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Welcome to part 5 of the lecture series on Syntax Analysis. So far we are have covered 

you know basics of syntax analysis and top down parsing, recursive descent parsing and 

a bit of bottom up parsing, let us a continue with L R parsing techniques today. 
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So, as I explained in the previous lecture, L R parsing is a method of bottom up parsing 

and it is stands for left to right scanning with rightmost derivation in reverse and k is the 

number of look ahead tokens. Of course, L R 0 and L R 1 are of great interest to us in 

practical sense, L R parsers of course, are important, because they can be generated 

automatically using parser generators and they are a subset of context free L R grammars 

are subset of context free grammars, for which such of parsers can be constructed. So, it 

is easy to write L R grammars and that is reason why there are very popular today. 
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So, let us look at the parser generator, the generator is a very simple device it takes 

grammar as input and generates a parsing table called the L R parsing table. And the 

parser table is fit into another box, containing a stack and a driver routine, this whole set 

of is the parser. So, here for example, so stack driver routine and parsing table together 

make the parser, it takes the program as input and delivers as output possibly a syntax 

free or something else. 
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So, let us look at the parser operation, so to understand it we need to know what exactly 

is a configuration of L R parser. The configuration has two parts, one is the stack, the 

other is the unexpended or unused input and to begin with the stack as only the start 

symbol or the initial state of the parser and the unexpanded input as the entire input, you 

know terminated with a end of file or dollar mark. So, somewhere in the middle a 

configuration will consist of a number of the states, inter mix with a grammar symbols 

and then the rest of the input. 

The parsing table is a little more complex it has two parts, the action part and the GOTO 

part. The action part has four types of entry, shift, reduce, accept and error, the GOTO 

table is used to provide the next state information, which is actually necessary after a 

reduce move. 
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So, here is the parsing algorithm. 
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So, before that let us look at this parser table to understand the action and go to entry is 

little better. So, the parser table is indexed by the state numbers are one side and on the 

other side for the action table it is indexed by the tokens, present in the input and for the 

go to table it is indexed by the non terminals present in the grammar. Entries such as S 2 

indicate that there is a shift operation and next state that we parser enters is 2, similarly S 

3 indicates shift and the next state be in 3 and so on. 



Entry such as R 3 indicate that the next move is a reduction move and the production 

number used is number 3. So, all the productions in the grammar or number sequentially 

and the production number tells you, which production is to be used for reduction, in this 

case R 3 is the production S to c and we use the production S to c and to reduction the 

perform reduction here. After the reduction is, but the during reduction some of the stack 

symbols are removed and we expose a state. 

So, after the state is exposed the non terminal on the left hand side of the production used 

and the state combination looked up in the GOTO table, tells us which next state we need 

to GOTO. ((Refer Time: 05:11)) So, now let us look at the parsing algorithm, which 

basically explains the actions I was describing right now in more detail, the initial 

configuration of course, the stack has state 0 and the input is the entire input and let us 

say a is the next input symbol. So, now, there is a repeat until loop, which goes on 

forever unless it is interrupted by either error or accept action. 

So, let S be the top of stack state and let a be the next input symbol, so now, as I said the 

parser looks up the action part, if the action part says shift p, then it pushes a and p onto 

the stack in that order. And the input pointer is advance to pick up the next input symbol, 

if the action part says reduce by a production, so this is the number that I indicated in the 

parser table. It pops off 2 into alpha symbols off the stack, the reason we are popping 2 

times alpha length of alpha is the number of symbols on the right hand side of the 

production. 

And we have the state symbol as well inter mix therefore, we need to remove to alpha 

symbols. The state S prime is exposed, now the left hand side A here and the GOTO off 

S prime comma A or pushed on to the stack, so this is a way we GOTO table is used, if 

the action is accept then its gets out of the infinite loop, otherwise there is an error and 

the error recovery routine is called. 
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So, let us a look at an example to understand all the operations that I described just now, 

the stack contains 0, the state number and input is a c b b a c, the parser says shift. So, 

this is the parsing table that we have in mind and these are the productions that we are 

using, I have actually written down all the productions which are necessary for reduction 

etcetera in this slide itself. So, that we do not have to go back and forth, the entry is 0 

comma a would tell us that is a S 2 action, so just for this let us look up 0 and a it indeed 

says S 2. 

So, the symbol a shifted on to the stack along with the state 2, so this is the state right 

now the parser is in, so 2 and c the table would say S 3. So, we shift c and the next state 

3 also on to the stack, so the combination of 3 and b is reduce by production 3 that is S to 

c. So, when we reduce we take out the 3 and c, this is the twice the length of the right 

hand side, so there is a one symbol is here, so we taking out the state symbol and the c 

itself. 

The state number 2 is exposed, so we lookup GOTO of 2 and the non terminal S here, 

this is will give us 8 in the table. So, the non terminal S and the state 8 the new state are 

pushed on to the stack, the combination of 8 and b says it is shift and next state is 10, so 

b and 10 go on to the stack, 10 and b say shift 6, so b and 6 go on to stack. Again it is 

shift time shift 7, so a and 7 also go on to the stack, now it is time for reduction by the 

production a to b a, so there are two symbols here. 



So, we take out 4 symbols from the stack 7 a 6 and b, so now state 10 is exposed and that 

on the non terminal A, which is the left hand side of the production gives us state 11. So, 

we push the non terminal A and state 11 on to the stack, so here please observe that now 

this is the process of handle proven in, so we saw that in the shift reduce parsing 

algorithm as well. So, whenever there is a right hand side that is always at the top, so we 

remove the right hand side of the production and push the non terminal on to the stack. 

But, as I explained there is a DFA whose states are being pushed on to the stack as well, 

so this is the state of the parser and the DFA. The state on the top tells us whether it is 

time for reduction or a shift, so for example, again 11 and c tell us that it is a reduction 

by 6, so B to b A takeout 4 symbols. So, 11 A 10 and b, so state 8 it again 8 and B give 

us state 9, so state 9 goes on to the stack along with B, B and c again is a reduction, so 

this time again remove 4 symbols. 

So, state 2 is exposed 2 and A give us 4, so A and 4 go on to the stack 4 and c tell us it is 

time for shift. So, c 3 goes on to the stack again we reduce by S to c that gives us 4 S 5, 

again it is reduce by production number 2, so that expose state 0 and state 0 on S gives us 

state 1. So, 0 S 1 goes on to the stack and finally, 1 and dollar tell us that it is the start 

production plus accept action, so the whole process ends. 

(Refer Slide Time: 11:04) 

 



So, there is another example the familiar E to E plus T, E to T, T to T star F, T to F, F to 

parenthesis E parenthesis F to i d and S to E. So, here is the parsing table for this 

particular grammar, observe that this is the start symbol S. 

(Refer Slide Time: 11:24) 

 

Here is a simple example, let us quickly run through it to see what it says, so here the 

string is i d plus i d star dollar observe that this grammar is unambiguous, so it can be 

passed exactly in one way. So, on if a state 0 on i d is a shift action, then it is a reduce 

action and then again it is a reduce action, so finally, one more reduction and we get 0 

even plus i d star i d dollar. So, there are two more shifts here and this is the stack at this 

point, now there is a reduce by 6, so production number 6 that is F to i d. 

So, we reduce and push 6 F 3 on to the stack, then again there are two shifts and there is 

reduced by 6 5 on dollar is a reduce. So, if we reduce by F to i d and state 7 is exposed, 

so G of GOTO of 7 comma F is 10, so we push F 10 on to the stack, then that is time for 

reduction again another reduction and finally, accept. So, the L R parser is nothing, but a 

shift reduce parser as you know the actions are exactly the same, but at the time of 

reduction and push, we also push the state numbers on to the stack along with the 

symbols the either it terminal or non terminal symbols. 
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So, now it is time to understand how to build the parser table that we seen in the 

operation of the parser given the table, to do that we must understand what exactly 

makes a grammar an L R grammar. So, let us consider a right most derivation S derives 

in 0 or many steps phi B t, which in turn derives phi beta t, in other words in the last step 

B to beta is the production which has been applied. So, the basic idea in an L R grammar 

is we should be able to you know determine the handle uniquely, so beta is the handle 

here B to beta is the production. 

So, we should be able to look at the first case symbols of this t in any derivation of a the 

grammar and determine, which production was applied at that particular point. So, a 

grammar is said to be L R k, if for any input string at each step of any rightmost 

derivation, the handle beta can be detected by examining the string phi beta and scanning 

at most first k symbols of the unused input string t. So, this phi beta is on the stack, so if 

we go back 1 step. ((Refer Time: 14:37)) 

So, this is the stack content and this is exactly what we mean by phi beta of course, the 

state numbers are extra. So, the finite state automaton whose states are been tracked by 

the stack gives us a method of examining the string phi beta and by looking at the a first 

case symbols of t and looking at the top of stack state, the L R parser will be able to 

determine, which production was used at this point, if it is a reduction, otherwise it will 

determine that it is a shift action. 
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So, here is a an example the grammar is ambiguous S to E, E to E plus E or E star E or i 

d, where we want to show that this is not L R 2 that is even with k look ahead of 2 we 

will not be able to determine the handle uniquely. If there are two derivations that I have 

shown here, S derives E, E derives E plus E, E plus E derives E plus E star E, then we 

derive E plus E star i d E plus i d star i d and i d plus i d star i d. So, this is a rightmost 

derivation, another rightmost derivation S to E E to E star E. 

So, instead of E plus E we have E star E then E star i d, then this becomes E plus E star i 

d E plus i d star i d and i d plus i d star i d. So, the same string i d plus i d star i d has two 

right most derivations because, this is ambiguous, but the point we want to you know 

emphasis here is that we cannot determine the handle uniquely. So, consider this step 6 

prime and a step 6, so the handle here is i d, the handle here is also i d, the same symbol 

first symbol and the production used of course, is E to i d. 

So, we have E plus i d star i d as the sentential form in one step backward, here also i d E 

plus i d star i d is the sentential form when we traverse one step backward, the reduction 

from i d to E gives us this sentential form. The next step 5 prime and the corresponding 

step 5, again the handle is i d and the production, which has been used is again E to i d 

and in both cases we get the sentential form E plus E star i d E plus E star i d, which are 

identical. 



Then, the difference surfaces for the step 4 and step 4 prime, the handle in this derivation 

is i d whereas, the handle in this derivation is E plus E. So, the look ahead in this case, 

you know the unexpanded input is star i d, here also the unexpanded input is star i d, so if 

we look at two symbols, we would be looking at star i d in both cases. So, that is the 

same look ahead string, but by looking at the string we are not able to uniquely 

determine whether the L R parser must take E plus E as the handle or E plus E as the 

handle or i d as the handle. 

So, this is precisely the ambiguity and a grammar happens to be non L R 2 in this case, 

so the handle cannot be determined using the look ahead and of course, the derivation. 

So, because the stack content is identical, so you can see that E plus E is the stack in you 

know both cases, the unexpended input is star i d in both cases. So, by looking at the 

stack we are not able to say that the handle is E plus E here and i d here, so therefore, the 

grammar is not L R 2. 
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Now, let us move on and understand how to build the automaton deterministic finite state 

automaton, which tracks the parser states and tells us when to shift and when to reduce, 

to do that we must go through some terminology. So, the first you know term that we 

need to define is a viable prefix of a sentential form, so a viable prefix of a sentential 

form phi beta T, where beta denotes the handle is any prefix of phi beta. So, in other 

words a viable prefix cannot contain symbols to the right of the handle. 



So, let us take an example, S the grammar is S to E hash E going to E plus T or E minus 

T or T, T going to i d or E parenthesis E parenthesis. So, let us look at a rightmost 

derivation S to E hash, now we apply the production E to E plus E, so E plus T, so we 

get E plus T hash, now we for T we apply T to parenthesis E parenthesis. So, we get E 

plus parenthesis E parenthesis hash now E to T is applied, so E plus T hash. 

Now, T to i d is applied, so we get T E plus i d hash, in this sentential form the handle at 

this point is i d because, we applied the production T to i d to get this sentential form. So, 

the any prefix of E plus parenthesis i d is a viable prefix, so E E plus E plus parenthesis 

and E plus parenthesis i d are all viable prefixes of this particular sentential form. So, the 

property of a viable prefix is given a viable prefix, we should be able to add appropriate 

symbols to right end of the viable prefix to get a right sentential form. 

So, for example, here you know we are able to if you take this viable prefix, then you 

know we can add a right parenthesis here and a hash here to get the right sentential form. 

So, in this case for example, you know if you look at this particular E plus parenthesis T 

parenthesis hash and so on. So, make sure once we derive all the terminal symbols from 

T we add whatever T derives and then we retain this E plus parenthesis, let us say T 

derives i d. So, if we add i d parenthesis and hash to E plus parenthesis we get a right 

sentential form. 

So, similarly you can consider any one of these say E plus or something like that, so for 

E plus we add whatever T hash derives. So, that would include parenthesis i d 

parenthesis hash and we get a right sentential form, so this is the characteristic of a viable 

prefix, viable prefixes characterize the prefixes of sentential form that can occur on the 

stack of an L R parser. So, when we go from the terminal symbol terminal string to the 

start symbol, lot of reductions take place and during these reductions the stack contains 

parts of the sentential forms and the viable prefixes are exactly those you know parts 

which lie on the stack of an L R parser. 
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A major theorem in L R parsing theory is that, the set of viable prefixes of all the right 

sentential forms of a grammar, the set forms a regular language. So, the DFA of this 

language can detect handles during L R parsing, so we will be seeing that very soon, the 

point is the DFA reaches a, so called reduction state and signals that the viable prefix 

cannot grow further. So; that means, there is a reduction that is necessary at this point, I 

will show you what exactly is a reduction state after this slide. 

This sort of a DFA can be constructed by the complier using the grammar and we are 

going to discuss that procedure a little later. All L R parsers have such a DFA 

incorporated in them, this is the heart of an L R parser really, so to do that we construct 

an augmented grammar and if S is the start symbol of G then G prime contains all the 

productions of G, along with a new production S prime going to S. The reason we do that 

is there could be productions from S with S on the right hand side as well. But, we want 

to make sure that the start symbol is unique and we want to halt the parser as soon as S 

prime appears on the stack, so to do that we add an extra start symbol and make it an 

augmented grammar. 
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So, here is an example of a DFA for this particular grammar, this is the L R 0 DFA for 

this particular grammar. So, let us understand what exactly this is there are some states, 

which are in a greenish blue and there are some other states which are in violet, the states 

which are marked in violet also have a production associated with them and these are the 

reduction states. So, 5, 8, 3, 2, 9 and 11 they are all reduction states and the other states 

0, 1, 6, 7, 10 and 4, which are in greenish blue color are all shift states. 

So, when the parser enters parser DFA enters one of these reduction states, then a 

reduction by this particular production is bound to happen. Whereas, if it is in any other 

state, then the upon an input signal symbol a shift would happen and it would go to an 

appropriate state. For example, from the state 6 on in the set of input i d it goes to state 3 

whereas, in state 4 on the input parenthesis it remains in the same state 4 and it can 

possibly you know go to state 3 on i d, so this is the L R parser, this is the parser DFA 

here is a start state. 

So, there is only one difference between a an actual DFA as we defined in lexical 

analysis and the DFA which I have written here. The difference is this particular DFA 

there is no explicitly defined final state, in fact, all the states are final states the reason 

being, in this DFA from the start state it does not matter which path you take that would 

form a viable prefix. So, for example, 0 to 1 form you know we have E, so E is the viable 



prefix 0, 1, 6, E plus is a viable prefix, E plus T is also a viable prefix and so on and so 

forth. 
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So, then to construct this DFA there must be some algorithm written out and what we are 

going to do now is, we provide a method of constructing this DFA using what are known 

as items, the procedure is quite simple. And then state some results, which link this set 

you know the DFA constructed using items to the DFA which recognizes viable prefixes. 

So, let us define items a finite set of items is associated with each state of a DFA, 

remember we are now defining possibly some other DFA, we will provide an algorithm 

to construct this DFA using these items. 

And then link this DFA and mention results that say this is a DFA which recognizes 

viable prefixes. So, what exactly is an item, an item is a very simple you know take a 

production put a dot anywhere on the right hand side of the production and you get a an 

item. So, for example, if you consider the production E to E plus T, then you can put a 

dot just before E plus T, just after the E, just after the plus and after the t, so you can 

actually form 4 items from this single production E to E plus T. 

So, the general form of a production is A going to alpha 1 dot alpha 2 with either alpha 1 

or alpha 2 or both being Epsilon. So, items are denoted by actually they are enclosed in 2 

square brackets, now a little more terminology, an item A going to alpha 1 dot alpha 2 is 

said to be valid for some viable prefix phi alpha 1. So, now we are trying to link an item 



and viable prefix, so we have a viable prefix phi alpha 1, please see that the alpha 1 there 

and the alpha 1 in the production are same. 

Secondly, observe that alpha 1 is the portion of the right hand side of the production just 

before the dot. So, it says A go into alpha 1 dot alpha 2 is valid for some viable prefix 

phi alpha 1, if and only if there exists some rightmost derivation, so what is the 

derivation S derives phi A t, and then you apply the production A go into alpha 1 alpha 2 

at this point. So, you get phi alpha 1 alpha 2 t, so if this is the case, if we are able to get 

the production A go into alpha 1 apply alpha 2 applied. 

and the viable prefix at this point is indeed phi alpha 1, then we say that the item A go 

into alpha 1 dot alpha 2 is valid for this particular viable prefix. You can also observe 

here, that the item A going to dot alpha 1 alpha 2 is actually valid for the viable prefix 

phi, why the same rightmost derivation can be used to show that, you know you have the 

sentential form phi alpha 1 alpha 2 t. So, alpha 1 alpha 2 is what you have here and the 

item would be A going to dot alpha 1 alpha 2 and the viable prefix is phi. So, A going to 

dot alpha 1 alpha 2 is valid for the viable prefix phi. 

Similarly, if you consider the item A going to alpha 1 alpha 2 dot, you know then the 

viable prefix for which it is valid is phi alpha 1 alpha 2 that is very trivial from the same 

rightmost derivation again. So, you can consider this entire thing as the viable prefix and 

then after the dot there is nothing here, so just the T in the right sentential form. So, A 

going to alpha 1 alpha 2 dot will be valid for the viable prefix phi alpha 1 alpha 2. 

So, there may be several items valid for a single viable prefix let us see how, consider the 

derivations given below S derives E sharp and then E that derives E minus T sharp, then 

S derives E sharp which intern derives E minus T sharp and which again intern derives E 

minus i d sharp finally, we get S E sharp E minus T sharp and E minus parenthesis E 

parenthesis sharp, so 3 derivations. 

Now, the viable prefix that we are considering is E minus, so in this sentential form 

again E minus is a viable prefix. In this sentential form also E minus is a viable prefix 

and in this sentential form also E minus is a viable prefix, the let us consider the 3 items 

the statement says all these 3 items are valid for the viable prefix E minus. So, let us take 

the first item E going to E minus dot t, so E minus is the alpha part, T is the alpha 1 part 

and T is the alpha 2 part. 



So, we take the sequence A going to E hash going to E minus T hash, so E minus is our 

viable prefix that corresponds to our alpha 1 and then T is alpha 2. So, this item is valid 

for E minus T going to dot i d, so we consider this, so again E minus is our viable prefix. 

So, and alpha 1 is null here and i d is alpha 2, so E minus i d is here, so in this 

application, in this derivation we see the T minus is the viable prefix and therefore, T to i 

d is valid at this point i d is indeed the handle as well. 

Third is T going to dot parenthesis E parenthesis, so we again take this derivation, so we 

have alpha 2 which is parenthesis E parenthesis E minus is our viable prefix here. So, 

this derivation shows that this is indeed valid for the viable prefix E minus, so there may 

be many items valid for a single viable prefix. 
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Then, what does an item indicate you know in a grammar and a derivation sequence, an 

item indicates how much of a production has already been seen and how much really 

remains to be seen. So, if you consider the production E going to E minus dot T, it says 

we have already seen the string of course, I am assuming that you know this item is valid 

for some viable prefix. So, in the derivation we would have already seen some part of the 

string input string derived from E minus and the input string derivable from T is yet to be 

seen, so this is the interpretation. 

So, before the dot it indicates the past and after the dot it indicates the future and each 

state of the L R 0 DFA contains only those items that are valid for the same set of viable 



prefixes. So, you know I have still not told you how to construct the state of the DFA 

using these items, but a state will contain many of these items, the point is all the items 

here will be valid for the same set of viable prefixes. So, all the items in state 7 are valid 

for the viable prefixes E minus and parenthesis E minus. 
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So, let us look at that, so E minus this is the state number 7, so you should observe that 

this the path we take from the initial state 0 from 0 we go to 1 and then 2 7 and labels we 

accumulate as E minus. So, similarly let us see how to go state 7 using some other path, 

so from 0 we can go to 1, then we go 6 and then we go state 10 and finally, we go to state 

7. So, we have E plus you know, so E minus is what brings you here and we cannot go to 

from state 6, we cannot go to state 10 directly, we need to go state number 4 and then go 

to state number 10 the arc is in the reverse direction. 

So, we get E plus and then parenthesis and then you know this side is again another E 

and finally, a minus. So, if you accumulate the labels on a path which takes you to any 

particular state, so that is very significant and that is what this is trying to say. 
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So, all the items in state 7 are valid for the viable prefixes E minus and parenthesis E 

minus and many more of course. Similarly, all the states in items in state 4 are valid for 

the viable prefix parenthesis and many more of course, so the basic idea is what I was 

trying to describe just now. The set of all viable prefixes for which the items in a state S 

are valid is the set of strings that can take us from the state 0 to the state S, ((Refer Time: 

39:10)) so here, so find out all the strings which can take you to state 7, those are the 

viable prefixes for the you know for which the items in state 7 are valid. 

So, similarly if you take state 10 all the strings which can take you from 0 to 10 are the 

viable prefixes for which the items in state 10 are valid. So, that is about the validity of 

items, constructing L R 0 DFA using sets of items is very simple, so let us look at that 

procedure now and then look at the relevance of this two our problem. 
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So, there is an operation called closure, so first let me explain the closure operation with 

respect to these examples and then look at the algorithm itself. So, let us say we are 

given an item S going to dot E hash, closure says look at the symbol after the dot if that 

say non terminal then add all the productions of that particular non terminal with a dot on 

the and put a dot in the left most position, for E there are 3 productions E to E plus T E to 

E minus T and E to T. 

So, all these 3 items have been added with a dot in the left most position, now do this for 

the item that we just now added, again we have a symbol E here and there is nothing 

more to add for E. But, this gives us a new symbol T, so add all the productions and the 

item associated with it to the state, so T going to parenthesis E parenthesis and T going 

to i d with a dot in the left most position. So, these orange color once are items which we 

added because of the closure. 

So, if here these are the item which are given to us, but it is, so happens that the symbol 

after the dot is a terminal symbol; obviously, there are no productions corresponding to 

terminal symbols and so we cannot expand this state further using closure. State number 

7 we have E going to E minus dot T, T is a non terminal, so we can add two more items 

for this closure I know and E to T dot adds nothing. So, the closure process is very 

simple item set closure I, I is the set of items which are given to you, while more items 

cannot be added to I. 



For each item A to alpha dot B to beta in I, so observe that we are looking at the non 

terminal B after the dot. And for each production B to gamma we add the item B going 

to dot gamma, if it is not already present in the item set to I. So, this is what we did here 

and when we considered these to is they give us the same items, so we did not add them 

a second time, so this is the closure operation. 
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Then, there is a another operation called go to, so again let us consider you know the 

blue items which are in state 0. All the 3 blue items have the non terminal E just after the 

dot, the others have different symbols of course, the go to set computation tries to 

advance the dot by one position. So, whenever the symbol after the dot is exactly the 

same, we take all the items with that symbol on the after the dot in the same state. 

Advance the dot by 1 position that gives us a couple of items for example, this gives us S 

going to E dot hash, this gives us S going to E dot plus T and this gives us E going E dot 

minus T. So, we really add them into another state, if the state if no other state has these 

items we create a new state and add this items to that particular state, so here again you 

know we check whether it is possible to do a closure operation. So, in this case all the 

symbols after the dot or terminal symbols, so there are no more items that we can add by 

a closure operation. 

So, now for this again let us form the go to state go to set or go to state, so of just before 

the, you know minus there is a dot here. So, let us and this is only item which has a 



minus after the dot, so we consider only this particular item, advance the dot by 1 

position, so we get the item E going to E minus dot T add it to a new state. Now, the 

symbol after the dot is a non terminal, so add the 2 items which can be derived by the 

closure operation to this state. 

So, the go to set computation is very simple procedure go to of I comma X, I is a set of 

item, X is a grammar symbol either is a terminal or a non terminal. In this case it was a 

non terminal and in this case it is a terminal symbol, the new state or item set we get is I 

prime A to it contains all although the set or a item set contains A to alpha X dot beta. 

So, what we had, you know was A going to alpha dot X beta, so now, we advance the dot 

by one position, so alpha dot X beta was already in I, so we form the new item alpha X 

dot beta and put it into a new state I prime. If I prime was already there we do not form a 

new state, we just use the same you know it do not do anything more for that particular 

go to set. Now, form a closure of I prime and return it as the result, so this is what the go 

to set computation is... 
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So, now what is the intuition behind closure and go to why should we do all these, if an 

item A going to alpha dot B beta is in a stay in a particular state or items set. Then some 

time in the future we expect to see in the input a string derivable by from B delta that we 

already know. So, the implication is if these string is derivable from B delta, there should 

be a small part of that big string, which is derivable by a from the non terminal B as well. 



So, this implies a string derivable from B as well, this is the reason for adding the item B 

going to dot beta corresponding to the production B to beta of B to the state that we 

already have. So, if the state contained A going to alpha dot B beta and we expect that 

we see a string derivable from B delta, we must correctly add the items B going to dot 

beta as well to announce that a small part of this string is derivable from B, which is 

nothing, but the string derivable from beta. 

Now, if this is about the closure, so in summary when we add something because of the 

closure operation, we are only announcing that parts of this big, you know sentential 

form are derivable form the non terminals that are present in the sentential form. If I is 

the set of items valid for a viable prefix gamma, then it is important to know that all the 

items in the closure I are also valid for gamma. 

So, I already kind of showed you this before, but let me show it to you again, if A to 

alpha dot B beta is valid for the viable prefix phi alpha 1, then B beta b is a production, 

we consider the derivation S going to phi A t phi alpha B delta t and then phi alpha B x t 

and that becomes phi alpha beta x t. So, we are applying the production B to beta here 

and we are applying the production A going to alpha B delta here. So, this particular 

derivation shows that not only is the item A going to alpha dot B delta is valid for the 

prefix phi alpha, you know B to dot beta is also a valid for the prefix by alpha. 

So, see this here this is our viable prefix and this beta is the handle and since dot is at the 

beginning of the item B going to dot beta, the dot is right here, so it is valid for this 

particular viable prefix phi alpha. So, phi alpha is here phi alpha is here, so both the 

items are valid, now what about the GOTO, GOTO of phi X is the set of items valid for 

the viable prefix gamma X. So, here the above derivation that is this derivation, also 

shows that the item A going to alpha B dot delta is valid for the viable prefix phi alpha b 

I already explain this before. 

So, in the same production phi alpha B can be our viable prefix, so in that case the item 

would be A going to alpha B dot delta. So, that would be valid for the viable prefix phi 

alpha B, so this the intuition behind the construction of the automaton, so let us look at 

the entire algorithm. 
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So, how to construct set of items for the grammars G prime which is the augmented 

grammar, to begin with form just one item S prime going to dot S and take it closure. So, 

you get a set of items now, so now, you know until more sets can be added to that this 

thing, the item set you know rather set of item sets C, we form a GOTO and then you 

know if go to of I comma X not equal to phi and go to of I comma X is not in c, at that to 

the collection, C is the collection of set of items, now C union go to of i X. 

Now, go back you have one more state are the item set in the collection, so we keep on 

you know applying the GOTO, GOTO in turn applies closure as well and this is how we 

keep doing it until we cannot get anymore new states. So, each set in C corresponds to a 

state of the L R 0 DFA and this is the DFA that recognizes viable prefixes. 
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Let me explain the operation of set of item construction of the set of items, so to begin 

with this is our start state S going to dot E hash. So, the old start symbol was E, the new 

start symbol is S, so this is the augmented grammar, instead of S prime I have just used S 

here. So, S going to dot E hash is the first item, from which we are all these items 

because of the closure operation, so observe the E after the dot, so these two items get in 

and then the these items also gets in, so these are the productions for the E. 

And because of the T these 2 items get in, so we have one state now, so let us advance 

the dot systematically for each item. So, now, the dot goes to the second position, so it 

becomes E dot hash, so this is the GOTO state you know go to of state 0 on E will be 

state 1. So, we have E dot hash and then E is also the symbol after the dot for these two 

items, so these two also go into the same state, none of the symbols after the dot or non 

terminal, so the state cannot grow further, because of the closure operation. 

Consider this item, it gives you E to T dot and that is only item in the state 2, then we get 

T going to i d dot that is state 3. And we get state 4 from advancing the dot in this item, 

parenthesis dot E parenthesis, so E is the non terminal, so we add these three items and 

then because of this non terminal we add these two items. So, we have exhausted all the 

items in state 0 now, but we have added you know 4 new states state 1, state 2, state 3 

and state 4. 



And we need to apply the go to operation on the states as well, this gives us E hash dot 

that is state 5 and it cannot grow further. This gives us E plus dot T and the closure 

operation adds these 2, because of the T after the dot, E going to E minus dot T the dot 

advance you know the state go to of this would be E minus dot T, so that is the state and 

two more items are added, because of the closure operation the T after the dot. So, that 

exhaust this state, this cannot give us anymore, this also cannot give us anymore, this 

cannot give us anymore, but this can give us many more really. 

So, the dot is advance the after the E, so parenthesis E dot parenthesis, so that gives us 

parenthesis E dot parenthesis. And these two are also added to the same state because, 

the non terminal E exist immediately after the dot, but we cannot grow the state further. 

Then E to T dot is already state available, this T to parenthesis dot E dot E parenthesis is 

the self state here and T do i d dot is a already state present. So, this is exhausted this 

does not give us any extra, but this can. 

So, this gives us E plus T dot and that is state 9, these two do not generate any more new 

states, they generate just this state and this state respectively. This gives us a new you 

know this cannot this gives us a new state E minus T dot, these two cannot, this is 

already a state, which cannot grow further. And this particular state does not gives us 

only one extra state that is parenthesis E parenthesis dot and these two do not generate 

any extra state. They actually generate 6 and 7 respectively, so these are the entire sets of 

items that get generated, because of the you know closure and GOTO operations. 



(Refer Slide Time: 56:03) 

 

And the shift and reduce actions are actually derived using this particular set of items, so 

we will look at this particular, you know method of filling the parser table using the sets 

of items in the next lecture. 

Thank you. 


