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Hello everyone, welcome to this lecture on equivalence Relations. And just to recap in the last 

lecture we discussed some special types of relations like Reflexive Relations, Symmetric 

Relations, Asymmetric relations, Anti Symmetric Relations, Transitive Relations. So, in this 

lecture we will introduce a special type of relation called as equivalence Relation and we will see 

the definition of equivalence classes.  

(Refer Slide Time: 00:44)  



 

So, what is the formal definition of an equivalence relation? It is a relation R over a set A which 

satisfies three properties namely the relation should be reflexive, the relation should be symmetric 

and the relation should be transitive. It should satisfy all these three properties. If any of these three 

properties is not satisfied, the relation will not be called as an equivalence Relation.  
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So, let us see an example. So, I define a relation over ℤ  here and by relation here is that an integer 

a will be related to integer b if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚. 

 

We say an integer a and integer b are congruent, they are congruent with respect to modulo m if 

the remainder which I obtained by dividing a by the modulus m is exactly the same as the 



remainder which I obtained by dividing b by the modulus m. So, m is the modulus here. I mean 

the divisor and you are dividing a by m and b also by m, and if you get the same remainder, then 

we say that a and b are kind of equivalent in the sense they have the property that they give you 

the same remainder when divided by this modulus m. 

𝑅 = {(𝑎, 𝑏): 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚}, 

Where m is a fixed modulus.  

 

If 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚, → (𝑎 − 𝑏) is completely divisible by m, it gives you 0 remainder.  

If 𝑎 ≡ 𝑟 𝑚𝑜𝑑 𝑚 and 𝑏 ≡ 𝑟 𝑚𝑜𝑑 𝑚, → (𝑏 − 𝑎) ≡ (𝑟 − 𝑟)𝑚𝑜𝑑 𝑚 ≡ 0 𝑚𝑜𝑑 𝑚. 

Now my claim is that this relation R is an equivalence relation. It satisfies the property of reflexive 

relation, Symmetric relation and transitive relation. 

 

So, let us prove that so is the relation R reflexive? Answer is yes. Because, (𝑎 − 𝑎) ≡ 0 𝑚𝑜𝑑 𝑚. 

You divide a whatever remainder you obtain by dividing a by m the same remainder you obtained 

by dividing a again by m. So, in that sense a is always congruent to a modulo m.  

 

The relation R is also symmetric, we can prove that. For proving the symmetric property, I assume 

that consider an arbitrary pair of integers (a, b) where 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 → 𝑏 ≡ 𝑎 𝑚𝑜𝑑 𝑚.   

So, what I have proved here is (b, a) is present in the relation R. That means the integer b is related 

to the integer a as per my relation R. So, what I have proved is starting with the premise that (a, b) 

is present in the relation R. I can conclude that (b, a) is also there in relation R. That proves my 

relation R is symmetric.  

(Refer Slide Time: 05:09) 



 

Now let us prove that the relation R is transitive as well. So, for proving the transitivity property I 

have to show that, if I have a related to b in my relation and b related to c in the relation, then I 

have to show that the integer a is related to integer c. And I have to show this for any arbitrarily 

chosen a, b, c. So, since a is related to integer b, that means a is congruent to b or equivalently (a 

– b) is completely divisible by the modulus m.  

 

So, I can say that 𝑎 – 𝑏 = 𝑞1 ⋅ 𝑚.  In the same way, since the integer b is related to integer c, that 

means integer b is congruent to integer c or equivalently b - c is completely divisible by m. Or in 

other words 𝑏 − 𝑐 = 𝑞2 ⋅ 𝑚. Now what I can say here is if I add these two equations here, I get 

that 𝑎 – 𝑐 = (𝑞1 + 𝑞2) ⋅ 𝑚 . That means a - c is completely divisible by the integer m, which in 

other words means that  𝑎 ≡ 𝑐 𝑚𝑜𝑑 𝑚. That means the integer a is related to integers c. And that 

proves that your relation R is transitive as well.  
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So, that this is an example of an equivalence relation. So, now let us define equivalence classes. 

Imagine R is an equivalence relation over some set A. And now consider an element 𝑎 ∈ 𝐴. Then 

the equivalence class of A which is denoted by this notation you have the square bracket and within 

that you have the element a. So, the equivalence class of [𝑎] = {𝑏: (𝑎, 𝑏) ∈ 𝑅}, consist of all the 

elements from the set A which are related to this element a as per the relation R.  

 

Formally, this equivalence class is a set it will be a subset of your set A. It will be having all the 

elements 𝑏 ∈  𝐴 such that a is related to b. That is equivalence class of an element a. And now this 

equivalence class satisfies some very nice properties. The first trivial thing to check here is verify 

here is that you take the equivalence class of any element, it will be non- empty.  

 

There will be at least one element which is always guaranteed to be present in the equivalence 

class of any element a. And that element is the element a itself, 𝑎 ∈ [𝑎]. Because the element a is 

always related as per the relation R because the relation R is an equivalence relation and since it 

is an equivalence relation it is reflexive. If it is a reflexive element, every element is related to 

itself.  

 

So, the element a will always be present in its equivalence class and hence a equivalence class A 

will never be an empty set. Let me demonstrate what exactly equivalence class looks like with an 

example. So, I consider this relation R over set of integers ℤ where an integer is related to integer 



b if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 3. So, m = 3 here, we already proved in the previous slide that this relation is an 

equivalence relation. 

 

So, what will be the equivalence class of 0? So, [0], so my a = 0 here, so equivalence class 0 will 

have all the elements b, empty all the integers b such that 0 is related to those integers b. And it 

easy to see that equivalence class of [0] will be 0, will have definitely 0. Because 0 is related to 0 

because 0 is congruent to 0 modulo 3. And equivalence class of 0 will have 3, 6, 9 and these 

integers because 0 is related to 3 and you have 0 related to 6 and so on.  

 

In the same way you have 0 related to -3 you have 0 related to -6 and so on. Because 0 is congruent 

to -3, 0 is congruent to -6 modulo 3 and so on. So, [0] = {… , −9, −6, −3,0,3,6,9, … }. all the integer 

multiples of 3. What about [1]? Definitely the element 1 will be present in the its equivalence 

class. 

 

And apart from that we will have the integers 4, 7, 10 and so on. And on the negative side we have 

the elements -2, -5, -8 and so on present in the equivalence class of 1. Because all these integers 

are related to the integer 1 as per the relation R. [1] = {… , −8, −5, −2,0,4,7,10, … }. In the same 

way the [2] = {… , −7, −4, −1,0,2,5,8, … }. 

 

Now if you see closely here, it turns out that [3] = [0] = [−3] and so on will be the same. That 

means the equivalence class of all the integer multiples of 3 will be same. In the same way the 

[1] = [7] = [−5], any equivalence class of any integer of the form 3 k + 1 are same and so on.  
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So, what we are observing here is that even though we have equivalence class of every integer 

possible here. So, these are the various equivalence classes. And this is an infinite list. It turns out 

that if we closely look here we find that the two equivalence classes in this sequence are either 

same or they are completely disjoint. So, for instance, if I consider [0] and [1], there will be no 

common element, there will not be any integer which is present simultaneously in [0] and [1] as 

per the relation R. You cannot have an integer b such that  𝑏 ≡ 0 𝑚𝑜𝑑 3  as well as simultaneously 

𝑏 ≡ 1 𝑚𝑜𝑑 3.  

 

Whereas if you consider [0] here and [3], they will be exactly same. They will have exactly the 

same elements. So, it turns out that this property that 2 equivalence classes are either completely 

disjoint or they are completely same is not present, this property does not hold only with respect 

to this equivalence relation, this special equivalence relation it holds in general for any arbitrary 

equivalence relation which is a very interesting property.  

 

So, more formally we can prove that if you are given any equivalence relation, any arbitrary 

equivalence relation over an arbitrary set then a is related to b iff they are equivalence classes are 

same and the equivalence classes as [𝑎] = [𝑏] if and only if [𝑎] ∩ [𝑏] ≠ 𝜙. Or in other words if 

[𝑎] ∩ [𝑏] = 𝜙, then [𝑎] ≠ [𝑏].  

 

And of course, we can prove we can apply the transitivity property and say that if a is related to b 



then [𝑎] ∩ [𝑏] ≠ 𝜙. So, there are 2 by implications involved here. I am going to prove one of the 

by implications and I leave the proof for the other by implication, for you it is very simple, it 

follows the proof of the first by implication. So, I am going to prove this by implication. I will 

prove that if R is an equivalence relation and if a is related to b then [𝑎] = [𝑏]. 
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Now since this is a by implication, I have to prove the implication in both the directions. So, I 

prove the first implication in the forward direction namely I assume that a is related to b. And then 

under this assumption I have to show that they are equivalence classes are same. So, since a is 

related to b. So, this is what is given to me and my goal is to show that [𝑎] = [𝑏].  

 

Equivalence class of 𝑎 is a set, equivalence class of 𝑏 is a set. So, I want to prove here that two 

sets are equal. So, to prove that two sets are equal I have to show that they are mutually subsets of 

each other. That is what is the definition of equality of two sets. So, proving that equivalence class 

of 𝑎 is equal to equivalence class of 𝑏 boils down to proving these two things. That [𝑎] ⊆ [𝑏] and 

vice versa, given that a is related to b.  

 

And how do I prove that a set is a subset of another set? I prove it by showing that you take any 

element 𝑥 in the first set, it is present in the second set. So, I take an arbitrary element 𝑥 belonging 

to the first set here. The first set here is [𝑎]. I have to show that the same 𝑥 ∈ [𝑏]  as well. How do 

I do that? Since 𝑥 ∈ [𝑎], I can say that (𝑎, 𝑥) ∈ 𝑅. That means a is related to the element 𝑥 because 



that is what is the definition of [𝑎].  

 

Now, I am also given that R is an equivalence relation and if R is an equivalence relation, then one 

of the requirements from an equivalence relation is that it should be symmetric. And if relation R 

is symmetric and if (𝑎, 𝑥) ∈ 𝑅, then (𝑥, 𝑎) ∈ 𝑅 as well.  

  

Now, I have (𝑥, 𝑎) ∈ 𝑅 and as per my hypothesis here (𝑎, 𝑏) ∈ 𝑅. And since my relation R is 

transitive, why? Because my relation R is an equivalence relation. The transitivity property ensures 

that (𝑥, 𝑏) ∈ 𝑅. Now since (𝑥, 𝑏) ∈ 𝑅, I can again apply the fact that my relation R is symmetric 

because it is an equivalence relation.  

 

So, I get that (𝑏, 𝑥) ∈ 𝑅. And if (𝑏, 𝑥) ∈ 𝑅, then as per the definition of an equivalence class, the 

element  𝑥 ∈ [𝑏]. That means starting with the premise that 𝑥 ∈ [𝑎], I have shown that 𝑥 ∈ [𝑏] as 

well. Which proves that [𝑎] ⊆ [𝑏]. 

 

And I can apply a similar proof to show that [𝑏] ⊆ [𝑎]. So, you start with some arbitrary element 

𝑥 ∈ [𝑏] and again applying similar steps that we have done here, we have used here. You can show 

that the same element 𝑥 ∈ [𝑎]. And that will show that [𝑎] = [𝑏]. 
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So, that proves the implication in the forward direction this we have done. Now, let us prove the 



implication in the reverse direction. So, assuming R is an equivalence relation and assuming that 

the equivalence class of a and b, are same I have to show that a is related to b. So, for this I start 

with some arbitrary element 𝑥 ∈ [𝑎] then as per the definition of equivalence class of a, it means 

that a is related to x as per the relation R.  

 

And since it is given that [𝑎] = [𝑏].That means the element x will be present in the equivalence 

class of b as well. Then as per the definition of equivalence class, it means that x is related to b as 

well. Since b, x is present in my relation, I can say that x, b is also present in my relation. Because 

R is symmetric and why R is symmetric? Because my relation R is an equivalence relation.  

 

Now I can apply the transitivity property here on (𝑎, 𝑥) and (𝑥, 𝑏). So, I have (𝑎, 𝑥) present in the 

relation I have (𝑥, 𝑏) in the relation and by applying the transitivity property, I get (𝑎, 𝑏) present 

in the relation. So, that proves the implication in the other direction. Remember there is another 

by implication which I am leaving for you to prove. And that will establish the theorem that we 

have stated in couple of slides back.  

 

That brings me to the end of this lecture. Just to recap, in this lecture we introduced the notion of 

equivalence relation and we also introduced the notion of equivalence classes. We established 

important property that the equivalence classes are either disjoint or they are completely same, 

thank you. 

 


