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Hello everyone, welcome to the part 1 of tutorial 2. So let us start with question number 1. 
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Here, you are supposed to find out whether the following argument is valid or not. So you are

given some premises and conclusion. So the first thing that we have to do is we have to convert

everything in terms of predicate functions. So we introduce appropriate predicates here. So of

course, the domain is explicitly not given here. But domain, the implicit domain here is the set of

students. 

So  the  first  statement  here,  the  premise  here  is  some math  majors  left  the  campus  for  the

weekend. So it is easy to see that this is an existential quantified statement, it is not making an

assertion about all the math majors. But let us first decide what are the predicates that we need

here. So the assertion is about math majors. So let M(x) be the predicate which is true if the

student x is a math major. 



And we are saying something regarding whether he has left the campus for the weekend or not.

So that is the second property for the subject x. So that is why I introduce a predicate the W(x)

which is true, if the subject x or if the student x is left for the weekend. And I am making a

statement that there is some student x for which both these conditions are true, so that is why this

is an existentially quantified statement with conjunction inside.

The second statement here or the premise here is that all seniors left the campus for the weekend.

So  this  is  a  universally  quantified  statement.  And  if  you  see  clearly  or  closely  here,  the

interpretation of this statement is that, if a student x is senior then he has left the campus. So

there is an implicit implication here and that is why this premise can be represented as ꓯ x, S(x)

→ W(x). 

The  conclusion  that  I  am making  here  is,  some  seniors  that  means  existentially  quantified

statement, are math majors. That means at least one student is there for which the property that

he is a math major as well as, he is a senior are true. Now we have to verify whether this is a

valid argument and as per the definition it will be a valid argument if, based on the premises I

can draw the conclusion for every possible domain.

However, it turns out that this is not a valid argument and we can give a counterexample. You

can give multiple counter examples here. Even if you show one counter example that is sufficient

to show that this argument form is not valid. So the domain that I consider is the following

imagine you have a college where you have 3 students x1, x2, x3. And say with respect to those 3

students the status of the 3 predicate functions are as follows. 

For x1, the property M is true, W is true, but S is false. Student x2, the property M is false,

property W is true and the property S is true and so on. Now you can verify that with respect to

this domain and this assignment, the premises are true. Indeed there exists a student for which

the property that he is a math major and he has left for the weekend, he has left the campus for

the weekend are both true. 



Namely x1 is one such student. And similarly the second premise namely all seniors have left the

campus is also true. So who are the seniors here? The seniors are x2 and x3. And indeed x2 has

left the campus and x3 has also left the campus. So both your premises are true but what about

the conclusion, is there any student who is a math major as well as senior? Well, it turns out the

answer is no. That means my premises are true here, but my conclusion is false and that is why

this is a invalid argument.
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Let us see question number 2. In this question,  you are given two defined or two predicates

which are defined for you. I(x) denotes that a stamp collector has stamp x in her collection and

F(x, y) denotes that stamp x is issued by country y and you have to express the statement that this

collector has exactly one stamp issued by each African country. So I am making a statement

about a specific collector and I want to state that, for each African country, she has exactly one

stamp issued by that country in her collection. So, of course my domain here is set of all of

African countries. So if you recall from the lecture whenever we face this scenario where we

want to represent a property p is true for exactly one element of the domain then there are two

things  which we have to  represent.  The first  thing;  that  the property is  true for at  least  one

element of the domain. 

In this case, the property is that for every African country, there is one stamp at least issued by

that country, which is there in the collection of the collector. That is the first part here, which is



represented by this expression. So, this expression means that for every African country y, there

is at least one stamp x, such that the stamp x was issued by that country y and the collector has

that stamp x.

For the moment forget about what is there in the remaining part of the expression forget it. Just

focus on this part of the expression. But this is not what we want to represent because I cannot

stop with this  expression because this  expression also means that  there might  be multiple  x

values for the same y, for the same country y where those other x stamps are also issued by the

same country y and the collector has those other x stamps in her collection.

That is not what we want to represent. We want to represent that exactly one value of x or one

stamp x is  there for each country y.  So that  is  why we have to put this  second part  of the

expression.  For  the  moment  forget  about  this  negation.  And  whatever  is  there  before  the

conjunction forget about that as well. The second part of the expression denotes that, there can be

other stamps x’ issued by the same country y and which is also there in the collection of the

collector and you see I have very carefully put the parentheses here.

 

The scope of this y is still covered by this ꓯ y, the scope of this universal quantification is carried

over to this y as well. And the scope of this x’, this x’ is again within it is a nested quantification

here, there exists x prime it is nested quantification falling within this ꓯ y. So the second part of

the color expression denotes that there might be other stamps x’ issued by the same country y

which can be there in the collection of the collector. 

But I do not want that to happen that is not what I want to represent. So that is why I put a

negation here and if I put a negation that means there cannot be any other stamp x’ different from

x, which is also there in the collection of the collector and x’ was issued by the African country

y. And that is why the conjunction of these two things represents the required statement.

Of course,  you can simplify  this,  apply  the  De Morgan’s  law and take  this  negation  inside

convert everything, make everything in the form of an implication and so on that also you can do

but even if you write this expression, that is correct.
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Part a of question 3, asks you to do the following. It asks you to give an example of a predicate

P(n) over the domain of non-negative integers such that the proposition P(0) is true, but the

universal quantification ꓯ n P(n) → P(n+1) is false. So if you want to make P(n) → P(n+1) to be

false, ꓯ n that does not mean you have to make it false for every value of n in the domain.

 

Remember the meaning of this universal quantification is that it will be true for all the universal

quantification will be true if it is true for every value of n in the domain. But even if it is false for

one value of n in the domain that shows that this universal quantification is false. So here there

can be multiple examples of such a predicate P. A very simple example is the following.

Say my property P is that integer n is even. When I substitute n = 0, the resultant proposition is

that 0 is an even integer, which is a true proposition but what about the statement P(0) → P(1). It

is false, because P(0) is, if 0 is even → 1 is odd. Which is clearly a false implication and that

means, since P(0) → P(1) is false, ꓯ n P(n) → P(n+1) is automatically false. It does not matter

that P(1) → P(2), this is true. 

Because P(1) is false, P(2) is true, false → true is true. Whereas P(2) → P(3) is false and so on.

So I have a statement here which is, for which this universal implication is not coming out to be

true for every value of n in the domain and that is why this is an example of such a predicate.



The part b of the question is an opposite of part a here. You are asked to give a predicate Q, such

that Q(0) is false, but the universal implication Q(n) → Q(n+1) is true. 

So now my example here is that property Q(n) is defined that integer n is positive. It turns out

that  Q(0)  is  false,  because  Q(0)  is  the  proposition  that  0  is  positive  and definitely  0 is  not

positive. So, this proposition is false, but it turns out that Q(0) → Q(1) is true. Because Q(0) is

false  the false  implies  anything is  true and now any statement  of the form Q(n) → Q(n+1)

everything will be true, that means now I can say that this universal quantification is true.

(Refer Slide Time: 12:33)

Now let us see question number 4. Here I have to show or I have to either prove or disprove that

the left hand side expression implies the right hand side expression. So you see the left hand side

expression, I have explicitly added the parenthesis here, so the x within the P and x within the Q

are different here whereas in the right hand side the x both within P and Q are the same. Because

both of them are covered by the same ‘there exist’.

Whereas, in the left hand side, the first x is covered by the first ‘there exist’ (ꓱ) and the second x

is covered by the second ‘there exist’ (ꓱ). The informal way to interpret the statement is if you

are given that  property P is  true for  some element  in  the domain  and if  you are given that

property Q is true for some element of the domain, then can you conclude that both P and Q

property are true for some element of the domain.



And this need not be true. I can give you a very simple counter example, imagine a domain

where you have two values of x possible  and say property P is  true for x1,  but false  for x2

whereas, Q is false for x1 and true for x2. In this case, you can check that your left hand side is

true, because indeed the property P is true for at least one value of the domain and indeed the

property Q is true for at least one value of the domain. 

But that does not mean that it is the same x for which both P and Q are true. Individually P might

be true for some x and Q might be true for a different x. That does not mean ꓱ an x for which

both P and Q property are true and which is happening in this case. So this is not a correct

statement. What about the part b is the implication in the reverse direction. It says that if you are

given that ꓱ some x value in the domain for which both property P and property Q are true.

Then you can conclude that individually the property P and Q are true for some value in the

domain. So we can prove this and the way we prove this is as follows. So since you are given, so

to prove that this implication is true, we have to show that if I assume left hand side is true, then

I have to show that the right hand side is also true. Because for all other cases an implication

always turns out to be true that means by false implies anything is true and so on. 

So assume your left hand side is true, that means there exists some x value in the domain for

which both property P and Q are true. I do not know the exact value of that x, because my

domain could be very large. But I can say that that element x for which the left hand side is true

can be represented by c. So this is your existential instantiation. So I know that proposition P(c)

is true as well as the proposition Q(c) is true. I stress the value of c is not known here.

 

It is an arbitrary element, but it exists. Now since the conjunction of the two propositions P(c)

and Q(c) is given to be true. This is possible only if the individual propositions P(c) and Q(c) are

true.  And if the proposition P(c) is  true,  that means I  can say that existential  quantification,

ꓱ P(x)  is  true.  And  in  the  same  way  since  the  proposition  Q(c)  is  true,  I  can  say  that  the

existential quantification ꓱQ(x) is true. 



Both of them are true, that means the right hand side is true. That means assuming left hand side

to be true I can conclude the right hand side is true and hence this identity is a correct identity. 
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The 5 question is a very interesting question. It asks you to show that there are infinitely many

prime numbers and there are several interesting proofs possible for this statement, let me show

one of them. So I am trying here a proof by contradiction. So that the statement I want to prove is

there are infinitely many primes but I assume a contradictory statement that there are only a

finite number of primes.

Say n number of primes, n could be anything it could be 2, 3 or 4 anything. Now what I do is I

define  a  new number  Q which  is  the  product  of  my  finite  number  of  primes,  which  I  am

assuming to exist plus 1. Now what can I say about the number Q. There can be 2 possible cases.

Now, I apply the proof by cases here. My Q could be a prime number itself, my Q could be a

composite number and there cannot be any third case possible with respect to Q.

 

It turns out that, if Q is a prime number, then definitely Q is different from all your numbers

prime numbers P1, P2, Pn that are the only prime numbers you assumed to exist. That means now

you have found a new prime number. That means your listing of P1 to Pn is not an exhaustive

listing of all  the prime numbers that exist.  So you got a contradiction.  Whereas  it  might be

possible that Q is a composite number. 



If Q is a composite number I can show that none of these prime numbers P 1, P2, Pn will be a

factor of Q. None of them will divide Q. On contrary, assume say for instance P1 divides your

number Q. Now, if P1 divides Q, that means P1 is a factor of Q, and we know that P1 is a factor of

the product of P1 to Pn, because that has P1 in it. So that means you have now a number P1, a

prime number P1 which divides both Q as well as the product of P1 to Pn. 

That means it will divide the difference of Q and the product of P1 to Pn. But the difference of Q

and the product of P1 to Pn is 1. That means P1 divides 1. But that is not possible because P1 is at

least 2, because you are assuming that P1 to Pn are primes and a smallest prime that is possible is

2. And 2 cannot divide 1. That means we have shown here that P1 cannot divide your number Q.

In the same way we can show that P2 does not divide Q. 

In the same way we can show that Pi also does not divide Q. And in the same way I can show

that Pn does not divide Q. But Q definitely has a prime factor because that comes from my

fundamental theorem of arithmetic you take any number it can be expressed as product of prime

powers. That means it has definitely one prime factor, say P. But at the same time I am showing

that P cannot be P1, it cannot be P2, it cannot be Pn. 

That again shows that I am missing a prime number P in my listing of prime number. That means

my  list  of  prime  numbers  P1 to  Pn which  I  assumed  is  not  the  complete  list.  So  that  is  a

contradiction I will get in case 2. It turns out that very often students just give the following

argument which is an incorrect argument. They say that for surety since Q is not divisible by P1,

since Q is not divisible by P1, Q is not divisible by P2, Q is not divisible by Pn.

They  end  up  with  the  conclusion  that  Q  is  definitely  prime.  That  is  not  correct,  let  me

demonstrate that. Imagine that these are the only prime numbers which you assume to exist. Now

your Q in this  case will  be the product of all  these prime numbers plus 1. And as per your

argument Q should be always prime, because it is not divisible by 2, it is not divisible by 3, it is

not divisible by 5, not divisible by 7, not divisible by 11 and 13.



But it turns out that Q is composite here, where the prime factors of this composite Q are 59 and

509. And these are the 2 primes which are not there because missing from your list of exhaustive

prime numbers, which you are assuming to exist. And that is why in case 2 we cannot simply

stop with the argument that Q is also a new prime number which I am finding because it is not

divisible by P1, P2, Pn.

The correct argument is that we will show that Q will have at least 1 prime factor, which is not

present in the list of prime numbers, which I am assuming to exist which is demonstrated by this

example. 
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Now, let us see question number 6 and 7 together.  We will first equation number 6 and the

solution of question 6 will be used for question number 7. The question 6 says you have to prove

that  there exists  at least one real number among a set of n real numbers which is greater than

equal to their average. I stress here that a1 to an are arbitrary here. You cannot show concrete

values  of  a1 to  an and prove this  statement  for those concrete  values  and conclude that  this

statement is true.

 

This is a universally quantified statement. So how do we prove it? We have to take arbitrary

values of a1 to an and prove the statement with respect to those arbitrarily chosen values of a1 to

an. What we do here is we give proof by contradiction. So our goal is to prove that average of a1



to an is less than equal to some ai. But instead, I assume that each of the individual numbers

among these n numbers is less than their average.

 

That  means the first  number is  less  than their  average.  The second number is  less than the

average of the n numbers and similarly the last number is less than the average of the n numbers.

That is a contradiction. Now if I add this n equations I get this inequality. And if I substitute the

value of the average by this formula I come to the conclusion that the summation of n numbers is

less than the summation of n numbers which is not possible which is a contradiction.

That means assuming this contradiction leads to a false conclusion that means the statement is a

true statement. That means you take any n real numbers, any n arbitrary real numbers, they could

be positive, negative, they may be the same, different. At least one of them will be greater than

or equal to their average. Based on this I want to solve question 7. In question 7, you are given

the following.

You are given the numbers 1 to 10 which are placed around the circle in any arbitrary order.

Maybe in ascending order, descending order, maybe the odd numbers first, next even numbers

and so on. So the order is not given. It is an arbitrary order. And the question says that it does not

matter  in what order you arrange the numbers 1 to 10, there always exist  3 integers in that

arrangement which will be in consecutive locations.

Such that the sum of those three numbers will be greater than or equal to 17. So I stress here this

is with respect to any arbitrary arrangement  of the numbers 1 to 10. So pictorially,  you can

imagine that you are given this arbitrary circular ordering of 1 to 10 where, a1 can be any number

from 1 to 10, a2 could be any number from 1 to 10 and so on. I have to show that once I freeze

this arbitrary ordering.

In this arbitrary ordering, there exist collections of 3 integers, in 3 locations such that their sum is

greater than equal to 17. And I want to take the help of question number 6, whatever I have

proved in question number 6. So what I do here is since the question involves sum of 3 numbers



what I do here is once I freeze this circular arrangement of 1 to 10, I take the following sums, I

take the sum of first 3 numbers namely a1, a2, a3. 

That is my S1. In the same way, I take the sum of next 3 numbers namely a2, a3, a4. I call it S2. I

take the sum of a3, a4, a5 that I call it as S3 and in the same way I take the sum of a10, a1, a2, that

will be my last sum namely S10. And what is my goal? The question says that either S1 is greater

than equal to 17 or S2 is greater than equal to 17 or sum Si is greater than equal to 17. That is

what I want to prove here. 

Because  I  have  taken  the  different  possible  sum of  3  consecutive  numbers  in  this  circular

arrangement. Now what I can do here is I can interpret S1, S2 up to S10 as 10 possible values. That

means let n = 10. Now, what can be what will be the average of these sums S1, S2, S10. It does not

matter what are the values in your circular arrangement. If you take the average of these 10 sum

values, then in the denominator, you will have 10. Because n is 10 but when you take the sum of

S1 up to S10 each number in this arrangement will occur three times because a1 will be occurring

in S1. a1 will be occurring in S10 and a1 will be also occurring in S9. 

In the same way, a2 will be occurring in S2, it will be occurring in S3 and S4, and so on. So each

of this value a1 to a10 will be occurring thrice when you take the average and when taking the

average you will be adding S1 to S10. And if my claim here is if you add S1 to S10 each of this

value say a1 to a10 will be occurring thrice. And possible values of a1 to a10 each of them belong to

1 to 10 and only once they occur. 

That means i know that if you add the value say a 1 to a 10 you are basically adding the numbers

1 to 10. And the summation of the numbers 1 to 10 is nothing but 55. That means I know that it

does not matter in what order the numbers are arranged. If I define sums like this and take the

average it will be 16.5. And from previous question I know that either S1 is greater than equal to

the average of S1 to S10 or S2 is greater than equal to the average of S1 to S10 and so on. 

That means at least one Si is there which is greater than equal to 16.5. And each Si is an integer

because Si, S1 is the summation of three integers S2 is the summation of three integers. In the



same way, S10 is the summation of three integers, so each Si is an integer. So what is the smallest

integer, which is greater than equal to 16.5, well it is 17. So that shows that either S1 is equal to

17 or S2 is 17 and so on. So that solves your question number 7.

 


