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Equivalence Relations and Partitions 

  

Hello everyone, welcome to this lecture on equivalence relations and partitions.  

(Refer Slide Time: 00:25) 

 

Just to recap in the last lecture we introduced the notion of equivalence relation and equivalence 

classes. In this lecture, we will continue the discussion on equivalence relations and classes. And 

we will introduce the notion of partition of a set and we will see the relationship between 

equivalence classes and partitions. 
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So, let us start with the definition of a partition of a set. So, imagine you are given a set C which 

may be finite or it may be infinite. Now, what is the partition of this set C? The partition here is 

basically a collection of pairwise disjoint, non-empty subsets say m subsets of C which should be 

pairwise disjoint such that if you take their union, you should get back the original set C.  

 

So intuitively, say for example, you have the map of India you can say that the various states of 

India partition the entire country India into various subsets such that there is no intersection among 

the states here. So, in that sense, I am just trying to find out some subsets of the set C such that 

there should not be any overlap among those subsets and if I take the union of all those subsets I 

should get back the original set C, there should not be any element of C which is missing.  

 

So, more formally the requirements here are the following. Each subset 𝐶𝑖 ≠ 𝜙 that means each 

subset should have at least one element. They should be pairwise disjoint. That means if I take any 

𝑖, 𝑗 then 𝐶𝑖 ∩ 𝐶𝑗 = 𝜙 and 𝐶1 ∪ … ∪ 𝐶𝑚 = 𝐶. So, one trivial partition of the set C is the set C itself.  

 

I can imagine that C is partitioned into just one subset namely the entire set C or I can decide to 

partition C into exactly two halves or I can decide to partition C into three equal sets of equal sizes 

and so on. So, there might be various ways of partitioning your set is not a unique way of 

partitioning a set. Of course how many ways you can partition a set that is a very interesting 

question we will come back to that question later.  
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What we now want to establish here is a very interesting relationship between the equivalence 

from an equivalence relation to the partition of a set. So, we want to establish relationship between 

equivalence relation and partition of a set. So, imagine you are given a set C consisting of 𝑛 

elements. Now what I can prove here is that if R is an equivalence relation over the set C and if 

the equivalence classes which I can form with respect to the relation R are 𝐶1, … , 𝐶𝑚. Then my 

claim here is that the equivalence classes 𝐶1, … , 𝐶𝑚 constitutes partition of the set C.  

 

So, just to recall, the definition of partition demands me to prove three properties, the first property 

is that each of this subset should be non-empty. And that is trivial because I know that each of 

these equivalence classes is non-empty because each of these equivalence classes is bound to have 

at least one element, 𝑖 ∈ [𝐶𝑖] since my relation R is an equivalence relation, it will be a reflexive 

relation that means the element 𝑖 will be related to itself. That means none of these equivalence 

classes will be an empty set. So, the first requirement is satisfied. 

  

The second requirement from the partition is that the union of the various subsets should give me 

back the original set. So, my claim here is that if I take the union of all these m equivalence classes, 

I will definitely get back my original set C. And this is because you take any element 𝑖 ∈ 𝐶, it is 

bound to be present in at least one equivalence class. Specifically, the element 𝑖 ∈ [𝐶𝑖]. So, that 



means I can safely say that if I take the union of these m equivalence classes, I will not be losing 

any element of the set C.  

 

Third requirement from the partition was that the various subsets in the partition should be pairwise 

disjoint. So, in this specific case, I have to show that you take any two equivalence classes, they 

should be pairwise disjoint and that is easy because in the last lecture we proved that two 

equivalence classes are either same or they are disjoint. You cannot have a common element 

present in two different equivalence classes which automatically establishes that these subsets are 

pairwise disjoint. So, we have proved here that you give me any equivalence relation and if I take 

the equivalence classes that I can form with respect to that relation R that collection of equivalence 

classes will constitute a partition of my original set.  
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Now, I can prove the property in the reverse direction as well. What do I mean by that? I claim 

here that you give me any partition of a set C, say you give me a collection of m subsets which 

constitute a partition of the set C. Then I can give you an equivalence relation R whose equivalence 

classes will be the subsets, which you have given me in the partition.  

 

So, I will give you the construction of the equivalence relation and the construction of the 

equivalence relation here is very straight forward. So, the required equivalence relation is the 

following. You take any subset from the given partition, say the subset 𝐶𝑘, 𝑘 = 1, … , 𝑚 because 



you are given m such subsets in your partition. So, with respect to each subset 𝐶𝑘, what I am going 

to do is I take 𝑖 ∈ 𝐶𝑘and , 𝑗 ∈ 𝐶𝑘, I add the ordered pair (𝑖, 𝑗) in my relation R.  

 

So, I stress here that there is no special requirements from my, i and j. I am looping over all possible 

𝑖, 𝑗 present in the subset 𝐶𝑘. So, either 𝑖 = 𝑗 or 𝑖 ≠ 𝑗. For every 𝑖 ∈ 𝐶𝑘and , 𝑗 ∈ 𝐶𝑘, add (𝑖, 𝑗) in my 

relation R. And if I do this for every subset Ck in my given partition then my claim is that the 

resultant relation R will be an equivalence relation and its equivalence classes will be the subsets 

𝐶1, … , 𝐶𝑚.  

 

So, just to demonstrate my point, imagine my set 𝐶 =  {1, 2, 3, 4, 5, 6} and a partition of this set is 

given to you. So, I am given 3 subsets, 𝐶1 = {1, 2, 3}, 𝐶2 = {4,5}, 𝐶3 = {6}. Let me construct a 

relation R as follows. So, I take the first subset here and by iterating over all i, j present in this 

subset, I add ordered pairs of the form (i, j).  

 

 𝑅 =

{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (4, 4), (5, 5), (4, 5), (5, 4), (6,6)}. 

So, these are the ordered pairs which I have added with respect to the subsets. With respect to the 

third subset you might be wondering there is no j present in the third subset. That is why I said 

there is no restriction that i should be same, i should be different from j or i should be same as j 

also. So, I have to iterate over all possible i, j present in the subset. So, in this subset if I substitute 

i = 6 and j = 6, I have to add the ordered pair (6, 6) in my relation R. And now you can check here 

that the relation R that I have constructed is indeed an equivalence relation it satisfies the reflexive 

properties. It satisfies the symmetric property and it is transitive as well. And if you form the 

equivalence classes of this relation R, you will get these three subsets 𝐶1, 𝐶2, 𝐶3.  
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So, let us formally prove this. Now, going to prove that a relation R that I am saying here to 

construct indeed will be reflexive, symmetric and transitive. So, let us prove that this relation R 

will be reflexive. So, you take any element i from the set C, I have to show that (𝑖, 𝑖) ∈ 𝑅 to show 

that it is reflexive. Now since 𝐶1, . . , 𝐶𝑚 is a partition of the set C, the element i will be present in 

one of the subsets in this collection say it is present in the subset 𝐶𝑘.  

 

Now if it is present in the subset 𝐶𝑘 when I am applying this rule to construct this relation R, I will 

see that element i is present in 𝐶𝑘and I will add the ordered pair (𝑖, 𝑖) in the relation R as per this 

rule. So, that shows that you take any element 𝑖 ∈ 𝐶, it is guaranteed that (𝑖, 𝑖) ∈ 𝑅. That proves 

that the relation R is reflexive. 
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Let us prove that a relation R that we have constructed here is symmetric as well. And for proving 

that I have to show the following. I have to show that if you take any arbitrary (𝑖, 𝑗) ∈ 𝑅, then 

(𝑗, 𝑖) ∈ 𝑅. And how do I prove that? So, the first thing to observe here is that if at all you have 

(𝑖, 𝑗) ∈ 𝑅. That is possible only because of the following.  

 

You have say, 𝑖 ∈ 𝐶𝑘, 𝑗 ∈ 𝐶𝑘  , then only you would have added the ordered pair (𝑖, 𝑗) ∈ 𝑅 and 

none of these two elements i and j could be present in any other subset in this partition, the given 

partition or in the given collection of subsets, because that is the definition of a partition. So, since 

𝑖 ∈ 𝐶𝑘, 𝑗 ∈ 𝐶𝑘, by applying the rule that I have followed for constructing the relation R, I would 

have also added the element (j, i), because I have to iterate over all possible i, j. So, when i become 

j and j becomes i as a result I get (𝑗, 𝑖) ∈ 𝑅 and that prove that my relation R is symmetric.  
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Now let us prove that a relation R is transitive and for proving that my relation R is transitive, let 

me take an arbitrary ordered pairs. So, I take (𝑖, 𝑗), (𝑗, 𝑘) ∈ 𝑅 and I have to show that the ordered 

pair (𝑖, 𝑘) ∈ 𝑅. So, the first thing to observe is that since by construction of my relation R if at all 

(𝑖, 𝑗), (𝑗, 𝑘) ∈ 𝑅, that is because all the elements 𝑖, 𝑗, 𝑘 were present in a common subset namely 

say subset 𝐶𝑙.  

 

Because it cannot happen that you have 𝑖, 𝑗 ∈ 𝐶𝑘 and you have or say 𝑖, 𝑗 ∈ 𝐶𝑙 and 𝑘 ∈ 𝐶2. That is 

not possible here. Because that would have been the case then you would have added the ordered 

pair (i, j) and (j, i) in the relation but you would have not added the ordered pair (i, k) or (j, k) in 

your relation. You would have added the ordered pair (i, j) or (j, k) in the relation only when all 

the three elements 𝑖, 𝑗, 𝑘 ∈ 𝐶𝑙.  

 

Now since you would have iterated over all possible 𝑖, 𝑗 ∈ 𝐶𝑙 , you would have iterated over k as 

well and you would have added the ordered pair (i, k) in the relation R as well and that shows that 

your relation R is transitive. So, that shows a very nice relationship and a nice property between 

the equivalence classes and the partition. 

 

You give me any equivalence relation the corresponding equivalence classes will constitute a 

partition. You give me a partition of a set, I will give you an equivalence relation corresponding 



to those partitions, namely the equivalence relation will be such that its equivalence classes will 

give you the same subsets which are given in the partition that you given to me.  

 

So, in other words what we can show here is that the number of equivalence relations what we 

have established here actually is that the number of equivalence relations over C is exactly the 

same as number of partitions of set C. Because we have established that you give me any 

equivalence relation that corresponds to a partition you give me any partition that corresponds to 

an equivalence relation. So, the counting the number of equivalence relations in a sense is same as 

counting the number of partitions of the sets.  

 

So, that brings me to the end of this lecture. Just to summarize, in this lecture we introduced the 

notion of partition of a set and we established formally the relationship between an equivalence 

relation, its equivalence classes and the partition of a set. 

 


