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Hello everyone, welcome to the second part of proof strategies. 

(Refer Slide Time: 00:26)

In this  lecture we will  continue our discussion on the proof strategies  that  we started in the

previous lecture. 
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We will start with how to disprove a universally quantified statement. So till now we were seeing

various  proof  methods,  where  we  wanted  to  prove  universal  quantified  statements.  But

sometimes we also encounter statements where we want to prove that a universal statement,

universally quantified statement, is not true. To disprove that a universally quantified statement

is not true we have to give what we call as a counterexample.

And, by counterexample we mean some element  c from the domain such that the statement P is

not true for the element c, because if the statement P is not true for the element c. Then the

universal quantification for all x, P(x) will turn out to be false. So, very simple example of this is

if I make a statement that every positive integer can be expressed as the sum of squares of 2

integers. So this property is my property P and I am making this statement for every x. 

So, now I have to verify whether the statement P is true for every integer x or not. Even if I can

find one integer for which this property is not true, I can say that ꓯ x, P(x) is false here and a

very simple counterexample is 3 here, you can check that 3 can never be expressed as a sum of

squares of 2 integers. You can never do that. So that is how we disprove universally quantified

statement. 

However, I would like to stress here that there is nothing called proof by example for proving

universally quantified statements. If you want to prove that your statement P is true for every



element in the domain, then you cannot say that okay, I am showing it for some x, where x is

explicitly chosen by you, it is not arbitrary. You are not choosing your x arbitrary, you are just

taking your x specifically and that is an example for you.

And you show that a property P is true for that specific x and then you happily conclude that P is

true for every x in the domain. What if there is some bad x which you have not verified for the

property P. So that is why when we try to prove universally quantified statement the witness c is

chosen arbitrarily, it is not chosen in some specific well defined way. 
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There is another proof mechanism which is called proof by cases. This is also called exhaustive

proof. So if you want to prove an implication of the form p →q, where p and q are propositions,

are propositions and if you are proposition P can be decomposed into conjunction of various

other propositions say n propositions, then p → q is logically equivalent to p1 → q, conjunction

p2 → q and so on. 

That means here p1, p2, pn are the various cases for your proposition p and your goal was to prove

p → q. So to do that, you show that for various cases for p that sub case implies q is true. That is

why it is the essence of the proof mechanism. So for instance, if I want to prove a statement that

ꓯ n, if n is an integer, then n2 ≥ n . This is a universally quantified statement. 



And now if I apply the universal generalization, you will be choosing an arbitrary n and you will

be trying to prove that this  property is  true for that  arbitrarily  chosen integer.  But now that

arbitrarily chosen integer can be positive, it can be negative, it can be 0. You have 3 possible

cases right for this arbitrarily chosen n and that is why you split the proof into three cases and

you show that p → q is true for any of those three cases does not matter which case you are in. 

So if you take the case n equal to 0 the statement is true, namely p → q is true. If you take the

case when your arbitrarily chosen n is positive, then also this statement p → q is true and if your

arbitrarily chosen n is negative, then you show that in that case also this p → q is true and since

these are the three possible cases for your arbitrarily chosen n and you have chosen that p1 → q is

true p2 → q is true and p3 → q is true. 

And there are only three possible divisions or cases for your p, you can conclude that p → q is

true. So that is your proof by cases method.
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There is also something called without loss of generality, which we very often encounter while

writing the proof. In short form they call  it  as w.l.o.g. So let me demonstrate we have what

exactly I mean by without loss of generality. So imagine I want to prove that if x and y are

integers and both x, y and x + y are even, then x and y are both even. That is a statement I am

making and again, this is a statement involving for all x for all y.



Because; I am making a statement for all integers x and all integers y. So, let me try to prove it

by contrapositive. So the contrapositive means a negation of the condition appearing after then.

So I wanted to prove both x and y are even, so, that is my q part. So negation of q will be either x

is odd or y is odd. Because both means AND negation of AND means OR and in the same way

this is my p, so negation of p will be x, y is odd OR x + y is odd.

 

So this is what I want to prove now and now I can apply proof by cases because I am taking

arbitrary x and arbitrary y here and my premise is that either x is odd or y is odd. So now I have

three possible cases. Case 1, when x is odd y is even, so let us prove it for that part. So since x is

an arbitrary odd number, I can write it in the form x equal to 2k + 1, I can say y is equal to 2

times of m because y is even. 

Then x times y turns out to be even, but x + y turns out to be odd that means the statement turns

out to be correct. So this is case 1 for the premise x or y is, one of x or y is odd. The Case 2 could

be when x is even, y is odd that also satisfies my premise but it turns out that I do not need to

explicitly write a proof for Case 2, because this case will be symmetric to your Case number 1.

Why it is symmetric? Because for Case 1 you chose x to be arbitrary and y to be arbitrary.

They were not specific values and even for Case 2 your x is arbitrary and your y is arbitrary that

means whatever argument you gave for Case 1, the same argument is applicable as it is for case

2 as well. So there is no need to separately write down these 3 statements for case number 2. You

just have to swap the rules of x and y for whatever proof you have given for Case number 1 and

that is possible that subsumed for in case 1 because x and y were arbitrarily chosen. 

So that is why there are not 3 cases for this premise instead, there are two cases only. Case 1

when exactly 1 of x or y is odd. This is different from a previous case 1, my previous case 1, I

was explicitly taking the cases x odd, y even, x even, y odd and my third case would have been

both x and y are odd. But what I am doing now is I am clubbing both case 1 and case 2 into one

new case 1, where I say that exactly 1 of x and y is odd which one I do not know. 



It could be either x or either y and that is why I can say that I do not know which one of x and y

is odd without loss of generality. Let it be x and for that particular case this argument is given.

This argument automatically subsumes the case when y is odd as well and now my second case

will be when both x and y are odd. So these will be now the two subcases for my premise x or y

is odd. There will not be three separate cases because two of the sub cases are subsumed by one

sub case here.
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We also need proof mechanisms for proving existential quantified statements and there are two

variants  for that.  Variant  one is  called  constructive  proof where we give a specific  example

specific witness and show that specific witness satisfies my conditional property. Because when I

want to prove an existentially quantified statement, I have to show that a statement is true for at

least one value in the domain. 

There might be multiple values, but I just have to show one value for which the statement is true

that I can do by giving a constructive proof by showing an explicit example. So for instance here

is an example of existentially quantified statement that says that there exists a positive integer

that can be written as the sum of cubes of positive integers in two different ways. So there might

be several such positive integers which can satisfy this positive property.



My goal is to show whether at least one such integer exist or not and indeed 1729 is one such

number of course, as I said there can be multiple such integers and you can check that 1729 can

be written as the summation of 103 and 93, as well as the summation of 123 and 13. That means it

can be expressed as a sum of cubes of two numbers in two different ways.

If you are wondering why I am showing this car here, some of you might know the famous story

about this number 1729, so this is also called Ramanujan Number. So the story goes says that

Ramanujan and Mathematician Hardy were travelling in a car in London and there was this car

with number 1729 in front of their  car.  So Hardy said that  is  nothing interesting about this

number 1729. But the great Ramanujan said no it is an interesting number, because it can be

expressed as the sum of cubes of two numbers in two different ways.
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So  that  is  one  way  of  proving  existentially  quantified  statements,  another  way  of  proving

existential quantified statements is what we call as non constructive proof and here we do not

show any concrete example or witness from the domain for which the statement is true. We do

not do that, but we logically argue that definitely at least one element from the domain exists for

which the property is true. 

So let me demonstrate this proof mechanism by this statement I want to prove that there exists

irrational numbers x and y. Such that xy is rational, again there might be multiple x and multiple



y satisfying this condition, but I have to show the existence of at least one such x, y pair. It turns

out that I cannot explicitly show that x, y pair, but I can guarantee I can logically argue that

definitely such x, y per exist. How? 

So consider the number x equal to √2. We already proved that it is irrational. We proved it in our

previous lecture using the proof by contradiction method, we assumed x to be, we assumed √2 to

be rational and then we came to the conclusion that both r and negation r exist where r is some

statement. So we already proved that √2 is irrational. Now, what can you say about the number

(√2)(√2). 

There can be only 2 possibilities either this is rational or this is irrational. Only 2 possibilities, we

cannot have any third possibility.  So, these are the two possible cases. Now if √2, raised to

power √2 is rational then I got my witness x, y. My witness in that case will be x to be √2 and y

to be √2. Whereas, if √2 to the power √2 is irrational then my x y candidate is the following I

will take x to be √2 to the power √2 and y to be √2. 

Because if √2 to the power √2 is irrational and I raise it to again power √2, then this is equivalent

to saying (√2)2, which is 2 and 2 is rational. Now you might be wondering how it constitutes a

proof, we do not know for surety whether it is case 1 or whether it is case 2 which is true, we

cannot verify whether √2 power √2 is rational or irrational but what we are logically arguing is

that either it will be this case or this case.

And, it does not matter whether it is case 1 which is true or it does not matter whether it is case 2

is true in both cases I can show you an x,y  pair satisfying the conditions that I am stating in this

theorem statement and that is why this is a non-constructive proof. You cannot say that my x and

y is always √2 and √2. We do not know or you cannot say that my x is √2 power √2 and y is √2. 

It depends whether I am case 1 or case 2, but I do not know whether it is case 1 which is always

true or whether this case 2 which is always true. But I know definitely logically that one of them

is true. So that is what we do in non-constructive proof method, we do not give you the explicit



witness, but we logically argue that the statement that we are making is true for some witness in

the domain. 
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We also encounter proof statements where we have to prove the uniqueness of something and

namely we have to show the uniqueness of some element which satisfies a given property of the

theorem statement, and such proofs involve two parts. The part 1 will be the existence of some

witness, say x that means we have to show that definitely the property that is mentioned in the

theorem statement holds for some x in the domain. 

And the second part is we have to show that apart from x there is no other witness y which also

has the same property mentioned in the theorem statement. This is equivalent to saying that if

you had a different witness y from x, where x has already satisfied the property p then y cannot

satisfy the statement to be proved or equivalently if y satisfies the same property, which is given

in the statement then definitely y equal to x. 

These are equivalent and both of them represent this part 2. This is something similar to what we

did in the lecture where we represented English statements by predicates, there we represented a

statement of the form that every person has exactly one best friend. So there we first logically

represented that a person has at least one best friend and we negated in the same expression that

apart from that friend he cannot have a second best friend. 



So that is the part 2 here. Part 1 is you show that some witness is there; part 2 you show that no

other  witness  is  there.  So  this  is  an  example  of  a  statement  where  you  have  to  show the

uniqueness of something. The statement is if a and b are real numbers again, this is a universally

quantified statement because we are making the statement for all  real numbers a and b. The

statement is if a is not equal to 0 then there is a unique r such that the condition a times r + b

equal to 0 holds. 

So part 1 of the proof will be we have to show that, at least one r is there which satisfies this

property. That is a part 1 of the proof and indeed an r satisfying this property is minus b over a

and minus b over a is well defined, because a is not equal to 0. That is why this condition a is not

equal to 0 is important. If a is equal to 0, then this property that a times r + b equal to 0 may not

hold.

Now, we have to argue that apart from this value of r namely minus b over a, there is no other

integer value possible satisfying the same condition and this simply follows from the fact that if

you have another witness r’, which also satisfies the same property. Then r’ also will be minus b

over a and minus b over a is nothing but r; that means you cannot have anything different from

minus b over a which can satisfy this condition a times r + b equal to 0. So this is an example of

uniqueness proof.
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We have another proof mechanism called backward reasoning and this is an interesting proof

mechanism. So imagine your goal is to prove a statement q to be true. The proof strategy that is

involved here is instead of proving q to be true; we will try to find out statement p instead, which

is true. Such that p → q is true. So we will not be proving q here, our goal will be to instead find

this true statement p.

Such that p → q is true and if p → q is true and p is true that is possible then that is possible only

if q is true, because if we are showing p to be true and simultaneously implies q to be true, then

that is possible only if q is also true that is a proof mechanism here. So let me demonstrate this

proof mechanism by this theorem statement by proving this theorem statement we want to prove

that for every distinct real numbers x and y their  arithmetic mean is always greater than the

geometric mean and again this is a universally quantified statement. What we will do is instead

of proving it for every x and y we will try to prove this property for an arbitrary x and arbitrary y

that is the statement q. My statement q is that for an arbitrarily chosen x and y arithmetic mean is

greater than geometric mean, that is what I want to prove. 

So our goal will be to find the true statement p involving this arbitrary x and y, such that p → q

is true. So here is how we find the statement p. What we do is we keep on going backward

starting with q, till we arrive at a statement p which is true and then we will try to see whether we



can come back all the way from that p to our goal q. So as I am saying that we have to go

backward. 

So we argue that in order that arithmetic mean is greater than geometric mean the condition x + y

over 2 should be greater than the square root of x + y why? Because, this is your definition of

arithmetic mean and geometric mean and this is the statement q, which you want to prove. Well

this will be true, provided the square of x + y is greater than 4 times x times y and for this to

happen, the square of x - y should be greater than 0.

But this is always true because you are given that your arbitrary x and y are distinct  here. That is

what is the condition here and for any arbitrary distinct x and y, it does not matter whether x is

greater than y or y is greater than x. The square of their difference will always be positive which

is a true statement and this is the statement p which we are interested to find a true statement p

which is always true. 

Now the actual proof in the backward reasoning will be to reverse this argument and show that

starting with p, assuming p to be true, you can come all the way to the conclusion q. That will

complete the proof; until and unless you do not do this backward reasoning, your proof is not

complete you have shown p to be true assuming, q to be true. That is not what you want to prove

you wanted to prove the truth of statement q. So the actual proof will be as follows.

We start  with  the  true  statement  p,  we know that  what  all  distinct  x,  y  the  square of  their

difference is always positive, from that we can come to the conclusion that the square of their

sum is greater than 4 times xy. From that we can come to the conclusion that x + y over 2 is

greater than the root of xy and from that I can come to the conclusion that arithmetic mean, is

greater than the geometric mean.

So that  brings  me to the  end of  this  lecture  we have seen in  this  lecture  some other  proof

mechanisms or  indirect  proof  mechanisms and we have  seen proof  mechanisms for  proving

existential  quantified  statement  namely  the  constructive  method  and  the  non-constructive

methods and we also saw the backward receiving method. So we have seen lots of interesting



proof mechanisms, we will be encountering all of them in various forms throughout this course.

Thank you.


