
Principle of Complier Design

Prof. Y. N. Srikant

Department of Computer Science and Automation

Indian Institute of Science, Bangalore

Lecture - 8

Syntax Analysis: Context-free Grammars, Pushdown Automata and Parsing Part-4

 (Refer Slide Time: 00:20)

Welcome to the lecture on syntax analysis part four. So, in the previous lectures we

covered basics of syntax analysis context, free grammars, context free language and top

down parsing. Today we will continue our discussion on parsing with recursive descent

parsing and then move on to bottom up parsing.

(Refer Slide Time: 00:39)

So, we looked a transformation known as useless symbol elimination and now we also

look at two more transformations. One on left recursion elimination and another one

known as left factoring, the left recursive grammars post problems to L L 1 parsers a

generation. The problem is that left recursive grammars do not satisfy the L L 1

condition.

So, let us understand what exactly left recursive grammars are. So, if a grammar has a

non terminal A such that A in more than one application of the productions of A

produces A alpha. So, you can see that the first symbol of this sentential form is also A

so that means, we can produce as many, you know we can go and applying the

productions of A as many times as we want and this is known as left recursion. So, our L

L 1 parsing method and also the one we are going to see the recursive descent parsing

method cannot handle left recursive grammars. So, left recursion grammars can be of

course, eliminated, in other words we can convert left recursion to right recursion and

similarly right recursion can be converted to left recursion.

So, first of all, if you look at what is known as immediate left recursion then we need to

handle productions of the form A going to A alpha, remember left recursion implies A

derives A alpha in one or more applications of productions of A. Whereas, here the

production itself has non terminal A on the left most in the left most position. So, if there

is a production of the form A going to A alpha then the grammar is set to have

immediate left recursion. So, let us see what we can do with it. So, assume that there are

two productions A going to A alpha and A going to beta, the assumptions is A going to

beta will not have A in the left most position.

So, if that is so, then we can transform these two productions into these three

productions. First of all A going to beta A prime and then A prime going to alpha A

prime or A prime going to epsilon, A prime is a new non terminal, which did not exist

before. So, if you look at this, you know this application produces exactly beta A prime

and nothing else, but then A prime can be you know it has right recursion. So, we can

use it as many times as we want. So, A prime going to alpha A prime can be used many

times to produce many instances of A. So, if you look at this production we produce as

many instances of alpha as we wanted and then A was replaced with beta. So, here also

A prime produces as many instances of alpha as we want. And finally, A prime goes to

epsilon there by producing nothing.

But we have already produced a beta to begin with. So, we have produced beta followed

by many alphas which is exactly the same as what A produced. So, this is immediate left

recursion elimination this grammar, you know does not have left recursion. So, if we

have a group of productions say A going to A alpha 1, A going to A alpha 2, etcetera, A

going to A alpha m. And then the other alternates without left recursion would be beta 1,

beta 2, etcetera, beta n. So, if this is the case then we can transform these productions to

in a very similar way to this A going to beta 1 A prime, beta 2 A prime, etcetera, beta n

A prime. And then the new non terminal A prime will have productions alpha 1 A prime,

alpha 2 A prime, etcetera, alpha m A prime and an extra epsilon as well. So, this is just a

generalization of this transformation and is show to you know remove left recursion,

immediate left recursion.

(Refer Slide Time: 05:27)

Let us take an example. So, the rule is given here, A going to A alpha or beta will be

transform to A going to beta A prime, A prime going A alpha A prime or epsilon. So,

this grammar has left recursion because, E goes to E plus E or E E or E star or

parenthesis E parenthesis or a or b. So, in one two and three these three productions we

have E as a left most non terminal and therefore, there is left recursion. So, if we

eliminate the left recursion, but remove the ambiguity as well this is ambiguous. So,

sorry, if we want to eliminate the left recursion.

First of all, let us try to write a left recursion, but unambiguous grammar because

ambiguous grammars do not you know help us in parsing. So, this is the unambiguous

version of that grammar E plus T or T, E goes to E plus T or T, T goes to T F or F, F

goes to F star or P, P goes to paraenesis E paraenesis or a or b. So, this is the, you know

generates the same language as the previous one, but is unambiguous, but this is still left

recursive. So, if we remove it you know the left recursion then we get E going to T E

prime exactly like this, you know beta a prime right. So, E going T is the other

productions. So, we have E going to T E prime E prime going to plus T E prime. So, this

is the part plus T and then or epsilon, T going to F T prime, T prime going to F T prime

or epsilon, F going to P F prime, F prime going to star F prime or epsilon and P remains

as it is. Of course, we could try eliminating left recursion from this grammar as well and

see what happens. So, that I leave it you as a home work.

(Refer Slide Time: 07:38)

So, that was about left recursion elimination. As I said a left factoring is the other

transformation that we want to study. If there are two alternatives beginning with the

same string then the grammar is not L L 1, example is here. So, S going to 0 S 1 or 0 1

so, this is definitely not a L L 1 grammar. And the idea intuition behind left factoring is

remove the common portion of the alternatives. And then have a separate non terminal

for the rest of it. So, for example, here zero is the common portion.

So, that is factored out and for the rest of the portion, we have a new non terminal S

prime. So, S prime goes to S 1, which is the rest of it here and or 1, which is the rest of it

in the other alternate. This grammar is of course, is definitely L L 1. So, this

transformation you know using this transformation is possible some times to change a

grammar which is not L L 1 to L L 1 form of course, left recursion was another as well.

General method would be, if there are two alternatives for a production A going to alpha

beta 1 or alpha beta 2 of course, there could be many alternatives with the same prefix as

well. So, the method remains similar. So, we remove alpha. So, A becomes alpha A

prime and new non terminal A prime goes to beta 1 or beta 2.

So, here is another example for logical expressions. So, E going to T or E or T, T going

to F and T or F and F goes to not F or paraenesis E paraenesis true or false. So, this

grammar of course, is definitely not L L 1, but because its starts with the same non

terminal T for both the options, here also it starts with the same non terminal F for both

options. Once we do left factoring we get E going to T prime, E prime going to or E or

epsilon, T going to F T prime, T prime going to and T or epsilon, F going to not F or

paraenesis E paraenesis true or false. So, this definitely is L L 1. So, it is not as if these

are hypothetical examples, these you know, this expression grammar of course, occurs in

the programming language the, you know in the grammar for programming language c

or similar languages.

(Refer Slide Time: 10:39)

So now, an example to show that grammar transformation may not help every time. Here

is our, you know controversial if then else grammar, we know that this is ambiguous. So,

even if we do and of course, it has the same left side as well if i d S and if i d S because,

it is ambiguous, even if we do left factoring. Let us say S prime going to S dollar, S

going to if i d S S 1 or a, S 1 going to epsilon or else s. So, this is a factored grammar.

So, there is no common part between the left side and at the two right hand sides of S,

but once we compute the directions symbol sets and try to fill up the table.

We have seen this example before so, I will not go into too many details again, for the

symbol S 1 and else we get two productions. So, the grammar does not happen to be L L

1. So, left factoring has not really helped in this case because, the underline grammar

was ambiguous. Suppose you know, practically if the grammar produces, you know such

a table and we have a problem with it. In such a case the programmer can be given a

choice to choose the correct entry and eliminate the other entries correct in the sense

intuit inventory. So, in this case, if we choose S 1 going to else S instead of S 1 going to

epsilon on the look at else. This resolves the conflict because we have eliminated one of

the productions here. And this associates else with the innermost if then which is actually

the correct choice.

So, the matched statement grammar that I gave you couple of lectures ago, does this as

well. So, the choice of eliminating S 1 going to epsilon and retraining S 1 going to else S

fills this table correctly makes this operatable as an L L 1 parasail, but it will associate

the else with the innermost if.

(Refer Slide Time: 13:11)

So, let us move on to recursive descent parsing. Recursive descent parsing is a top down

parsing strategy and basically instead of a table driven, you know table driven parser as

in the case of L L 1 parser. Here this is a, you know inlined program as such. So, we are

going to have one function are procedure for each non terminal.

So, these are hard coated programs rather than table driven parsers. The function call

each other recursively that is why this is called a recursive descent parser based on the

grammar. I will show you an example as well. The recursion stack handles the tasks of

the L L 1 parser stack. So, there is no other stack necessary like in the case of L L 1

parser the programming language stack which handles recursion will also take care of the

job of the L L 1 parser stack. The exactly the same L L 1 conditions need to be satisfied

for the grammar here as well for the grammar to be eligible for a recursive descent

parsing. Just like the L L 1 parser, we can generate recursive descent parsers also

automatically from the grammar. Hand coding is also very easy even, if you do not

generate them automatically. The advantage of recursive descent parsers is that error

recovery in such grammars such parsers is superior to the though L L 1 parsers.

(Refer Slide Time: 14:51)

So, let us take an example and then move on to automatic generation of recursive descent

parsers, here is a very simple grammar S prime going to S dollar, S going to a A S or C,

A going to b a or S B, B going to b A or S. As I said there is one function for each non

terminal. So, this is the function for non terminal S prime then we have a function for

non terminal S and then we are going to have a, you know function for non terminal a

and another one for non terminal b as well. So, let us look at the function for non

terminal S prime. So, this is the main program because, it corresponds to the start symbol

of the grammar. So, on the right hand side we have the non terminal S followed by the

end of file symbol dollar. So, they flow within the program in the within the parser

would be call the function f S corresponding to the non terminal S.

And once it completes that the control comes here. So, the next token is checked whether

it is E o F not, if it E o F parsing is over so, you accept otherwise you show an error

message. So, this is the for the non terminal S prime which is very intuitive the whenever

there is a non terminal you call the function for the non terminal and whenever there is a

terminal check whether the next token actually corresponds to the terminal present in the

production. So, let us take the function for the non terminal S. So, all the alternatives are

combined in the function. So, we really have many, you know cases of the switch

statement one corresponding to each of the, I know alternatives of the production. The

first alternative is a A S and it begins with little a, the second alternative is little c.

So, we have on the token a switch statement to check whether it is little a or little c and

the grammar as been assumed to be L L 1. So, these two alternatives will never begin

with the same symbol. So, little a assures that the production to be used for expansion in

L L 1 parsing is S going to a A S. And so, we are going expand using the production S

going to a A S here as well. So, the token a is matched already because, we came to case

a, we get the next token then here is a function of a, here is a non terminal A. So, we call

the function f A. The next one is a non terminal S so, we call the function f S then that

case is completed. So, we have a break. So, that we get out of the case switch statement

for the case c, we already, you know we have match the c with this because, if we take a

c the matching automatically happens. So, you get the next token and then get out of the

switch statement. Any other symbol in the input implies an error.

(Refer Slide Time: 18:23)

Then we have the function for the non terminal A. So, again there are two alternatives

one corresponds to b a, the other one corresponds to S B, b a starts with little b. So, we

have a case for little b, if the token is little b then get the next token. If the next token

happens to be little a, that is the one symbol here again get the next token, otherwise an

error message is given and then we get out. For the symbol is here S so, to take this

particular alternative you must make sure that the input symbol that is a token is either a

or c which corresponds to the first of capital S.

So, in that case we call the function corresponding to the non terminal S then we call f B.

The function corresponding to non terminal B and then break, for any other symbol it is

an error. So, finally, the function for non terminal B, it again has two options b A and S.

So, we again have a similar flow for b we get the next token and call f A and finally,

break. For the first of S, which is a comma c we call f S and break, for others it is an

error.

(Refer Slide Time: 20:00)

So, how do we generate recursive descent parsers automatically? Of course, the scheme

is based on the structure of productions. So, the generator actually looks at the

productions and generates the program we will we are going to look at some more details

of this the grammar must of course, satisfy the L L 1 conditions. So, we are going to

check the L L 1 condition and then call the generator. Function get token obtains the next

token from the lexical analyzer, and places it in the global variable token this is the

assumption function error prints out a suitable error message.

(Refer Slide Time: 20:45)

And now, we are going to see the details. So, the way it is given here for if the, you

know right hand side happens to be epsilon, if there is a production a going to epsilon

and let us start with the last one first. So, there is a production A to alpha. So, then we

are going to write a function f A, which returns nothing and does not take any parameters

and the body of the function corresponds to the program segment generated for alpha.

So now, we are going to see various possibilities for alpha and then mention the code

which can be generated. So, if alpha is epsilon then we just generate the skip that is

semicolon if alpha is a single non terminal a, say single terminal a then we generate the

program segment if token equal to a get token else error. So this is intuit, we saw this in

the program segment example before. If A is non terminal then we generate a call f A

function call for the non terminal A, if alpha consist of several alternatives alpha 1, alpha

2, alpha 3, etcetera, etcetera then we generate a switch on the token and for all the

symbols in the directions symbols set of alpha 1 instead of first we use direction symbol

because, alpha 1 or alpha 2 etcetera may also be epsilon and then the follow

automatically kicks in.

If the symbols begin alpha 1 you know. So, that is directions symbol of alpha 1 all the

symbols are listed here then the program segment corresponding to alpha 1 is generated

and a break is generated as well. Similarly for alpha 2, alpha 3, etcetera, etcetera and for

any other symbol it is error. So, we saw an example of these two already the first one,

you know begins the first option and the second set begins the second option etcetera,

etcetera. If the string alpha can is of the form alpha 1, alpha 2, alpha n then we generate

the program segments for alpha 1, alpha 2, alpha n and concatenate them in the same

order.

So, this is the scheme for generating the program segment for you know a recursive

descent parser. So, let us just go back and see one of the examples again. So, this is a

production of the form a going to b a or S b. So, there is a function for the non terminal a

and then because, there are alternatives there are there is a switch as well. And within the

switch the direction symbols set of b a is b and the direction symbols set of S b is a

comma c. So, that way we generate get token and then check the. So, this is the program

segment generated for the string b a and this is the program segment generated for the

string S b. So, within this, this is of the form alpha 1, alpha 2 this is again of the form

alpha 1, alpha 2. So, we go on applying the rules of generation and generate the

appropriate program segments.

(Refer Slide Time: 24:32)

So, now we move on to bottom up parsing. So far, we have discussed the top down

parsing strategy in which the starts symbol was expanded progressively and finally, we

reach the leaves which correspond to the string to be parsed. In the case of bottom up

parsing we begin at the leaves build the parse tree in small segments, combine the small

tress to bake make bigger trees until the root is reached. So, that is why is called as a

bottom up strategy. So, this process is called reduction of the sentence to the start symbol

of the grammar. So, one of the ways of reducing a sentence is to fallow the rightmost

derivation of the sentence in reverse. So, let me give you examples to show how this

works. So and shifted using shift reduced parsing implements one such strategy and it

uses the concept of what is known as a handle to detect when to perform such reductions.

(Refer Slide Time: 25:51)

So, let me show you some definitions and then we move on to examples. So, what

exactly is a handle? A handle of a right sentential form gamma is a production A to beta

and a position in gamma. So, let us take a derivation of this form S going to alpha A w.

So, this is a rightmost derivation in many steps. And now, we replace alpha A by beta

and the context in which we apply is alpha on the left side and w on the right side.

So now, in this sentential form alpha beta w we say that A to beta in the position

following alpha is a handle of the string or sentential form alpha beta w. So, basically we

want to locate the right hand side of the production which is applicable at this point. So,

that is why, that is the reason is called as a handle. Handle of right sentential form

gamma is a production A to beta and a position in gamma, where the string beta may be

found and replaced by the non terminal A, to produce the previous right sentential form

in a rightmost derivation of gamma. So, from here, if we replace beta by a, we get this

particular sentential form. Similarly we progressively replace handles by their left hand

side non terminals to reach start symbol S. This is the strategy which is used in shift

reduced parsing.

So, handle will always eventually appear on the top of the stack and is never submerged

inside the stack, this is a very important property. What it says, this is alpha is in this

stack and this w is the rest of the input which is not parse. And now, we have beta also

just on the top of the stack. So, when we want to remove beta and replace it with a we

just have to pop an appropriate number of symbols from this stack. What it really says is

it is not mixed up with alpha, but it is at the top of the stack. So, in shift reduce parsing

we locate the handle and reduce it by the left hand side of the production repeatedly to

reach the star symbol. So, we are going to see the examples of this. These reductions in

fact, trace out a rightmost derivation of the sentence in reverse. So, this is known as

handle pruning. And l r parsing is a method of shift reduce parsing we are going to study

that in some detail later.

(Refer Slide Time: 28:59)

So, let us look at examples of what handles are and how they relate to rightmost

derivation. Here is a grammar S going to a A c B e, A going to A b or b, B going to d.

So, let us consider the string a b b c d e. So, the rightmost derivation is given here. So,

for S we apply the production a A c B e and then you know we apply the production, B

going d to get the form a A c d e then you know, we apply the production A going to A b

to get the form a A b c d e. And finally, we apply the production A going to b to get the

form a b b c d e. So, this is a rightmost derivation of the string a b b c d e.

Because, every time we replace only the rightmost non terminal, you know rather we

expand the rightmost non terminal. So, now, let us traverse this particular derivation in

reverse. So, the rightmost derivation runs in this order the reverse of it would be this

particular order. So, this is our given input string a b b c d e at the shift reduce parser let

us not worry about the details of how. It locates that this second b is the handle. So, it is

says let me now reduce little b to capital a. If it does that then we get this sentential form

in this, it locates the handle as a b. So, the production is applicable is a to a b, a to a b

you know is apply at this point. So, we replace a b by a and we get this sentential form.

So, in this form it the shift reduce parser says d is the handle. So, and the production

applicable at this point is determine to be b to d. So, this little d is replaced by b to get

this sentential form. So, now, it determines that this entire right hand side is the handle

and the production applicable is S going to a a c b e. So, it replaces this entire right hand

side by S and since we have reach the start symbol the parsing is completed. So, this is

how you know the shift reduce parser works it starts from the inputs string and reaches

the start symbol. So, the handle is unique, if the grammar is unambiguous. if the

grammar is ambiguous then you know it is not possible to use this strategy in a very

simple way.

 Another example, so, we have S going to a A S or c, A going to b a or S B, B going to b

A or S. So, let us take the string a c b b a c. So, the string is here and the rightmost

derivation is in this order. So, you can observe that the non terminal on the rightmost at

the, in the rightmost position has been expanded. So, S to c then b is expanded then a is

expanded then S is expanded and finally, we get the string. So, the handles are handle is

really is underlined here, c is the handle. So, the production is S to c so, we replace c by

S we get this sentential form, b a is the handle so, it is replaced by a so, we get this. Here

again b a is the handle. So, we get b a replace b a by b and we get this sentential form. S

b is the handle so, that is replaced by a to get this form. c is the handle so, that is replaced

by S because, S to c is the production to get this sentential form. And this entire thing is

the handle and that would be reduce to S using the production S going a A S

(Refer Slide Time: 33:25)

So, third example, this is the familiar expression grammar, this is ambiguous. So, let see

what happens. So, the grammar is E, E to E plus E, E to E star E, E to parenthesis E

parenthesis, E going to i d. So, we know very well that E i d plus i d star i d can be

passed in two ways because, this is an ambiguous we get two parsers tress. So, the first

interpretation says i d plus i d first and then star i d. The second interpretation says i d

star i d first and then added to two i d. So, these are the two derivations. So, we let us see

what happens you know, we have i d here and that will be replaced by E because of this

production i d is the handle. The second i d is the handle here and that would be replaced

by E again. The third I d is the handle here and that would be replaced by E again.

Now, E star E is the handle that gets replaced by E and E plus E is the handle and that

gets replaced by E. Whereas, if we had use the other rightmost derivation, we have the

same string again i d plus i d star i d at this point the handle is unique. So, we get this

sentential form again, this handle is unique. So, we get E plus E star i d. The third handle

is also unique so, we get this right, E sorry, the third this is a one step has been missed by

mistake. So, this becomes E plus E plus E star E. So, we get you know, we replace E

plus E star E by E to E plus c is replace by E. So, this is what we get E star i d is what we

get and then that becomes E star E. And finally, we this entire thing is E star E is the

handle and that gets reduce to E. So, E star E this becomes i d and this becomes E to E

plus E star i d.

And now, this E has been replaced by i d and finally, we get i d plus i d star i d. So, the

thing is, this is not the handle here you know. So, this is the handle there is a minor error

in this slide. So, we get from E plus E we reduce it to E star i d and then finally, E star E

and finally, E. So, the problem with this is when we have a particular step we really do

not know whether this you know derivation sequence was followed or this derivation

sequence was followed. So, locating the handle uniquely may not be possible. So, in this

case, if this was the derivation sequence the handle at this point. In the third step was i d

whereas if we had used this derivation sequence the handle in the derivation sequence

would E plus E. So, this is because of the ambiguous nature of the grammar and the

modal of the story is if the grammar is a ambiguous then handles cannot be located

uniquely.

(Refer Slide Time: 37:05)

Here is an example to show how exactly the parsing happens with respect to pars trees.

So, it is the same grammar again S going to a A S or c, A going to b a or S B, B going to

b A or S. The rightmost derivation of the string a c b b a c is shown here and I have also

underlined the, you know handle. So, here this is the rightmost derivation very simply

like this and I am not going to discuss it in too much detail because it is a very simple

thing whereas, what we discuss in detail is how exactly the pars tree is build up when it

traverse the entire derivation in reverse. So, we start looking at the input symbol a to

begin a c b b a c is the input string.

So, the first symbol is a and we can do no reductions here. So, we move on to the next

step in which the little a remains as it is, but the next c gets replaced by S right. So, the

second c replace by S. So, this is small pars tree which has been built here and this

remains as it is. The third step, you know the, we have again replace this handle b a by a.

So, the small pars tree corresponding to a going to b a has been added to this sequence.

So, now we have a here, S to c another small pars tree the symbol be remains as it is and

there is another small pars tree, which is has been built. So, this progresses the further

and in the fourth step, we have replaced b a by b. So, this is the pars tree which has been

built here. So, this little b and this pars tree have been combined to produce B going to

using the production B going to b a.

So, here is a amalgamated pars tree and the other two remain as they are. Then step five

we have S B being replaced by A. So, here is you know, the tree for S to c and here is the

tree for b going to something. So, this S and this B are combined now by A. So, we have

new pars tree in this form and the little a, which remain before also stays. and then we

have step c in which this c is replaced by s. So, we have a little a, a small pars tree

hanging by A and another small pars tree hanging by S. And finally, all these a a and s.

So, this A, this entire pars tree routed at A and this S which is part of this pars tree are

combined to produce this entire big pars tree and there is nothing more to do this is the

root of the pars tree.

So, the parsing strategy starts from input build small pars tree combines them on the way

and finally, reaches the start symbol. So, this is the big pars tree for this entire string. So,

this is the process of bottom up parsing.

(Refer Slide Time: 40:48)

Now, let us study the shift reduce parsing algorithm. So, so far we said, we locate a

handles and then the replace the handle by the right hand side, by the left hand side non

terminal of the production and so on and so forth. We have not answer the question of

how exactly do we locate a handle in a right sentential form. In the case of L R parser

which we are going study later in detail it uses a deterministic finite state machine to

detect the condition that handle is now on the stack. So, how to do that is actually F l

complicated process and we will study that later.

The next question is which production to use in case there is more than one with the

same right hand side, that is possible, but the question is answer by the L r parser using a

parsing table similar to a L L parsing table to choose the production which is applicable.

It so, happens that the state of the DFA tell us not only that it is a handle, but it also tells

us the production which is applicable at that point. Then the third component is a stack a

stack is used to implement a shift reduce parser and the shift reduce parser is nothing but

an augmented deterministic push down automaton. It has several actions four to be

precise. There is a shift action which shifts the next input symbol to the top of the stack.

Then there is a reduce action the right hand of the handle is on the top of the stack.

So, it locates the left hand of handle inside the stack by looking at the number of symbols

the right hand side is made up of, replaces the handle by the LHS of an appropriate

production which is applicable at this point. So, you can observe that the reduction

process consist of popping symbols from the stack and pushing some symbols on to the

stack. So, again these moves can be coded in terms of an ordinary deterministic push

down automaton. So, that is why I said this is a augmented version of the d p d a, which

is more amenable for programming. Then it has an accept action, which says, yes parsing

is completed and is successful and of course, it may announce an error it says the input

the string is erroneous. So, an error recovery routine is called to make sure that parsing

can be continued.

(Refer Slide Time: 43:52)

So, let us take some examples to see, how exactly the parsers, shifted use parse works.

So, we have the same a c b b a c input. So, in this case it shift, the action is supposed to

be shift so, it shifts on to the stack. The next action is also shift. So, the parser shifts a c

is also on to the stack. Now, the parser determines that reduction by S to c is in order. So,

it replaces the top c by S. So, the next three symbols, next three actions are shift. So, we

get a S b b on the stack and a c in the input, now the reduction is called for a. So, because

the stack has b a as the handle and the production applicable is a to b a. So, b a is

replaced by A and the only symbol which remains in the input is c. So, now, b a is again

set to be a handle.

So, the replacement by b application of b to b a happens and b a is replaced by b. Again

there is a handle here S B. So, S B is replaced by A and we get a A. Now, there is a shift

and c is push down to the stack. Again c is reduce to S and A S finally, reduces to S and

here the shift reduce parser accepts. So, these are the exactly the same sequence of

actions that were actually perform when we traverse the rightmost derivation in reverse it

is just that they are coded in the form of the actions of the parser.

(Refer Slide Time: 46:02)

So, that a program can be written for it, here is another example from our expression

grammar and parser. So, i d 1 plus i d 2 plus i d 3 combined with plus and start that is the

input. So, i d 1 is shifted on to the stack then a reduction to E happens then plus is

pushed on to the stack.

And i d 2 is also pushed on to the stack, again i d 2 is reduce to E, star is pushed on to the

stack, i d 3 is also pushed on to the stack, again i d 3 is reduce to E. Now, E star E is

reduce to E and finally, E plus E reduce to E and the parser accepts. So, this is second

example of how the shift reduce parser really works.

(Refer Slide Time: 46:57)

Let us move on to a specific type of shift reduce parser called the L R parser because,

these are the parsers which are of practical interest to us. Of course, I must mention that

there were in the olden days other types of shift reduced parsers known as operator

precedence parsers, which were very popular at that time, but once the L R parsing

strategy was proposed people found that this has much more a much wider application

then operator precedence grammars.

And therefore, in the recent years the parsers are all L R parsers and the tools that we

have or the once we generate L R parsers automatically from the grammars. So, here

again just like the L L k we have the L R k so, left to right scanning with rightmost

derivation in reverse, k being the number of look ahead tokens. So, in the case of L L k

was left to right scanning with leftmost derivation. Here it is left to right scanning with

rightmost derivation in reverse not just rightmost derivation and k as usual is the number

of look ahead tokens. So, of practical significant as just L R 0 and L R 1 really speaking

L R 1 is a most important. These parsers can be automatically generated using parser

generators and YAAC is a an L R parser generator available under Unix. L R grammars

are a subset of context free grammars for which L R parsers can be constructed.

So, remember just like the L L grammars the L R grammars are also subsets of general

context free grammars. And a particular grammar for a language may not be L R 1 or L

R 2 and we may be able to rewrite some of these grammars to become L R 1 or L R 2,

but it does not mean that every grammar that is written for a language will pass the L R 1

or L R 2 text we should be smart enough to write the grammar such that the test actually

is completed successfully. So, L R 1 grammars fortunately can be written quite easily for

practically all programming language constructs for which context free grammars can be

written it just needs a little practice. And L R parsing happens to be the most general non

backtracking shift reduce parsing method that is known today.

So, these L L grammars are a strict subset of L R grammars. So, an L L k grammar is

also L R k, but an L R k grammar is need not necessarily be L L k. So, you can, that

means, you can always find L R k grammars which are not L L k.

(Refer Slide Time: 50:27)

This is the block diagram of an L R parser generator. So, the grammar is input to a table

generator this is the L R parsing table generator and outcomes a parsing table. And when

we use the parsing table there is also a derive routine this thing is this block is entire

parser. So, the parser consist of a stack, a derive routine and a and the parsing table

which are generated automatically. So, when the input is given the derive routine reads

the input manipulates the stack appropriately using the parsing table and generators some

output in the form either a parser tree or error messages, etcetera, etcetera.

(Refer Slide Time: 51:20)

So, let us see what exactly is an L R parser configuration. So, the input you know is a 1,

a 2, a 3,… a n dollar and the starting state of the L R parser is assumed to be S 0. So, a

configuration consist of you know a string of states and non terminals mixed here non

terminals or terminals mixed here and unexpanded or unused input is the second part of

the configuration. So, S 0, S 1, S m, etcetera are the sates of the parser and x 1, x 2, x m

are the grammar symbols terminals or non terminals. So, the starting configuration is

always S 0 and then the rest the entire input unused. So, there are two parts in the parsing

table, the first part is called as the action part and the second part is called as the goto

part. I will show you an example. The action table can have four types of entries shift,

reduce, accept and error, which we have already seen and the goto table provides the

next state information to be used after a reduce move.

(Refer Slide Time: 52:53)

So, let me show you a parsing table just to get the feel for it. So, the parsing table is

indexed by the state number on this side. The action table action part is indexed by the

tokens whereas, and of course, end of file and the goto part is indexed by the non

terminals alone. So, for example, if you pick state two and a input symbol as b its says S

6. The interpretation of this is the action is shift action and straight to which we shift next

is 6. So, what is done is, if the parser is in state two and the next input symbol is b, it

shifts it on to the stack and also shifts the states number 6 on to the stack. Similarly

suppose the state in which the parser is seven and for all the input symbols a b and c it

says the action is R 4, R stands for reduction and the number 4 is not a state number, but

it is the production number.

So, here it is a going to b a. So, the action which is done here is suppose the input symbol

is a. The action is reduce using production 4, the implication is the handle b a is available

on the stack. So, pop the handle from the stack it exposes some particular state. So, what

we do is use that state along with the goto table to determine which state we should

really go to. So, that is why, what is said here is the goto table provides the next state

information to be used after a reduce move. This becomes clear when you take up a

complete example.

(Refer Slide Time: 55:01)

But before that, Let us see how the L R parsing algorithm works. So, here is the parser it

has a table, it has a stack and it looks at the input as well. It starts with the initial state 0

and the input is w dollar, a is the first input symbol. So, the whole thing is repeated

forever until we get out of it. Let S be the top of stack state, a be the next input symbol.

So, we look at S and a in the action part, if it is a shift P push a and P on to the stack in

that order advance the input pointer. This is what I just now explained. So, if the action

says reduced by A to alpha then pop two star alpha symbols off the stack the reason is

the stack has a combination of both states and grammar symbols. So, there are two m

symbols, if we the right hand side of the, if the handle is of the size n. So, we really pop

two star alpha symbols of the stack. Now, the state S prime is exposed on the stack. So,

push a and goto of S prime comma a on to the stack in that order.

So, this is how we determine the next state to be a jumped into. If the action is accept

then we end otherwise, we announce an error and get out you know either do an error

recovery or get out of the parser. So, we will stop at this point and continue in the next

lecture.

Thank you.

