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Hello everyone welcome to the second part of tutorial 4.  
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So, we begin with question number 6. In question number 6 you are asked to either prove or 

disprove the following. You are given a function 𝑓: 𝐴 →A and you are given that the function is a 

surjective. Then the question is, is it necessary that the function is a bijective as well. It turns out 

that the statement is true provided your set A is a finite set. Because indeed if the set is a finite set 

and the function is from the same set to itself and surjective.  

 

Then we can show it is a bijective function as well. So, we will touch upon this fact sometime later 

in this course. But the statement need not be true if the set A is an infinite set. So, here is a counter 

example. So, imagine the function f given from the set of set 0 to infinity to the set 0 to infinity, . 

So, that is my set A and the function is defined as follows. The mapping 0 → 0 and the mapping 

of 1 → 0.  

 



So, clearly the function is not injective, not 1 to 1 and what about the mapping of the remaining 

elements. The mapping of element 2 is 1 the mapping of element 𝑥 → (𝑥 −  1) and so on. So, it 

is easy to verify that the function is indeed a surjective function because you pick any element y 

from the set 0 to infinity, the pre-image for that element y will be y + 1. Because 𝑓(𝑦 +  1) = 𝑦 

as per the function f we have defined here.  

 

So, clearly my function is a surjective function. But it is not one to one and that is why it is not the 

bijective function. The problem due to which we cannot say it is a bijection is because the set over 

which the function is defined can be an infinite set.  
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In question number 7, you are given an equivalence relation over a set A, where the set A has 30 

elements. And since it is an equivalence relation, the relation partitions the set A into three subsets 

each of equal size. So, the question asks you how many ordered pairs are there in that equivalence 

relation? So, since the subsets 𝐴1, 𝐴2, 𝐴3 constitute a partition of the set A and it is also given that 

the size of each subset is same and since the number of elements in the set A is 30, we get that the 

size of each subset in the partition is 10.  

 

Recall, when we showed that for every equivalence relation there is a partition and for every 

partition there is an equivalence relation, we showed that if you are given a partition how you get 

the corresponding equivalence relation whose equivalence class will be giving you that partition.  



 

So, in that construction our equivalence relation was consisting of all ordered pairs of the form (i, 

j), where for every subset 𝐴𝑘 in your given partition if the elements (i, j) are present in that subset 

you add the ordered pair (i, j). So, based upon this fact we get here that the elements of the subset 𝐴1 

within the partition will contribute to ten square ordered pairs of the form (i, j) and they will be 

added to the relation R.  

 

Similarly, you have 10 elements within the subset 𝐴2 and they will contribute to 10 square ordered 

pairs as per our construction in the relation R and in the same way you have 10 elements in the 

subset 𝐴3 and they will contribute to 10 square number of (i, j) ordered pairs or order tuples in the 

relation so, as a result the number of ordered pairs in our equivalence relation with 300. 
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In question 8 part (a), (b), (c) we are supposed to count certain things. So, you are given two sets 

X and Y consisting of m and n number of elements. So, I am calling the elements of 𝑋 =

{𝑥1, … , 𝑥𝑚} and the elements of the 𝑌 = {𝑦1, … , 𝑦𝑛}. We are supposed to find out the number of 

functions from the 𝑋 → 𝑌. It turns out that the number of functions will be 𝑛𝑚, why so?  

 

Because when we want to build a function from the set 𝑋 → 𝑌, each element 𝑥𝑖 from the set X has 

to be assigned an image that is the definition of a function. Now how many ways I can assign an 

image for the element 𝑥𝑖? Well I can assign 𝑦1 as the possible image for 𝑥𝑖, I can pick 𝑦2 as the 



possible image for 𝑥𝑖 and in the same way i can pick 𝑦𝑛 as a possible image for the element 𝑥𝑖. So, 

there are n possibilities when it comes to assigning image for an element 𝑥𝑖.  

 

And the image for 𝑥𝑖 and the image for 𝑥𝑗 they are independently picked, there is no dependency 

between the images of 𝑥𝑖 and images of 𝑥𝑗 that is important here because we are just interested in 

counting the number of functions. That means it might be possible that the image of 𝑥𝑖 is same as 

the image of 𝑥𝑗 and so on. So, there is absolutely no restriction on the way we can pick the images 

for 𝑥𝑖 and we can pick the images for 𝑥𝑗.  

 

So, based on all these observations we can say that I have n number of possibilities when it comes 

to assigning image for 𝑥1. And like that for each of the elements from the X set I have n possible 

images which I can choose. And that is why the number of functions are, nothing but the number 

of ways I can pick the images for each of the element from the X set that is 𝑛 ⋅ 𝑛 ⋅ … 𝑛 , 𝑚 times 

which is nothing but 𝑛𝑚.  
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Part b asked you to find out the number of injective functions from the X set to Y set. Well we will 

be using more or less similar argument that we used for part A except that now we cannot say that 

the images for every element 𝑥𝑖 is chosen independently. Because now we are counting or we are 

interested in the injective functions and in injective functions for every distinct element 𝑥𝑖 from 

the set X you have to assign a unique image.  



 

You cannot have both 𝑥1 and 𝑥2 getting mapped to the same element in the Y set. So, that is why 

when it comes to selecting image for 𝑥1, I have n possibilities. But once I have decided the image 

for the element 𝑥1, I cannot assign that image to be a possible image for element 𝑥2, that is why 

for 𝑥2 I have n - 1 possible images and like that when once I have fixed the images for 𝑥1, 𝑥2 and 

𝑥𝑚−1.  

 

When I am assigning the image for the mth element from the X set that image has to be different 

from all the images which I have selected for the previous elements of the X sets. That means I 

have only these many number of possible images, namely n - m - 1 possible images to assign for 

the element 𝑥𝑚. So, that is why the total number of injective functions will be now 𝑛 ⋅ (𝑛 − 1) ⋅

(𝑛 − 2) ⋅ … (𝑛 − 𝑚 − 1).  

(Refer Slide Time: 09:06) 

 

Part c asks, you to find out the number of bijective functions from X to Y. So, the first thing to 

observe here is that for a bijection from X to Y we need |𝑋| = |𝑌|. It is very easy to verify that if 

their cardinalities are different, then we cannot have a one to one and onto mapping from the X set 

to the Y set. Now if the cardinality of the X and the Y set are same.  

 

That means I am talking about the case where m =n then any bijection from the X set to Y set can 

be considered as a permutation of the elements 𝑥1 to 𝑥𝑛. Because I can imagine that I have n 



number of elements here and I have also n number of elements here and each 𝑥𝑖 has to be assigned 

a unique image. So, that can be interpreted if 𝑥1 is assigned as the image 𝑦𝑖 as per your bijection, 

then I can imagine that 𝑥1 is getting shifted to the ith position, that way I can think of bijection 

between the X set to the Y set.  

 

Even though 𝑥1 → 𝑦1, I can interpret in my mind 𝑦𝑖 to be same as 𝑥𝑖 and as a result if I do this 

logical mapping, I can interpret a bijection from the X set to the Y set as nothing but a permutation 

of 𝑥1 to 𝑥𝑛. And how many permutations I can have for n elements, for us I can have 𝑛! number 

of permutations. So, that will be the number of bijective functions from the set X to the set Y. 
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In part d of question 8 we are introducing a function, the S function this function is also called as 

Stirling function of type 2. And this is a very important function when it comes to combinatorics 

we will encounter it later again. So, what exactly is this function this is a two input function it 

takes an input r and an input s and it denotes basically the number of ways of partitioning an r 

element set into s non-empty disjoint subsets. Of course, 𝑠 ≤ 𝑟.  

 

You have a bigger set call it A, |𝐴| = 𝑟 and basically we want to find out how many ways I can 

split this bigger set into a pairwise disjoint subsets, basically s number of pairwise disjoint subsets 

such that their union gives back you the original set. So, there might be several ways of dividing 



this bigger set A into s number of pairwise non-empty disjoint subsets. The number of divisions is 

nothing but the value of the stirling function of type 2.  

 

Now using this stirling function we have to count the number of surjective functions possible from 

the set X to the set Y. So, since we are interested to find out the number of surjective function, 

remember in a surjective function each element from the codomain set should have at least one 

pre-image. Well it can have more than one pre-image as well. So, let me define the set 𝐶𝑖 to be the 

pre-image set of any element 𝑦𝑖 from the co domain set namely whichever elements could be the 

possible pre-images for the element  𝑦𝑖 the collection of those pre-images I am calling it to be the 

𝐶𝑖 set. Now it is easy to see that if I take any surjective function with respect to that surjective 

function, if I focus on this pre-image set of element 𝑦1, the pre-image set of the element 𝑦2 and 

like that the pre-image set of the element 𝑦𝑛. Then each of the collection of those subsets the 

collection of those pre-image sets will constitute a partition of your set X namely the domain set, 

why so?  

 

So, it is easy to see first of all that the intersection of these pre-image subsets will be empty set. 

You cannot have an x present in both 𝐶1 and say 𝐶𝑖. That means you have two possible images for 

the element x which is a violation of the definition of any function. And it is also easy to see that 

if I take the union of these pre-image sets I will get back the domain X, Y. 

 

Because as per the definition of a function each element x from the set X will have an image. So, 

that is the way I can interpret any surjective function you give me any surjective function and if I 

focus on the collection of pre-image sets of various elements from the co-domain that will 

constitute a partition of the domain set. So, now what we will do is how many such partitions can 

we have for the set X into n non empty disjoint subsets?  

 

I can have 𝑆(𝑚, 𝑛) number of such partitions. So, now we are interested to find out how many 

surjective functions we can have. So, what we can say is, if you want to construct a surjection you 

first divide your set X into n pairwise non-empty disjoint subsets, call them as 𝐶1 to 𝐶𝑛. How many 

such partitions you can have? 𝑆(𝑚, 𝑛) number of such partitions. Now once you have divided your 



set X into n pairwise non empty disjoint subsets, each permutation of those subsets leads to a 

surjection.  

 

So, what I am trying to say is you have divided your set X into 𝐶1, 𝐶2, … , 𝐶 𝑛. And now 𝐶1 could 

be the pre-image set of either 𝑦1 or 𝑦2 or it could be assigned as a pre-image set of 𝑦𝑛. Now once 

we have decided that 𝐶1 is going to be the pre-image set of which element from the co domain.  

 

We next have to assign the subset𝐶2 to be the possible pre-image set of any element from the Y 

set except for the element which has been assigned to this subset 𝐶1. And like that I can continue 

for the remaining subsets in my partition. So, that is why I am saying here once you have decided 

the subsets within your partition you take any permutation of that corresponds to a surjection. So, 

that is why the total number of surjective function will be 𝑆(𝑚, 𝑛) ⋅ 𝑛!. 
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In question 9 we are continuing with the notion of our stirling numbers and you are supposed to 

prove that the stirling function satisfies this recurrence condition. So, to prove this statement 

consider a set X which has m + 1 number of elements and we want to divide this set X into n 

pairwise non empty disjoint subsets. We want to find out how many ways we can do the division. 

So, my claim is whatever way you divide this set X into n number of pairwise non empty disjoint 

subsets, the division can be of one of the following two categories. Category 1 division where the 

first m elements in the set X are divided into n - 1 number of pairwise non empty disjoint subsets 



and the last element 𝑥𝑚+1 is occupying a solitary position in a single subset. So, like that you have 

now total n number of subsets n - 1 number of subsets. Their union will give you 𝑥1 to 𝑥𝑚 and you 

have an additional subset which has only element 𝑥𝑚+1.  

 

That is one category of partition of the set X. How many partitions in this category we can have? 

The number of partitions in this category is nothing but, 𝑆(𝑚, 𝑛 –  1) because basically the number 

of ways in which you can partition the first m elements into n - 1 number of pairwise disjoint 

subsets. In each such partition you just add one additional subset consisting of the solitary element 

𝑥𝑚+1. 

 

That will give you a valid partition for the bigger set X and the number of such partitions we can 

have here is nothing but 𝑆(𝑚, 𝑛 −  1). That is one category of partition. The second category of 

partition that we can have for the set X will be as follows, I divide the first m elements into now n 

pairwise non-empty disjoints subsets. I can have 𝑆(𝑚, 𝑛 ) number of such subsets now what about 

the element 𝑥𝑚+1. 

 

Well we can either include it in the first subset or in the second subset or in the third subset or in 

the last subset and that will give you an overall valid partition for the bigger set X. And clearly the 

partition in this category is disjoint from the partitions in the first category. Because in the, first 

category of partition the element 𝑥𝑚+1 is present alone in a single subset. Whereas in the, second 

category of partition the element 𝑥𝑚+1  is not the only element within its subset, it is present along 

with some other elements as well. And you cannot have any other third category of partition for 

the subset x.  

 

You can have either partition of type 1 or partition of type 2. Now how many partitions of type 2, 

I can have? I can have  𝑛 ⋅ 𝑆(𝑚, 𝑛) number of partitions. This is because the element 𝑥𝑚+1 can 

occupy any of the n subsets and plus because the two categories of partitions are disjoint. And if I 

sum them I will get all possible ways of partitioning the set X.  
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In question 10a, you are asked to either prove what is proof that every non-empty symmetric and 

transitive relation is also reflexive. Well we can give a very simple counter example to prove that 

the statement is false. Imagine you are given a relation R over this set X, the relation is clearly 

symmetric. It is also transitive. If you are wondering why it is transitive you have (1, 1) and (1, 1) 

present and also (1, 1) present and you have (1, 2), (2, 1) present.  

 

So, you should have (1, 1) in the relation which is present in the relation but the relation is not 

reflexive because (2, 2) not present. In part 2 you are given two functions 𝑓: 𝐴−> 𝐵 and 𝑔: 𝐵 → 𝐶 

respectively. And you are also given that 𝑔𝑜𝑓 injective. Then the question is, is it necessary that f 

is also injective. The statement is true and we can prove it by contradiction.  

 

So, imagine that g o f is injective but f is not injective. Since f is not injective that means I have a 

pair of distinct elements from the A set, say 𝑎1 and 𝑎2 getting mapped to the same image, say b 

and say the image of b as for the g function is c. Then I get a contradiction that 𝑔𝑜𝑓(𝑎1)  and 

𝑔𝑜𝑓(𝑎2) are same namely c, but 𝑎1 ≠ 𝑎2 showing that 𝑔𝑜𝑓 is not injective which is a contradiction 

to my premise here. 
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In question 10c you are given that 𝑔𝑜𝑓 is injective, then the question is, is it necessary that g is 

also injective? Well we can give us counterexample to disprove this statement. So, take this f 

function and g function clearly 𝑔𝑜𝑓(𝑎1) = 𝑐1 and 𝑔𝑜𝑓(𝑎2) = 𝑐2. So, clearly my premise is 

satisfied here 𝑔𝑜𝑓 function is injective, but what about the g function it is not injective you have 

𝑔(𝑏3) and 𝑔(𝑏4) both mapping to 𝑐3, g function is not injective.  

 

So, this statement is not necessarily true. Part d you are given the f and g functions and your 𝑔𝑜𝑓 

function is surjective none is it necessary that the function f is also surjective again this is not 

necessary here is a very simple counterexample this is your f function this is your g function. Your 

𝑔𝑜𝑓 is surjective because indeed there is only one element in your set C, namely 𝑐1 and the pre-

image for that  𝑐1 is  𝑎1 because you have 𝑔𝑜𝑓(𝑎1) = 𝑐1.  

 

So, the function 𝑔𝑜𝑓 is indeed surjective, but the function f is not surjective because if you take 

the element 𝑏2 it has no pre-image. So, that shows this statement is not necessarily true. So, that 

brings me to the end of part two of tutorial 4. Thank you! 

 


