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Hello everyone. Welcome to the second part of tutorial 2.
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So we start with question number 8. So here you have to use proof by induction to show that if

you are given n arbitrary  positive real  numbers,  where n is  some power of two. Then their

arithmetic mean is greater than equal to geometric mean and this is true for any collection of n

arbitrary  positive  real  numbers  provided  n  is  some  2k.  So  this  is  a  universally  quantified

statement because I am making this statement for all n where n is equal to 2k. 

So I have to prove a base case and I take the base case where k equal to 1, k equal to 1 my

statement true for two positive real numbers. This is two if you remember the proof mechanisms

we use a backward proof mechanism to prove that arithmetic mean of any two positive real

numbers is greater than equal to their geometric mean. So the base case is true. Now assume the

statement is true for any collection of n numbers n positive real numbers where n is 2k.



And, since it is true for n equal to 2k that means this expression or this inequality holds. The left

hand side is your arithmetic mean. The right hand side is your geometric mean. The geometric

mean will be the (2k)th root of the product of a1 to an which can be rewritten and the form that is

given here. Now, I want to prove the statement to be true for next higher power of n, next higher

power of n is 2(k+1).

So to do that what I do here is the following  let me define x. So you are given now a collection

of 2(k + 1) numbers which you can split into two parts. You can consider the first collection of 2 k

numbers and the next 2k, next 2k numbers in the list. So this part has 2k elements, this part also

has 2k elements this is your list a1 to an. So what I do here is I define the quantity x and y here. 

So x is  the Arithmetic  mean of the first  2k elements in my collection and my y here is the

arithmetic mean of the next 2k elements and the collection, you can verify here. Now what I

know is that I can treat x and y as two numbers they will be positive real numbers and I know

that from my base case the arithmetic mean of x and y will be greater than equal to the geometric

mean of x and y.

So if I expand this, the arithmetic mean of x and y will be as follows; so this is your x, this is

your y. The arithmetic mean will be x + y over two, so one over two I am taking outside and

geometric mean will be (xy)1/2 namely the square root of x times y. So this is your x and this is

your y, this is what I get from the base case. Now, what I do is I apply the inductive hypothesis

on my right hand side.

Since I am assuming my inductive hypothesis to be true, I know that arithmetic mean of any 2 k

elements is greater than equal to its geometric mean. So the portion that I have circled here it is

an arithmetic mean of 2k numbers, so that is greater than equal to the geometric mean of those 2k

numbers. In the same way the y here can be considered as arithmetic mean of 2k numbers.

And that will be greater than equal to the geometric mean of those 2k numbers the one over two

outside remains as it is. Now what I can do is I can take this 2k 1/2k , 1/2k appearing in the

exponent all together outside and multiply the first 2k numbers and the next 2k numbers, this is



just plain simplification. But, now if I rearrange everything or reinterpret everything the left hand

side is nothing but the arithmetic mean of 2k+1 numbers.

Because the arithmetic mean of 2k+1 numbers here will be a1 + a2 …+ a2
k + a2

k
+ 1 upto a2

(k + 1) whole

over 2(k+1) which I can rewrite in this form and your right hand side expression is nothing but the

geometric mean of the same 2(k + 1) elements. So now you can see that I am using the base case

here  as  well  as  the  inductive  step  here  to  prove the inductive  hypothesis  here  to  prove  my

inductive step. So that completes your question number 8.
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In question 9,  you asked to prove that  every positive integer  n can be expressed as sum of

distinct powers of two basically this is a fundamental fact that we learn that you take any positive

integer, it has a binary representation and a binary representation of that number is nothing but

sum of distinct powers of two. So that is what we want to prove here, you want to prove it can be

always possible to represent any positive integer is.

And the powers of two here will be distinct which is equivalent to saying that every positive

integer has a unique or distinct binary representation. So we will prove it by induction because

this is a universally quantified statement my base case will be n equal to 1. If my integer n is 1,

then I can represent this as 20. Namely the binary representation is zero, the binary representation

zero corresponds to 20 here.



If  n  is  equal  to  one  the  binary  representation  is  one  here  and  a  binary  representation  one

corresponds to 20 here. Let us take the inductive hypothesis here assume the statement is true for

n is equal to k that means you give me any integer k where k is arbitrary, it can be expressed as

the sum of distinct powers of 2 or it has a distinct binary representation. Making this hypothesis,

assuming this hypothesis to be true I will prove the inductive step and will show a unique binary

representation for the integer k + 1. 

So, how do I proceed here? So I use proof by cases. Case one, if k is even; now if k is even and

since k has a binary representation a unique binary representation namely k is expressible as sum

of distinct powers of two and let that sum of distinct powers of two will be this. My claim here is

that 20 is not present in this existing binary representation or sum of distinct powers of two in the

representation of k because k is even.

If k is even you cannot have 20 also present along with other powers of two when you express k

as the sum of distinct powers of two because that will imply your k is odd. So since 20 is missing

in  the  representation  of  k  and  I  want  to  represent  k  +  1  what  I  can  do  is  I  can  take  the

representation  of  k  and to  that  I  add a  new power of  two namely  20 that  will  give  me the

representation of k + 1.

And since all the existing powers of two in the representation of k are distinct and none of those

powers were zero by adding this 20, I am not violating my condition, which I want to prove here.

My case two is when k is odd. Now, if k is odd then it follows that k + 1 will be even and if k + 1

is even that means it is divisible by 2 and k + 1 suppose it is l and l will be a number which is

definitely less than equal to k.

Since it is less than equal to k that means from the inductive hypothesis, it follows that there is a

binary unique binary representation for  l and namely  l can be represented as sum of distinct

powers of two and let that sum of distinct powers of two is this. Now what I know is k + 1 is

nothing but two times l and two times l can be obtained by just incrementing all the powers of

two that we had in the representation of l. 



Since  the  different  powers  of  two  in  the  representation  of  l were  distinct  each  of  them

incremented by one will still give me distinct powers of two and now if I sum this new powers of

two that will give me the integer k + 1. So now you can see here that when I am proving it for

the case when k is odd, I am using a strong induction because I do not know what I cannot say it

definitely l is equal to k, l  is k + 1 over 2. So it is any value in the range 1 to k. 

So I have to use the inductive hypothesis; I have to assume it is true for all integers in the range 1

to l and that is why it is proof by strong induction.
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Now come to question number 10. In question number 10, you are given the following, you are

having a party and n guests in a party and in the party of n people we call  a guest to be a

celebrity, this is my definition of a celebrity, if every guest in the party knows the guest Gx while

Gx does not know any of the other guest. If that is the case then I will call the guest Gx as a

celebrity and our goal here is to find out whether there exist a celebrity in the party or not.

And for doing that given here a primitive namely you are asked to ask questions of the form

Knows(Gi, Gj). So if you ask, guest number i whether he knows guest number Gj then you can

get the 0, 1 answer depending upon whether guest number i know is guest number j or not that



means this is the only operation allowed to you. You can ask guest number i well, you know

guest number j or not and you can tell you whether he knows the guest or not.

And vice versa you can ask guest number Gj, you can ask guest number j whether he knows

guest number i or not and depending upon whether he knows or not you get answer 1 or 0. So the

question first part of the question ask you how many celebrities can be there in a party. Well, the

first thing is it is not necessary that there are exist definitely a celebrity in the party.  It might be

possible that all the n people know each other. In that case none of them is a celebrity.

Because in that case there exist no celebrity, because everyone knows each other because the

condition of the celebrity is that the celebrity should not know any of the other guests. But if

everyone knows everyone then how can the celebrity be possible? So it turns out that if at all a

celebrity is there, there can be only one celebrity you cannot have two celebrities you cannot

have a celebrity Gx as well as a celebrity Gy simultaneously.

Because if Gx is a celebrity then he should know Gy and if Gy is a celebrity then he should not

know Gx, but since Gx is a celebrity, Gy knows Gx, because which gives you a contradiction. So

you cannot have two simultaneous celebrities possible in a party. If at all there is a celebrity you

can have exactly one celebrity.

So now in this question, we want to prove that in order to find celebrity in a party, it is sufficient

to make at most three times n - 1 number of calls to this Knows primitive. That means you can

ask at most, it  is sufficient to ask at most three times n - 1 questions, asking various guests

whether they know other guest or not to find out whether a celebrity exists in the party or not. So

we will prove it by induction, before proceeding when I say three times n - 1 definitely for n

greater than equal to two.

Because it does not make any sense this expression three times n - 1 becomes 0; if n equal to 1.

So my claim here is that it is sufficient to make three times n - 1 number of calls in any party

consisting of two or more people to find out whether a celebrity exist or not. So we start with the

base case imagine you have only two guests G1 and G2. So to find out whether there exists a



celebrity or not, you just have to ask two questions, whether G1 knows G2 and whether G2 knows

G1 or not.

And two is definitely right for n equal to two the expression three times n - 1 is three times 2 - 1

is 3 and so you are able to find out the celebrity within the allowed limit here. So assume the

statement is true for n equal to k that is my inductive hypothesis that means assume you have an

arbitrary party consisting of n arbitrary guest where n is equal to k and three times k - 1 questions

or calls for Knows primitive or sufficient to find out the celebrity. 

Now in that party if a new guest comes where the new guest is denoted by Gk + 1, I have to prove

that I can still find out whether the celebrity exist or not, by making three times k number of

calls. So this is assumed to be true, I have to show this. So here is my algorithm to find out the

celebrity among this k + 1 guests. I first ask the new guest who has joined the party whether he

knows the guest Gk or not and there could be two possibilities.

If indeed the new guest Gk + 1 knows the guest number Gk. Then I can rule out the possibility of

guest number k + 1 to be a celebrity, because he knows someone and as a celebrity he is not

supposed to know anyone. So Gk + 1 cannot be a celebrity and I have already asked one question

here. Now what I do is, since Gk + 1 cannot be a celebrity if at all a celebrity is there he will be in

the remaining group of k people. 

So I check whether there exists a celebrity among the remaining group of k people and from my

inductive hypothesis these many calls namely 3 times k - 1 calls for the Knows primitive or three

times k - 1 questions are sufficient to check whether a Gx celebrity exists or not in the remaining

group of k people. Now there can be two possibilities; if in the remaining group of k people no

celebrity exist then I can simply say that there is no celebrity in the overall group of k + 1 people.

Whereas if I find a celebrity Gx in the group of first k people, I cannot say that he is also a

celebrity even if I include the k + 1 th guest, because I have to check whether the guest Gx who is

the  celebrity  among the  first  k  guest  knows Gk  +  1 or  not.  So I  have to  now ask two more



questions; mainly I have to ask the guest Gx whether he knows Gk + 1 and the same way I have to

ask the Gk + 1, whether he knows Gx or not. 

And then only I can confirm whether Gx is a guest in the whole group of whole bunch of k + 1

people  or not.  So in  this  whole process  how many questions  I  am using/asking.  So,  I  have

already asked one question here to check whether Gk + 1 was a celebrity or not. Now, I have one

question here, one question here. So total three questions there and in the group of k people, I

will be requiring, I will be making three times k - 1 number of calls. 

So the total number of calls that I need here is summation of three and three times k - 1, which is

three k that is case one.
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Case 2 would be the following; that guest number k + 1 does not know Gk. If the guest number k

+ 1 does not know guest Gk, then definitely Gk cannot be a celebrity because if at all Gk was a

celebrity then he should be known by everyone but k + 1 does not know Gk. So what now I have

to do is I now have to focus on the remaining k people excluding Gk. So I am excluding Gk

throwing out Gk and now I am left with only k people.

And I have to check whether it there exists a celebrity in the group of these k people that I can do

by making three times k - 1 number of calls. This follows from my inductive hypothesis and



there could be two possible cases. If in this remaining group of k people no celebrity exist then I

can say that no global celebrity exists. By global celebrity means a celebrity in the whole bunch

of k + 1 people. 

Whereas if I find a celebrity Gx in this reduced bunch of k people, I have to check whether that

guest whether that celebrity knows Gk or not, eliminated party who cannot be the guest. Because

then only I can confirm whether Gx is the global celebrity or not. So now again in this case the

total number of questions that I am making that I am asking is three plus three times k - 1, which

is 3 k.

So in both cases, I have shown that it is sufficient to make three times k number of calls to find

out or check the possibility of a celebrity and that completes our inductive step and that proves

that the claim that I made here is correct. 
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In question 11, we are supposed to use strong induction to prove that √2 is irrational. Just to

recap we already proved that  √2 is  irrational  using a  proof  by contradiction  using proof  by

contradiction, but here I am asking you to do the same thing to show the same thing using strong

induction so before starting the strong induction proof we have to first identify the universal

statement which we are trying to make.



Remember, an induction is used to prove a universally quantified predicate. So first we have to

identify what exactly is the predicate here. So the predicate P(n) here is the following; P(n) is the

predicate that √2 is not equal to n/b for any positive integer b and I want to prove that this

universal quantification is true using strong induction because if this universal quantification is

true, that means that √2 is not equal to one over any b and it is also not equal to two over any

integer b, it is also not equal to three over any integer b and in the same way it is not possible to

represent √2 in the form of any n over b and if √2 is not representable in the form of any n over b

that shows that as per the definition of rational numbers √2 is irrational. So how do I prove this

universal quantification? I start with the base case.

I start with the base case, my base case will be when n is equal to 1 that means √2 is not equal to

one over any b where b is a positive integer and this is obviously true because we know that the

value of √2 is greater than one and one over any positive integer will be strictly less than or equal

to one. So your √2 will be 1.44 something, something and on your right hand side is you have

integers of the form one or one over two, one over three one over four, and so on.

So your left hand side is always greater than right side. So that is why your base case is true here.

Now assume my inductive hypothesis is true, that means √2 cannot be represented in the form of

one over b, √2 is cannot be represented in the form of 2 over b and in the same way √2 is not

cannot be represented in the form of k over b.We want to prove that a statement is true even for k

+ 1.

Now to prove the statement is true for k + 1, I will be using a proof by contradiction and that is

allowed because overall I am using an inductive proof mechanism where I have to now prove

that this proposition P(k + 1) is also true, that I can prove using contradiction with the help of

induction. So, since I am using proof I contradiction I will assume that the proposition P(k + 1) is

false; that means √2 can be represented in the form k + 1 over sum positive integer b such that

the G C D of k + 1 and b is 1.

And now I recall  the proof that I  used to prove that √2 is  irrational  using the contradiction

method. So, since √2 is now assumed to be of the form k + 1 over b, I can get the conclusion that



(k + 1)2 equal to 2 b2, which means that k + 1, is even. So I can prove this and I can prove that if

the square of a number is even then the number itself is even. So the same thing we did even for

our earlier proof to prove √2 is irrational. 

So I am not separately proving that, so since I come to the conclusion that k + 1 is even say 2 s

and if k + 1 is even then I also get the conclusion that b is even namely 2 t. that means I can say

that √2 can be represented in the form 2s / 2t, two cancels out and I get the conclusion that √2 is

of the form s/t where s is less than equal to k, this is because I started with √2 equal to k + 1 and

k + 1 is 2 s. 

So, s will be definitely less than equal to k because your k + 1 is 2 s. So s  is basically k + 1 over

two, so definitely s is at most k and that means the proposition P(s) is false because P(s) means

that √2 is not equal to s over any b. That is what is the proposition P(s), but I am getting the

conclusion here that √2 is some s over positive integer that means √2 can be represented in the

form s over some positive integer, that means P(s) is false here.

So, which gives me a contradiction because I assumed at P(s) is true and P(s) is true means this

is true, but I get here a conclusion that √2 is equal to s/t. So these two things contradict each

other.
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In question 12, I am supposed to find out the number of diagonals in an n sided polygon and I

want to prove that it is n times n minus three over two, of course for all n greater than equal to

three and I will prove it by induction. So, let us first define the predicate which we want to prove

here. So the predicate here is that P(n) is true if the number of diagonals in n sided polygon is n

times n minus three over two and using induction we want to prove that for all n greater than

equal to three the property P is true for n. 

Of course  my base case will  be three  because I  am making this  statement  to  be true I  am

assuming, I am making the claim statement is true for n greater than equal to three onwards. So,

of course the statement is true for any polygon with three sides because a polygon with three

sides  is  nothing but  a  triangle  and you do not  have any diagonal  in  a  triangle.  Assume the

statement is true for any polygon with k sides. 

I now want to prove that the statement is true even for the polygon with k + 1 sides. So here is a

polygon with k + 1 sides and I want to count the number of diagonals here. So if I add the side, if

I add the vertex number one and with vertex number k, these are non adjacent vertices that

constitutes one of the diagonals in this polygon of k + 1 sides. Now, if I focus on this polygon;

this is now a polygon with k vertices or k sides.

And it has these many diagonals namely k times k minus three over two diagonals and these

diagonals also will constitute a diagonal of the overall polygon with k + 1 sides. So, I already

found these many diagonals in the overall polygon but now the question is that is are not the only

diagonals. I still have diagonals which I have not included in my list and these diagonals are the

diagonal obtained by connecting vertex number two with k + 1, the vertex three with vertex k +

1, vertex i with vertex k + 1 and like that vertex k - 1 with vertex k + 1.

None of this diagonals in this blue color where denoted by this blue color are included currently

in my enumeration process. Now how many such diagonals are there, which I have not included

yet namely the blue color was they are k - 2. Namely, I cannot count k + 1, 1, this side cannot be

considered as a diagonal this  is  not a diagonal  and this  is not a diagonal.  So the remaining

possibilities are k - 2 number of diagonals, which are denoted by blue color.



And this gives me the total number of diagonals in the overall polygon and it comes out to be

what you want to show for your inductive step, that brings me to the end of tutorial number two.

Thank you. 


