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Lecture -18  

Transitive Closure of Relations 
  

Hello everyone, welcome to this lecture. In this lecture, we will continue our discussion 

regarding how to construct a transitive closure of relations. 

(Refer Slide Time: 00:27) 

 

And for that, we will see some graph theoretic interpretation of transitive closures. We will 

discuss what we call as the connectivity relationship in the graph of a relation and then we will 

see a naive algorithm for computing the transitive closure.  
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So, let me start by introducing the connectivity relation. So, imagine you are given a relation R 

over a set which may or may not be finite. So, your R is a subset of A x A. And I define this 

relation R*, which I call as the connectivity relation and this is basically defined to be the union 

of different powers of your relation R. It turns out that, as per my definition of R* an element, ai 

will be related to aj in this relation R* provided there exists some path of any length of it may be 

of length 1, it may be of length 2, it may be of length 3.  

 

I do not care about the length. The guarantee is that there exists at least one path from the node ai 

to the node aj in the directed graph of your relation R. And why so, because recall in the last 

lecture. We proved this statement by induction. The statement states that if you have element ai 

related to element aj in the nth power of your relation R. 

 

Then that is possible only if you have a path of length n, from the node ai to the node aj in the 

directed graph of your relation R. Now, if I say that ai is present in R* then it means that either 

(ai, aj) is present in R
1
 or it is present be in R

2
, and in the same way it will be present in some 

power of R. I do not know which power, but since it is present in R* and the definition of R* it is 

that it is a union of all powers of R.  

 

So, if ai is related to aj and R*, that means it is present in one of these powers of R say if ith 

power. Then as per this theorem statement, which we have proved in the last lecture there exist a 



path of length i from the node ai to aj. It might be possible that (ai, aj) is also present in say some 

other power of R. That is also possible say its present in the kth power. That means, as by the 

same statement there exist a path of length k from the node ai to aj.  

 

So, that is why I am not focusing on the path length here. I am just stating here that if at all the 

element ai is related to the element aj, in the relation R*, then some path exists from the node ai 

to the node aj in your graph of the relation R. Now, we will be focusing on this connectivity 

relation where the relation R is defined over a finite set. That means R is defined over a finite set, 

consisting of n elements. 

 

My claim here is that R* is nothing but the union of R, R
2
 and up to R

n
 because you do not need 

to take the union of higher powers of R. Any higher powers of R will be subsumed in the union 

of the first n powers of R provided your relation R is defined over a finite set consisting of n 

elements. And this is because what can be the maximum path length between any two nodes?  

 

Remember in the graph of your relation R, you have n nodes because now the relation is defined 

over a set consisting of n elements. So, what can be the maximum path length? The maximum 

path length can be n only because you have only n distinct nodes possible. Of course, you can 

keep on traversing along this path again and again that will be considered as a path of a higher 

length.  

 

But, what do I mean by maximum path length? By maximum path length I mean here, maximum 

path length where path has distinct edges and why distinct edges? Because if I say for instance, 

consider R
n+1

, that means I am interested to find out whether they are exist a path of length n + 1 

between any 2 nodes in the graph G. Well, since I have only n distinct nodes possible, then the 

path of length n + 1 is possible only if a node is repeated in the path.  

 

That means say for instance, I have a path of say, n is 3. Now say n equal to 4, So, I can say a 

path of length 5 exist between a1 to a2. Because I can go from a1 to a2 that is 1, and a2 to a3 that is 

2, and a3 to a4 that is length 3, and then a4 to a1 that is 4. And then again from a1 to a2 that is 



length 5. But the same path can be considered as a path of length 1 because you have the node a1 

to a2.  

 

So, what I can say is that both (a1, a2) will be present in the relation R, and the same (a1, a2) will 

also be present in R
5
, same (a1, a2) will also be present in R

9
 and so on. So, when I will be taking, 

when I will be constructing R*, which will be union of R and R
4
 then anything which is present 

in R
5
 and R

9
 and so on. Say for instance this element (a1, a2) which is present in R

5
, R

9
 would 

have been already subsumed in R itself. I do not need to separately consider those pairs by 

considering the fifth power of R and so on.   

 

Because I know that, I cannot have a path of length more than 4 consisting of distinct edges. If at 

all there is a path of length more than 4, that means some edges and nodes are repeated. That 

means that path by excluding the repeated edges and nodes would have been already counted in 

some lower power of R when I would have constructed R*.  

 

So, that is why when my relation R is defined over a finite set consisting of n elements. Then I 

have to construct the connectivity relationship I just need to focus on the first n powers of 

relation R. There would not be any extra ordered pairs beyond this n different powers of relation 

R which are present in R*.  
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So, we have not proved in detail but intuitively this is the statement. So, now what we are going 

to prove here is now we are going to see a relationship between the transitive closure and the 

connectivity relationship. So, remember in the last lecture we saw an example where we 

constructed the transitive closure of a relation. And there we had iteratively applied the process, 

the rule that if you have (a, b) and (b, c) in the expanded relation R or in the original relation R, 

then you add the element (a, c)  and keep on doing this process till we do not need to add any 

extra elements of the form (a, c). So now what we are going to do is we are going to formalize 

that process by stating this beautiful result that the transitive closure of your relation R is nothing 

but the connectivity relation. Now to prove this theorem, we need to prove several things. The 

first thing that we have to prove is that relation R, the original relation R is present in your R*.  

 

Because that is one of the requirements of transitive closures, that your original thing should be 

original relationship be present in the closure of that relation. But it is easy to see that the 

original relation R will be a subset of R*. Because R* is nothing but R union the higher powers 

of R. So, your original R will be definitely present in R*. So, all the ordered pairs which were 

there in R will be present in R*.  

 

The second thing that we have to prove is that indeed this expanded relation R which is R* is 

satisfying your transitivity property. And for proving that this relation R* is going to satisfy 

transitivity property what we are going to do is we are going to show the following. You take 

any arbitrary (a, b) and (b, c) which are present in R*, then you have the guarantee that (a,c) is 

also present in R*.  

 

Why I am going to show it for arbitrary (a, b) and arbitrary (b, c), because the property of 

transitive properties, the transitivity relationship demand is that for all a, b, c. if (a, b) and (b, c) 

are there in your relation then you need (a, c) to be in your relation. And these need to be shown 

for all a, b, c. But we cannot take every possible a, b, c in R* and show this implication to be 

true. So, that is why we are showing going to show it for arbitrary (a, b) and arbitrary (b, c). 

 

And then take the help of universal generalization and conclude that the statement is universally 

true for all the elements of the domain. So, assume to prove this implication we have to show 



that the left hand side of the premise of this implication is true and then we have to show that 

even the conclusion is true. That is how the definition of implication is given. So, assume that (a, 

b) is present in R* that means as per the definition of R*, (a, b) is present in some power of R, 

say the jth power because that is the definition of R*. 

 

And in the same way imagine that (b, c) is present in R*, that means it is present in some power 

of R say the kth power, there may not be any relationship between j and k, j could be anything k 

would be anything. Now what I can say here is that tuple (a, c) will be present in the (j + k)th 

power of R. Because that is a definition of (j + k)th power, because (j + k)th power will be 

nothing but R
k
 composed with R

j
.  

 

That means you would have applied the relation R
j
 first, that means you will say that say (a, b) is 

there in R
j
 and on top of that you will apply the relation R

k
. So, here b is acting as your 

intermediate element. So, (a, b) is present in R
j
 and (b, c) is present in R

k
 and we will conclude 

that (a, c) is present in the (j + k)th power of R. And (j + k)th power of R will be included in R* 

because that is the definition of R*. So, we proved this implication to be true for an arbitrary a, b, 

c that shows that the relation R* is transitive. 

(Refer Slide Time: 14:01) 

 

So, we have proved, we have shown that the two of the requirements of transitive closures are 

satisfied by your R* relation. Now we have to prove the important thing. We have to prove that 



R* is the smallest possible expansion of your relation R which is transitive. And the way we are 

going to prove this is as follows. So, we have expanded our relation R to R*. We have shown 

that R is present in R* and we have also shown that R* is transitive. 

 

Now we have to show this third property how we are going to do this. We will do this by 

showing that you take any transitive relation which includes R that means you take any expanded 

version of R which is transitive. In that expanded version of R namely S, R* is present. That will 

automatically show that R* is the smallest possible expansion. That means there is no smaller 

subset of R* which includes R as well as it is transitive. 

 

That is what we are proving here pictorially. That means it is not the case that you have 

something of the following happening, that you have R* and you have say an expanded R say S 

which is transitive and which includes R, that is not going to happen, such that S is present in R* 

it is not going to happen. We are going to prove it other way around. We are going to show that 

you take any transitive relation, which is expansion of R, R* will be definitely present in that 

expansion S. And that automatically will show that R* is the smallest expansion that we have to 

do.  
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So, more formally we have to prove that you take any relation S, which is a transitive relation 

such that R is included in S. Then the expanded R namely the connectivity relation is included in 



this expanded relation S. So, to prove this property we are going to take help of a very small fact 

regarding the transitive relations and that fact is the following. My claim here is that if S is a 

transitive relation then you take any power of that transitive relation, it will be a subset of the 

original relation. And since this is a universally quantified statement for all n >= 1 we can 

quickly prove it by induction, the base case is obviously true because S is always a subset of S. 

Let the statement be true for n equal to 1 to k and now we are going to prove it for n equal to k + 

1. So, imagine you have an arbitrary (a, c) element (a, c) present in the k + 1th power of S.  

 

Then as per the definition of S
k+1

, you have some intermediate element b such that a is related to 

b in the relation S and b is related to c in the relation S
k
. Then I apply the inductive hypothesis 

here. Since (b, c) is present in S
k
 and statement is true for n equal to 1 to k. That means this (b, c) 

is present in S as well because S
k
 is a subset of S as per my inductive hypothesis.  

 

Now, if I have (a, b) present in S; and (b, c) presence in S; I can say that (a, c) is also present in 

S. Because my base case or the hypothesis of the statement that I am proving is that S is 

transitive. So, this is a very straight forward fact regarding the transitive relations. If your 

relation is transitive you take any power of that relation, it will be always included in your 

original relation.  

 

So, we have proved it for all n >= 1, now, I apply the definition of S*. What is S*? S* is going to 

be S
1
 ∪ S2 ∪ S

n
 ∪ higher powers. So, each of this power is included in the relation S because 

that is what we have proved. We have to for all n >= 1, S
n
 is included in S. So, if you take the 

union of all the powers of S that will be included in S.  

 

And that shows that the connectivity relationship satisfies the property that if your original 

relation is transitive then the corresponding connectivity relationship is included in the original 

relationship.  
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That is the side result which we are going to retain here. Now coming back to the statement that 

we want to prove here. We want to prove that if you take any transitive relation which is an 

expansion of R then the connectivity relation of R is going to be included in that expanded R. So, 

we have to prove this subset relationship property. So, the definition of subset is that if you have 

any (a, b) present in R*, I have to show the same (a, b) is present in S as well.  

 

Provided the hypothesis of this implication is true. So, I take an arbitrary (a, b) and assume it is 

present in R*. Then since it is present in R*, it will be present in S* as well. This is because as 

per my hypothesis here, R is a subset of S. That means R
2
 will be a subset of S

2
 that also means 

R
3
 will be a subset of S

3
 and so on. You take any power of R that will be a subset of the 

corresponding power of S.  

 

That automatically shows that R* is a subset of S*. So, if (a, b) is present in R*, it will be present 

in S* as well. But you are also given the hypothesis that S is a transitive relation. And if S is a 

transitive relation, then you take S*, it will be a subset of S itself. That means whatever is present 

in S* it is bound to be present in S as well. Hence we have shown that if (a, b) is present in R* it 

is present in S and we have proved the third requirement of the transitive closure as well.  
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So, this is a very important theorem which we have proved that which we have proved now. And 

the theorem is that the transitive closure of the relation is nothing but its connectivity relation. 

So, this connectivity relation has got significance here. So, let me show that significance. So, 

imagine you are given a relation R and R* is defined to be the union of different powers. So, if 

you interpret the connectivity relationship in terms of the directed graph representing your 

relation. 

 

And what I can say is that ai is related to aj in this connectivity relationship, if aj is reachable 

from ai by some path. Because (ai, aj) present in R* means it is present in some power of R say 

the nth power, that means I have a path of length n from the node ai to the node aj. That is what 

we have proved and abstractly we can interpret it as if in the graph of your relation R the node aj 

can be reached by some path from the node ai.  

 

Now the interpretation of this path depends upon what exactly is your underlying relation. So, 

for instance imagine A is the set of all computers in a university and I define a relation between 

two computers as follows. I will say that computer ai is related to computer aj, if there exists a 

direct link between computer ai and computer aj. That means ai can directly send a message to 

the computer aj by the channel or the cable through which the computer ai is connected to 

computer aj.  

 



Then if I construct the connectivity relation R* for this given relation R then it is easy to see that 

R* will have all ordered pairs of the form (ai, aj) where ai is connected to aj may be directly or 

through intermediate computers. That means R* basically talks about all interconnected 

computers in your university. Now, let me give you another example of this connectivity 

relationship.  

 

So, have you ever wondered that how Facebook computes new friends suggestions? So, imagine 

A is the set of all Facebook users and I define a relation between two Facebook users as follows. 

I call that relation as R. I say that user ai is related to user aj provided ai and aj are mutual friends 

over Facebook. Now, if you take the relation R* with respect to this R namely  the connectivity 

relationship defined over the relation R over the Facebook users.  

 

Then if you have ai related to ak in the relation R*. That means I can say there are series of a 

sequence of intermediate Facebook users such that ai is related to the first user then the first user 

is related to the second user and so on and the second last user is related to ak. That means in 

terms of a graph theoretic property, you can interpret that there is a path of some length from ai 

to ak.  

 

That means even though ai and ak may not be mutual friends, what Facebook can think if that it 

might be the case that ai has not searched for the Facebook user ak and vice versa. So, let us send 

a suggestion to ai that well, you know the user ak or not and similarly to the user ak. Because ai is 

directly related to some a, the user a is related to user b, the user b related to user c and say there 

is by sequence of intermediate users you have ai related to ak.  

 

And since friendship is by default considered to, be transitive. Of course, there might be 

exceptions as well, where a is friend to be b, and b is friend with c, but a need not be friend with 

c. That is why Facebook just give you a suggestion that hey looks like that we have found 

someone who is related to you by some intermediate users and to do that basically the Facebook 

algorithm has to construct here the connectivity relationship of this relation R.  
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So, this connectivity relationship has got a huge amount of significance. Now the question is 

how we algorithmically compute this connectivity relationship. So, we will be focusing on the 

case when the relation is over a finite set. And recall that in this case R* is nothing but the union 

of first n powers of R. So, what we are going to construct is, we are going to construct the 

Boolean matrix MR*. 

 

So, it will be an n x n Boolean matrix, representing your connectivity relation R* where the ith 

row and the jth column will be 1 provided the element ai is related to aj in the connectivity 

relationship R*. So, the question that we want to address here is that you are given the original 

relation R namely the Boolean matrix representing the relation R. How you compute the Boolean 

matrix representing the relation R* where the relation R is defined over a set consisting of n 

elements.  

 

So, here is the naive algorithm for computing the matrix for connectivity relation. We compute 

the matrix for different powers of relation R. So, we are already given the relation for R. We are 

already given the matrix for the relation R. So, we do not need to compute that. So, that is why 

for i equal to 2 to n, we compute the matrix for the next powers of R. And this we can compute 

by performing a Boolean matrix multiplication operation, which I will discuss very soon.  

 



And here what I am going to do is to compute the matrix for the ith power of the relation R. I am 

going to multiply the matrix for the original relation along with the matrix for the (i – 1)th power 

of the relation R provided. I have already computed it. And then what I am going to do is, I am 

going to take the Boolean disjunction of the individual n x n matrices for the different powers of 

R that I have computed.  

 

And that will help me to get the Boolean matrix for this connectivity relation R*. So, now there 

are two operations here the Boolean matrix multiplication and the disjunction operation.  
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So, I am going to define them one by one. So, let us start with this Boolean matrix multiplication 

here. So, the goal here is the following. You are given the relation R or equivalently its matrix 

representation and say you have already computed the matrix representation for the (i – 1)th 

power of R. And now your goal is to compute matrix for the ith power of the relation R. So, 

recall as per the definition of the ith power of the relation R, ai will be related to aj, if you have ai 

related to some ak in the relation R, and ak is related to aj in the relation R
(i – 1)

, that is what is the 

definition here. So, that is what pictorially I have represented here. When that is the case, then 

you will say that ai is related to aj in the ith power of the relation R. So, basically this we have to 

check whether this structure is present in the graph of relation R or not. 

 



If this structure is present then we can say that ai is related to aj. Now, how do we check this 

structure? So, we focus on the matrix for the relation R : MR, and for the matrix of the, (i – 1)th 

power of R : MR
i-1

.  And my claim is to check whether ai is related to aj or not. It is sufficient to 

take the Boolean dot product of the ith row of matrix MR and the jth column of the matrix of (i – 

1)th power of R : MR
i-1

. This is because if you take the Boolean dot product this (i, 1) will be 

multiplied here with the entry (1, j). 

 

And multiplying here means conjunction; because remember the matrix MR and the matrix MR
i-1

, 

both are Boolean Matrix. They just say whether something is related to something or not. So, I 

can say that if in my graph the element ai is related to element a1, and if element a1 is related to 

element aj. Then I can say that element a1 is related to aj. So, that is what is the essence of 

checking this first conjunction.  

 

Checking whether (ai, a1) is related in the relation R or not. And whether (a1, aj) is present or 

related as per relation R
i-1

 or not. That is the case I do not care for the other expressions in this 

overall expression. I can simply say that the i, jth entry in R
i
 should become 1 or I should check 

in the similar way that ai is related to say a2. And a2 is related to aj or not. So, that will be the 

essence of second conjunction here.  

 

In the same way I should check whether ai is related to ak in the relation R. And ak is related to aj 

in the relation R
i-1

 or not. And in the same way that will be the essence of this kth conjunction. 

And in the same way I should check whether ai is related to an directly. And an is related to aj or 

not in the relation R
i-1

. If any of these n conjunctions hold, then I can say that definitely ai is 

related to aj in the relation R
i
. 

 

But if none of these n conjunctions are true then disjunctions of n 0s will be 0s and that is why 

the (i, j) th entry will remain 0. So, you can see here that if you are given  the Boolean matrix of 

the relation R and if you have computed Boolean matrix for relation, R
i-1

 then to compute the, (i, 

j)th entry. So, let me write down. To compute (i, j)th entry of MR, you need to perform O(n) 

Boolean operations.  

 



Because you will be performing the dot product of two vectors of size n that will take you order 

of O(n) effort. And how many such (i, j) entries are there, that I need to compute in the matrix of 

R
i
. Here are n

2
 entries so, that is why it will be order of n

3
 computation.  
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Now coming back to the Naive algorithm, the first step was computing the matrix for the 

different powers of R starting from the Boolean matrix of the relation R which is given as an 

input to you. So, that is why by applying the Boolean matrix multiplication operation that we 

have discussed just now we can compute the matrix for the individual powers of the relation R. 

And now what I have to check is I have to check whether ai is related to aj in any of these n 

powers of R or not.  

 

And for that, I just need to check whether ai is related to aj in MR
1
 or whether ai is related to aj or 

not in the MR
2
 or whether ai is related to aj or not in the MR

n
 or not. So, I have to just perform 

disjunction of n Boolean entries to find out the status of ai, aj in the matrix of R*. So, it turns out 

that the first operation here namely computing the matrix of different powers will cost me O(n
4
) 

effort, whereas computing the final matrix of R* will cost me O(n
3
) Boolean operations. So, now 

the question is can I reduce the overall cost here to O(n
3
). 

 

So, we have this naive algorithm of computing the matrix for connectivity relationship, which 

cost me O(n
4
) efforts. My goal will be to do it with O(n

3
) Boolean operations, which we will do 



in the next lecture. So, just to summarize in this lecture, we introduce the connectivity 

relationship of our relation. And we saw that the transitive closure of any relation is its 

connectivity relation. And we discussed the naïve algorithm for constructing the connectivity 

relationship for a relation defined over a finite set. Thank you.  


