P which is the set of all valid programs in your programming language is 

an infinite set it is not a collection of finite number of programs. But the claim is that even 

though if you have infinite number of programs in your programing language that set is 

countable. We can list down or we can come up with an enumeration of all valid programs in 

your programming language. And why that is the case because we just proved that any subset of 

a countable set is countable. 

 

And what exactly is the set of all valid programs in your programming language well? that is a 

strict subset or a proper subset of the set Π*. Why? Because I am just considering only valid 

programs I am not considering invalid program. My set P has only those programs which will 

compile and will give me some output. I am not considering programs of the form which has 

only a begin instruction that is all.  

 

That is also string over the set Π* the string belongs to Π*. But this is not a valid program 

because it has no end instruction. In the same way the set in the string end also belongs to Π* but 

it cannot be considered as a valid program. But if you consider the string begin followed by end 

then that is also string belonging to Π*. But that is a valid program because you have a begin 

instruction and the instruction and in between you do not have anything but that is fine, this is a 

valid program. 

 

So that is why the set P will have only a subset of strings from the Π* because Π* will have all 

the things that you have in the set P plus invalid programs as well because Π* just talks about 

strings over the set Π whether the string is a valid program in your programming language or not 

that is not necessary here. That is why the set P is the strict subset of Π*. And since we know 

that Π* is countable that means we know how to list down the elements of the set Π*. 

 

Using that process we can also come up with the process of listing down all the valid programs 

in your programming language as well. So that proves a very interesting result. What we have 

proved is that even though the number of programs the number of valid programs in any 

programming language is infinite, we can always list down those valid programs so that we are 

never going to miss any program of any valid program in your programming language in that 

sequencing.  



 

And it will not be an infinite process in the sense you would not be stuck for ever to find out the 

position of any valid program in the programming language in that sequencing. 

(Refer Slide Time: 45:34) 

 

So that brings me to the end of this lecture. These are the reference for today’s lecture and again 

I followed some of the examples from this article in the current lecture thank you.  

 


