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Hello everyone, welcome to the first part of tutorial 4. So, let us start with question number 1(a). 

This question you are given two equivalence relations on a non-empty set 𝑋. You are asked to 

prove or disprove whether 𝑅1 ∪ 𝑅2 is an equivalence relation or not? So, it turns out at a union of 

two equivalence relations need not be an equivalence relation.  

 

And this is demonstrated by this counter example. So, I consider my set 𝑋={a,b,c}. And let me 

have equivalence relations 𝑅1 and 𝑅2. So, 𝑅1 = { (𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑎, 𝑏), (𝑏, 𝑎)} and 𝑅2 =

{ (𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑏, 𝑐), (𝑐, 𝑏)}. It is easy to see that both of them are equivalence relations 

over the set X they are reflexive. Each of them is a reflexive relations symmetric relation and a 

transitive relation I am not going through that, it is easy to verify that.  

 

Now, if you take the union of these two relations, 𝑅1 ∪ 𝑅2, you will have these ordered pairs. And 

it is easy to verify that 𝑅1 ∪ 𝑅2 is a reflexive relation over the set X, because you have 

{(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)} present in the relation. The union is also symmetric because if you have any 



(𝑎, 𝑏) in the union present and ordered pair (𝑏, 𝑎) is also present in the union.  

 

But it is easy to see that union here is not a transitive relation, specifically you have (𝑎, 𝑏) and an 

ordered pair (𝑏, 𝑐) present in 𝑅1 ∪ 𝑅2, but a, c is not present in the union and hence the transitivity 

properties violated. So, in general the union of two equivalence relations need not be transitive. 

We can prove that they will be always it will be always reflexive and symmetric. If I take the union 

it will be always reflexive and symmetric, but the union need not be a transitive relation.  
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In part b of question 1, we are supposed to prove whether the obvious as to prove or disprove, 

whether the intersection is an equivalence relation or not. And it turns out that intersection of two 

equivalence relations over the same set X is always an equivalence relation. So, let us prove the 

three required properties. If I take 𝑅1 and 𝑅2 to be equivalence relations over the set X, then since 

𝑅1 and 𝑅2 are individually reflexive relations. You will have ordered pair of the form (𝑎, 𝑎) present 

in both 𝑅1 as well as in 𝑅2. And as a result, you will have ordered pairs of the form (a, a) present 

in the intersection of  𝑅1 and  𝑅2 as well. That shows that 𝑅1 ∩ 𝑅2 is a reflexive relation. Well let 

us try to prove the symmetric property for 𝑅1 ∩ 𝑅2. So, for that I consider an arbitrary ordered pair 

(𝑎, 𝑏) to be present in 𝑅1 ∩ 𝑅2.  

 

Since it is present in the intersection as per the definition of intersection, it will be present in both 

𝑅1  as well as 𝑅2. Now it is given that my relation 𝑅1 and relation 𝑅2 are equivalence relations, so 



individually both of them are symmetric relations. And as a result of that the ordered pair (𝑏, 𝑎) 

will be present in 𝑅1 as well as the ordered pair where (𝑏, 𝑎) also will be present in 𝑅2. So, since 

(b, a) is present in both 𝑅1 as well as in 𝑅2, it will be present in their intersection as well. And 

which shows that the intersection will be a symmetric relation.  

 

Now consider the transitivity property for which I consider arbitrary ordered pairs (a, b) and (b, c) 

to be present in 𝑅1 ∩ 𝑅2. So, since it is present in 𝑅1 ∩ 𝑅2, there two ordered pairs will be 

individually present in both 𝑅1  as well as in 𝑅2 and since 𝑅1  and 𝑅2 are individually equivalence 

relations. Each of them satisfies the transitivity property, due to which I get that ordered pairs (a, 

c) is present in both 𝑅1 as well as in 𝑅2. And hence the ordered pair (a, c) will be present in their 

intersection as well.  

 

So, now you can see that the argument that we have given here for 𝑅1 ∩ 𝑅2 to be a transitive 

relation need not hold for the union. And this is precisely the reason due to which the union of two 

equivalence relations need not be transitive relation and hence any equivalence relation you can 

verify it. 
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Now on question number 2 again, you are given two equivalence relations over a non- empty set 

and we want to prove that 𝑅1 ∪ 𝑅2 will be an equivalence relation if and only if the composition 

𝑅1𝑜 𝑅2 is equal to the 𝑅1 ∪ 𝑅2. And this is, an if and only if statement. So, we have to give two 



proofs. We have to prove the implication in both the directions. 

 

So, let us first prove the implication in the direction where I assume 𝑅1𝑜 𝑅2 = 𝑅1 ∪ 𝑅2. Under that 

assumption I will be showing that 𝑅1 ∪ 𝑅2is an equivalence relation. And I will be just focusing 

on proving that 𝑅1 ∪ 𝑅2 is a transitive relation. Because we can always show that 𝑅1 ∪ 𝑅2 will 

satisfy the reflexive property and symmetric property.  

 

It is only the transitive property which is missing. And what we will show is that if this premise 

hold, then 𝑅1 ∪ 𝑅2 will be satisfying the transitivity property. So, let us consider arbitrary ordered 

pairs (a, b) and (b, c) to be present in 𝑅1 ∪ 𝑅2. Now because of the union there could be three 

possible cases depending upon where exactly the ordered pair (a, b) and ordered pair (b, c) belongs.  

 

So, case 1 could be that the ordered pairs (a, b) as well as (b, c) are present in one of these two 

relations, at least in one of these two relations. Say in the relation 𝑅𝑖, there 𝑅𝑖 could be either 𝑅1 

or 𝑅2. If that is the case, then since that relation 𝑅𝑖 where both (a, b) and (b, c) are present is also 

an equivalence relation mind it. We are given that individually, we are given that both 𝑅1 as well 

as 𝑅2, are equivalence relations.  

 

So, if both (a, b) and (b, c) are present in the relation 𝑅𝑖 and as for the transitivity property the 

ordered pair (a, c) will be present in 𝑅𝑖 as well and hence it will be present in 𝑅1 ∪ 𝑅2. Case 2 

could be where the ordered pair (𝑎, 𝑏) ∈  𝑅2 and ordered pair (𝑏, 𝑐) ∈  𝑅1. In that case, you will 

have (a, b), (b, c) present in the union as well. Now that is the case, then as per the definition of 

composition of two relations, the ordered pair (a, c) will be present in 𝑅1𝑜 𝑅2because you have an 

intermediate b. So, (a, b) is in 𝑅2 and (b, c) is in 𝑅1. So, hence (a, c) will be in 𝑅1𝑜 𝑅2. But our 

premise says that 𝑅1𝑜 𝑅2 is exactly the same as the union. So, (a, c) is present in 𝑅1𝑜 𝑅2, it will 

present in the union as well and hence in this case also we proved a transitivity property.  

 

So, tricky cases when you have the ordered pair (𝑎, 𝑏) ∈  𝑅1 and ordered pair (𝑏, 𝑐) ∈  𝑅2. In that 

case, I cannot apply the same argument as I applied in case 2, I have to do something extra here. 

So, what I do here is I apply the symmetric property for the relation 𝑅1. Mind it 𝑅1 is an 

equivalence relation and hence it has to symmetric property. So, since (𝑎, 𝑏) ∈  𝑅1 we will have  



(𝑏, 𝑎) ∈  𝑅2. 

 

Due to the same reason, since 𝑅2 it also satisfies the symmetric property. We will have (𝑐, 𝑏) ∈

 𝑅2. And as a result I can say that the ordered pair (𝑐, 𝑎) is present in the composition. But now 

that is not my goal. My goal is to show that (a, c) is present in the composition and then I can use 

the fact that  𝑅1𝑜 𝑅2 is same as  𝑅1 ∪ 𝑅2 and conclude that (a, c) is in the union as well.  

 

So, what I do here is since I know I have the premise says that  𝑅1𝑜 𝑅2 is same as their union, I 

can conclude that ordered pair (c, a) is present in the union as well. Now if it is present in 𝑅1 ∪ 𝑅2. 

It will be present in at least one of these two relations either in  𝑅1 or 𝑅2. So, without loss of 

generality let it be present in 𝑅1. So, this w.l.o.g here means, without loss of generality.  

 

So, whatever argument I am going to give assuming that (c, a) is present in 𝑅1, can be applied in 

also symmetrically for the case when (c, a) is present 𝑅2. So, assuming (𝑐, 𝑎) ∈  𝑅1, since 𝑅1  is 

also symmetric we get (a, c) also present 𝑅2 and hence (a, c) will be present in the union of 𝑅1. 

We have proved the implication in this direction. 
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Let us prove the implication in the other direction. So, I am going to prove that if 𝑅1 ∪ 𝑅2 is an 

equivalence relation, then there and 𝑅1𝑜 𝑅2 is equal to their union. So, I have to prove the equality 

of two sets. I have to prove that 𝑅1𝑜 𝑅2 ⊆ 𝑅1 ∪ 𝑅2. And I have to prove that 𝑅1 ∪ 𝑅2 ⊆ 𝑅1𝑜 𝑅2. 



Then only I can conclude that these two sets are equal.  

 

So, let us prove that 𝑅1𝑜 𝑅2 ⊆ 𝑅1 ∪ 𝑅2. And how do I prove that a set X is a subset of set Y. I 

have to show that you take any element from the set X it will be present in the set Y as well. So, 

that is why I am taking an arbitrary (a, c) present in 𝑅1𝑜 𝑅2. So, since it is present in the 𝑅1𝑜 𝑅2 

what I can say here is that, as for the definition of composition. 

 

There should, exist some intermediate element b. Such that (a, b) will be present in 𝑅2 and (b, c) 

will present in 𝑅1. That is the definition of composition. And that means that ordered pair (a, b) is 

present in 𝑅1 ∪ 𝑅2 and (b, c) is also present in 𝑅1 ∪  𝑅2. And since I am assuming here, that 𝑅1 ∪

 𝑅2 is an equivalence relation that is the premise. It will be transitive as well. 

 

And if (a, b) and (b, c) are present in the union and it is transitive that means (a, c) is present in the 

union as well. So, what we have shown here is now. You take any element any ordered pair (a, c) 

in 𝑅1𝑜 𝑅2, it will present in 𝑅1 ∪ 𝑅2 as well. Let us prove, now Y is the subset of X. Namely we 

will prove that 𝑅1 ∪  𝑅2 ⊆ 𝑅1 𝑜 𝑅2.  

 

So, again, let us take an arbitrary element namely ordered pair arbitrary ordered pair (a, b) present 

in 𝑅1 ∪ 𝑅2, we will show it is present in 𝑅1𝑜 𝑅2. Again there could be two cases depending upon 

whether (a, b) is in 𝑅1 or whether (a, b) is in 𝑅2. So, again without loss of generality assume that 

it is present in the first relation. And I know that my relation  𝑅2 is reflexive and I am assuming 

here that the relations are over a non-empty set.  

 

That means my set X has at least one element a. So, since my relation  𝑅2 is reflexive, I will also 

have element ordered pair (a, a) in my relation  𝑅2 and now I can use the definition of   𝑅1 𝑜 𝑅2. I 

have (a, a) present in  𝑅2 and I have (a, b) present in  𝑅1. So I can say (a, b) is present in 𝑅1 𝑜 𝑅2. 

So, that shows Y is also a subset of X and hence the two sets are equal.  
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In question number 3, we are defining a function P(n) which denotes the number of equivalence 

relations over set S consisting of n elements. So, P(1) means, number of possible equivalence 

relations over the set consisting of one element. P(2) will give you the number of equivalence 

relations over set consisting of two elements and so on. Now the question ask you to either prove 

or disprove whether P(n) satisfies this condition. 

 

So, here the C function is the combinatoric function, namely it denotes here. So, C(n-1,j) here the 

notation denotes the number of ways of selecting j objects, j distinct objects or j objects we say 

from a collection of n - 1 objects. That is a notation C(n-1, j). Basically this is a recurrence equation, 

what exactly we mean by a recurrence equation here. We are trying to express the value of the 

function P on input n in terms of the value of function P on previous input namely on inputs of 

size less than n. 

 

So, we are supposed, we are asked to either prove or disprove whether this condition holds or not. 

In fact, we will prove that this is true, this equation is true. The first thing to observe here is that 

the function P(n) also denotes the number of partitions of a set S consisting of n elements. Because 

remember we have proved that every equivalence relation gives a partition. And every partition 

corresponds to an equivalence relation.  

 

So, the number of equivalence relations is nothing but the number of partitions over that is it. Now 



we will focus our argument based on the fact that we open denotes the number of partitions of a 

set S consisting of n elements. So, imagine your S set is has n elements, and what we are going to 

do is, we are going to discuss what are the various ways in which we could partition this set S.  

 

So, for that I consider the first element 𝑎1. Now in order to partition the set S into various subsets 

definitely the element 𝑎1 will be present in one of the subsets in that partition. And along with the 

element 𝑎1, there could be j other elements from the set S in the subset in which the element 𝑎1 is 

present. Now the j ranges from 0 to n - 1, what does that mean? That is either the element 𝑎1 might 

be the only element in the subset in its partition, in the partition that means, when you are 

partitioning the set S into various {𝑎1} is the solitary element in  {𝑎1} is present. That is one case 

in which case my j will be 0 or my partition could be such that that, the 𝑎1 is present along with 

all other elements of the set S in its subset. In which case j can take the value n -1. So, that is why 

the range of this j here is from 0 to n -1.  

 

That means what I am saying here is that irrespective of the way you partition the set S, the subset 

in which a1 is present along with a1 you will have j other elements. So, in total that subset will 

have j + 1 element. And the j elements will be chosen from the remaining elements 𝑎2 to 𝑎𝑛. So, 

how many ways you can pick those j elements from the remaining n- 1 elements, that is why the 

notation c of n- 1, j is coming into picture here.  

 

It is not the case that all only the first j elements outside a1 will be present along with an. You can 

pick any j elements from the set 𝑎2 to 𝑎𝑛. That is why this expression 𝐶( 𝑛 −  1, 𝑗) will be picturing 

here. Now once we have decided which j elements are going to come together with a1 in its subset, 

the remaining elements which are now n - j + 1 in number, have to be partitioned. And there are 

these many numbers of ways of partitioning a smaller set consisting of n- j + 1 number of elements.  

 

That means once you have decided that I am deciding, I am defining a partition where along with 

a1 these other j elements are going to come, once you have decided which j elements are going to 

take the position along with 𝑎1 , now your remaining elements are n - j + 1. And now you have to 

worry about how you are going to partition that is smaller subset. And now as for the definition of 

my P function there are, P(n) - j - 1 number of base of dividing that subsets.  



 

So, once you have decided which j elements to occupy or which j elements to put along with a1. 

These will be the total number of ways in which you can partition the set S. So, that gives you one 

type of partition. Now since j ranges from 0 to n - 1, you have n number of such possible types of 

partitions. That is why we get this overall formula. My first class of partition is there, the element 

𝑎1 is the only element in this subset. 

 

Remaining n - 1 elements are now partitioned into various subsets. So, that is one category of 

partition there are these many number of partitions of that type. My second category of partitioning 

of set S is where along the a1, I also put one additional element in that subset. That additional 

element will be chosen in these many numbers of ways P(n) – 1, 1 and now the remaining n - 2 

elements are partitioned into P(n) - 2 number of ways.  

 

And continuing like that my last category of partitioning is the following, where I put n - 1 element 

along with the element 𝑎1 in its subset. That means that whole set is the only partition in which 

case I have to now partition the remaining elements which are now 0 in number. So, that is why 

𝑃(0), I can define to be 1 that means if you are set as only if a set is an empty set and there is only 

one way of partitioning it, namely knowing.  

 

So, I can define 𝑃(0) = 1 and now you can check that P(n) satisfies this equation and all these 

different types of partitioning are disjoint. There will not be any partitioning which will present in 

which can be considered as two different types of partitions, because the value of j is different for 

each category. 
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Now in question number 4, we are supposed to find out the number of partial orderings over a set 

S consisting of three elements. So, instead of enumerating all possible partial ordering, so what 

over the set consisting of three elements remember partial ordering means your relation is 

reflexive, antisymmetric and transitive. So, instead of enumerating all such relations what we will 

do is we will count the number of distinct Hasse diagrams, which we can draw using these three 

sets. Because remember, each partial ordering can be represented by Hasse diagram.  

 

So, it turns out that we can draw five different categories of Hasse diagram over the set.  And let 

us consider each of them and each category, we will count how many Hasse diagrams we can 

draw. The first category of Hasse diagram is where I have no edges among the nodes.  

 

So, I have the nodes 𝑎𝑖, 𝑎𝑗 , 𝑎𝑘, where a i can be any value in the set {1, 2, 3}, 𝑎𝑗  can be any value 

in the set {1, 2, 3} and 𝑎𝑘 is any value in the set {1, 2, 3}. What exactly is the relation corresponding 

to this Hasse diagram? The relation here will be 𝑎𝑖 is related to 𝑎𝑖, 𝑎𝑗 is related to 𝑎𝑗 and 𝑎𝑘 is 

related to 𝑎𝑘. Remember in Hasse diagram, the directions are not there, self- loops are always 

implicit, transitively implied edges are also there and so on.  

 

So, the relation corresponding to this Hasse diagram is this relation, which is a partial order. Now, 

the question is how many types of Hasse diagrams of this category I can draw? I can draw only 

one Hasse diagram like this, because it does not matter whether 𝑎𝑖 is 1 or 2 or 3. The resultant 



partial ordering will be the same. So, I can have only one partial ordering whose Hasse diagram 

will be of category a.  

 

My category b Hasse diagram will be like this, where I will have. So, this is a relation this 

corresponds to the relation where I have  𝑎𝑖 is related to 𝑎𝑖, 𝑎𝑗 is related to 𝑎𝑗 and 𝑎𝑘 is related to 

𝑎𝑘, remember self-loops are always implicitly there. And we have the ordered pair 𝑎𝑖 related to 

𝑎𝑗, because the directions are always assumed to be from bottom to up. So, the question is how 

many partial ordering of this type we can have?  

 

In terms of we can have six different partial ordering depending upon what is your value of 𝑎𝑖 and 

what is your value of 𝑎𝑗. Because your, 𝑎𝑖 could be either 1 or 2 or 3. If my, 𝑎𝑖 is 1, then that is 

different from the case when my 𝑎𝑖 is 2 and so on. But you have three choices for the element 𝑎𝑖. 

And once you have decided what is your a i you have now two choices for 𝑎𝑗 because 𝑎𝑗 has to be 

different from 𝑎𝑖.  

 

And once you have decided 𝑎𝑖 and 𝑎𝑗 you do not have any other choice remaining for 𝑎𝑘 the third 

element which is now left has to be 𝑎𝑘. That is why I can have only six possible partial orderings 

in this category. My category three could be where I have a total ordering among 𝑎𝑖, 𝑎𝑘, namely 

by a Hasse diagram is a chain. And it turns out that we can have six partial orderings of this 

category depending upon whatever my values of 𝑎𝑖 and 𝑎𝑗. 

 

So, I have three choices for 𝑎𝑖. By 𝑎𝑖 could be either 1, 2, 3. Once I have fixed 𝑎𝑖, I have two 

choices for 𝑎𝑗  and once I have fixed 𝑎𝑖  and 𝑎𝑗  the third element will be mine. So, that is why will 

have three different Hasse diagrams in this category. Fourth category is where you have a Hasse 

diagram where you have a least element and two maximal elements. In this category, we can have 

three partial orderings depending upon the choice of your least element.  

 

Your least element 𝑎𝑖  could be either 1 or 2 or 3. Once you have decided your, 𝑎𝑖, it does not 

matter whether what is your 𝑎𝑗  and 𝑎𝑘  you are going to be the remaining two elements. You can 

have only three partial orderings of this category. And your last category is when you have only 



the greatest element namely 𝑎𝑘 and two minimal elements 𝑎𝑖, 𝑎𝑘. In this category, you can have 

three partial orderings depending upon what is your greatest element.  

 

The choice of your greatest element, the greatest element would be either 1 or 2 or 3. Once you 

have decided what is your greatest element, it does not matter whether 𝑎𝑖 is the what are your 

remaining elements 𝑎𝑖, they are going to be the remaining two elements. So, that is why if I now 

count all the different partial orderings and the various categories I get 19 different relations over 

the set {1, 2, 3} which will be reflexive, anti- symmetric and transitive.  
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In question 5, you are given the following, you are given an arbitrary poset. And for any subset T 

of that set S an element x from that set T will be called as a minimum element, if that element x is 

related to all other elements y of depth subset T. So, here I am defining minimum element with 

respect to the subsets here. It is not a global minimum element it is defined with respect to a subset 

of the set S. 

 

Now and the question you are given, the condition that is your poset is such that every non- empty 

subset T of S as a minimum element. That means it does not matter what the size of your subset 

T. You take any subset T of the set S is a minimum element as per this definition is bound to exist. 

So, your poset is like that. Under that condition you have to show that your poset is actually a total 

ordering. It is not a partial ordering but it is actually a total ordering.  



 

So, remember the definition of total ordering is you take any pair of elements they will be 

comparable either the first element is related to the second or the second is related to the first. You 

will not have incomparable elements. So, that is what we are going to do here. We will take an 

arbitrary pair of elements a, b which are distinct and we will show they are comparable. That means 

either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎, remember this less than notation does not mean the numerical less than 

notation. It means that a is related to b or b is related to a as per your relation less than equal to, 

where less than equal to is not the numeric less than equal to relation, it is an arbitrary relation 

which is reflexive, anti- symmetric and transitive.  

 

So, how I am going to show that 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎.  I will take the subset T consisting of the elements 

a, b. And as per the given condition this subset T also will have a minimum element. Let us call 

that, denote that minimum element by x. Now the definition also says that a minimum element 

will be within that subset itself. And my subset here is the set {𝑎, 𝑏}, that means that minimum 

element can be either a or b. If the minimum element x is a then we get that 𝑎 ≤ 𝑏as per the 

definition of the given minimum element.  

 

And 𝑎 ≠ 𝑏, that means 𝑎 ≤ 𝑏 and hence a and b are comparable. Case 2, when my minimum 

element x is the element b. In this case, again since 𝑎 ≠ 𝑏 and as per the definition of the minimum 

element there is set element  𝑏 ≤ 𝑎 and hence a and b are comparable. So, with that we finish the 

first part of this tutorial. Thank you!  

 


