
Principles of Compiler Design

Prof. Y. N. Srikant

Department of Computer Science and Automation

Indian Institute of Science, Bangalore

Lecture - 7

Syntax Analysis: Context-free Grammars, Pushdown Automata and Parsing Part-3

 (Refer Slide Time: 00:23)

Welcome to the lecture on Syntax Analysis part 3. So far we covered the principles of

syntax analysis context free grammars and pushdown automata, and we also saw some

definitions regarding LL (1). Today, we will continue with LL (1) parsing go on to cover

recursive descent parsing as well.

(Refer Slide Time: 00:47)

Some recap on LL (1), so we just use LL (1) instead of a strong LL (1), because strong

LL (1) and LL (1) are equivalent as far as look ahead one is concerned. And since it is

not easy to implement look aheads longer than one, we will not worry about LL (2), LL

(3) and so on. We also defined first and flow sets last time let us do a recap on the

definitions.

The first of alpha is a set consisting of the symbols A, which can be derived from alpha,

so A in T and alpha derives a X and X is also a term string. First of Epsilon by definition

is Epsilon and the follow is although symbols here, which actually are after the non

terminal A in any sentential form. So, that is why it is defined as although symbols A

such that S derives alpha A, A beta, thereby signifying that A occurs in the sentential

form.

And we collect all these symbols little a, which or after this non terminal A, A can be

either A terminal symbol or the end of file symbol dollar. So, what we need to need to

you know understand is that first of all first determine by alpha alone, whereas follow is

determined by the context, that is we require that S derived a sentential form containing

A.

 (Refer Slide Time: 02:31)

Here is an example that I presented last time, so for this grammar S prime going to S

dollar, S going to a A S or c, A going to be b a or SB, B going to b A or S, the first and

follow are computed here. We begin you know very simply with first of S prime which is

nothing but the first of S, because all the strings from S prime actually are derived by S,

and what does S derive all strings you know derived by S begin with either A or c, so

first of S would be a comma c.

Similarly, for first of A we have all the strings derivable from A, you know that they

begin with little b and because there is a non terminal S here, all the strings which are

derivable by S or also include in the first of A; and for B, so that gives us you know the

first of A as a, b and the c. So, now as far as B is concerned the symbols b and the first of

S are included in the first of B, so that is how these are all computed.

Now, what about the follow, follow of S, it says is a, b, c dollar, so let us see where S

occurs, so S prime derives S dollar, so this is the first sentential form where S occurs and

dollars follows it, so this dollar is because of that. And S prime derives S dollar and if we

replace S by a A A S dollar, then you know finally, A can be replaced by SB and now B

is a non terminal, so let us make it derive some string all these strings will follow this

non terminal S.

So, if you apply B going to b A little b follows S, so that b is included in the follow of S

and then we have in a similar way, this sentential form a S a A S S where little a follows

S, so A also gets into the follow set of S. Finally we derive a S c S dollar from S prime,

where the little c follows S, so c is also included in the follow set of S, follow of A in a

similar way is a comma c, because S prime derives a A a A S dollar, where little a

follows capital A and in the other one S prime derives a A c where little c follows capital

A, so these two are in the follow of A.

(Refer Slide Time: 05:42)

So, this is as far as the example is concerned, to compute the first for terminals and non

terminals it is fairly straight forward, terminal symbols the first set does not change, it is

the symbol itself. And first of Epsilon is always Epsilon for a non terminals we begin

with phi. And then we consider and then we need to iterate the computation this entire

thing, until even every first set stops changing.

So, even if one of them is changing then we need to iterate once more, this is because the

first set computation, you know even if one of them changes it may actually make a few

others changes as well. So, then the computation is quite straight forward, we look at the

first you know production A going to X 1, X 2 etcetera X n, now first of A obviously,

includes the first of X 1, so first of A equal to first of A union, first of X 1 minus

Epsilon.

Now, first of X 1 produces Epsilon in that case whatever is derived by X 2 is also

derived by A, so that is what is being checked here is Epsilon in first of X i, so if so

include the first of X 2 also into first of A. Similarly, if there is X 3 and X 1 and X 2 both

of them produce Epsilon then we include you know the first of X 3 also into the first of

A.

So, this keeps going and if X 1, X 2 etcetera X n all of them, first of all these symbols

contain Epsilon, then Epsilon itself has to be included in the first of A. So, if we reach I

equal to n that is all the symbols have been looked at that means, all of them have

produced Epsilon and Epsilon is in the first of X n, so that is the last one we include

Epsilon into the first set of A.

(Refer Slide Time: 07:56)

So, now suppose we have a string beta for which we want to compute the first set, it is

not different from computing the first set of non terminal, if the string is certain beta is

beta is X 1 to X n, we do exactly what we did before for the non terminals, except that

this algorithm has placed beta in place of instead of A in all designs. So, we consider X

1, X 2 etcetera X n, so first of X 1 is obviously in first of beta, then if X n, we can

produce Epsilon that is Epsilon in first of X 1.

 (Refer Slide Time: 08:52)

Then first of X 2 goes into first of beta and so on and so forth, exactly the way it was

before. Now, let us look at an example to understand how this algorithm works, so S

prime going to S dollar, S going to a A S or Epsilon. So, this is the difference between

this grammar and the previous one the other two productions are the same A going to b a

or SB dot B going to c A or S. So, to begin with we initialized the first sets of the non

terminals to phi the null set and iteration one first of S is a comma Epsilon, because it

derives A and there is S going to Epsilon as well.

So, that includes Epsilon into the first set of S, now the first set of A, here is b, so which

begins the string b a here and then we have the then we have the non terminals. So, b

union first of S, of course minus Epsilon and union the first of b minus Epsilon why S

you know derives Epsilon. So, first of S we see here has produced and Epsilon, so

therefore, both the first of S and first of V have to be included in A and what about B

itself, B produces c A and S now the c is obviously non null, but B produces S and first

of S contains Epsilon, so finally A going to SB will also produce Epsilon.

And therefore, we need to you know include it, but not immediately at this point of time

we do not know that first of B is phi, from the analysis you know if we apply B going to

c A and B going to S, then we know that you know B is a first of B includes first of S

and therefore, it includes Epsilon, but at this point in iteration one first of B has been

initialized to phi and therefore, we cannot include Epsilon into the first set of A at this

point of time, it will included in the next iteration.

 (Refer Slide Time: 11:51)

First of B is c, so at the now we know what first of B will be it will be different, it is c of

course and the first of S, first of S actually includes an Epsilon and therefore, you know

we include Epsilon into the first of B, so c A Epsilon is the first set of B. So, this is as far

as the first iteration is concerned, in iteration 2, now first of S has A Epsilon, first of A

has b a, first of B has c a Epsilon. First of S does not change it is just A Epsilon, but first

of a changes.

So, from here we see the same b union first of S and then since S includes an Epsilon

first of S includes an Epsilon first of B as well and since first of B also includes Epsilon,

we need to include Epsilon as well. So, B union first of S minus Epsilon, union first of B

minus Epsilon and then we have to include Epsilon, because first of you know both S

and B derive Epsilon. So, that means, this becomes b a c epsilon which is different, first

of B is c a Epsilon you know has no has not changed from the last iteration. So, these are

the values which stabilize and do not change in iteration 3. So, these are the first values.

(Refer Slide Time: 13:02)

Now, let us look at the algorithm for computing follow of a non terminal, what we saw

was a definition before, but now let us see how its computed, initialize the follow set of

every non terminal to phi and follow of S is initialized to dollar, because S is the start

symbol, then we have S prime going to S dollars. So, dollar will be always present in

follow of S, so we do this for every production, until no follow set has changed.

Exactly, the way we computed the first set, let the production be X 1 A going to X 1, X

2, X n, so the assumption is not all these symbols are Epsilons, so in other words it is not

a production a going to Epsilon follow of X n is so we are now we cannot compute the

follow of A. We need to actually compute the follow of X n, you know and then the

other symbols as we go along, but to compute the follow of a we need to look at the

production in which the right hand side contains an A.

Until, that time we cannot compute the follow of A, because follow of a requires A

context derivable from these start symbol. So, for the non terminal X n it is easy to see

that in a sentential from, when we replace here by the right hand side X 1 to X n, the

symbols which was following a will also follow X n. Therefore, follow of X n is follow

of X n union or whatever, is the previous value from the previous iterations union follow

of A.

So, now let us call rest as follow of A, we will see why it is requires, now we are going

to look at the symbols X 1 to X n in the reverse order from X n downwards to X 1, so n

down to 2, so in such a case after X n for which we have computed the follow in the first

iteration. We go to X n minus 1, X n minus 2 etcetera, so let us take just two symbols

that is n equal to two, let us say we have computed the follow of X 2.

Now, we are looking at the follow of X 1 follow of X 1 contains all the symbols in the

first of X 2, that is obvious because X 2 derives a certain number of things and those are

all following X 1, but suppose X 2 also produces Epsilon. In such a case, when we

replace a by X 1, X 2 and make X 2 derive the Epsilon, all the symbols which follow A

in a sentential form will also follow X 1 in later derivations.

Therefore the follow of A which is nothing but you know the symbols which follow A

will also be included in the follow of X 1, so here is the generalization for the X a

production A going to X 1 to X n. So, it says for i equal to n down to 2, if Epsilon is in

the first of X i, so that is i is n to begin with so for first of X n, so if this is going to

produce an Epsilon. Then follow of the symbol which is prior to this, that is X of n

minus 1 X i minus 1 will be follow of X i minus 1 union the first of X i obviously, this

particular symbol first of X n will be included in the follow of X n minus 1.

Union, the rest so in the first instance rest will be follow A, but later it will become

different, now rest is again made follow of X i minus 1, then we go to the next symbol

and. so on, and so forth. So, suppose Epsilon was not in X n at all the first of X n, then

you know follow of a will never be following the symbols of X n minus 1 for as the

symbol X n minus 1. So, we do not have to worry about the Epsilon part, we simply say

follow of X i minus 1 is follow X i n minus 1.

 (Refer Slide Time: 18:05)

Union, first of X the rest part does not come into picture and of course, rest is initialized

to follow of X i minus 1, so this iteration continuous until the follow sets have not

changed. So, let us take an example so here it is the same grammar that we considered

for the first computation to begin with follow of S is dollar and the others are all phi, the

first competition let us assume has been completed. So, first of A is Epsilon you know

first of S is A Epsilon, first of A is a b c Epsilon, first of B is a c Epsilon, we completed

in the example prior to this.

In iteration one, we used the symbol X union equal to y to mean X equal to X union y

this is very similar to X plus equal to y in c, it is is used to you know reduce the amount

of material present on this slide S going to a A S. So, here this is the S that we consider

now, follow of S from the previous iterations and union dollar, so why is that follow of

this symbol is the S and this is the S, that we are considering to contain dollar.

So, follow of this S is follow of this S into a zero. So, that is dollar and rest would be

follow of this s which is again dollar the next symbol is here. So, follow of A is follow of

A union first of S minus Epsilon union rest the reason is this S can you know first of S

contains Epsilon here. So, whatever follows this S will also follow this A and therefore,

follow of a will include first of S union the rest is nothing but the follow of S.

So, that computes the follow of S and a here the for this production, so now let us take

the production A going to SB here, first of B also contains Epsilon, so follow of S will

contain follow of first of B will contain follow of B, union follow of A. So, that is

because b derives, you know this is the last symbol, so once a replaces is replaced by SB

whatever is following A will also follow V and the rest is recorded as follow A. Now, the

fact that B produces Epsilon is useful in computing the follow of this S, follow of S will

be first of B minus Epsilon union rest is nothing but follow of A, that is because B

produces Epsilon.

So, all the symbols which follow a will also follow this S, so that gives us a c dollar from

this production follow of A will be follow of A union follow of b and from this

production follow of S will be follow of S, union follow of b at the end of iteration one

these are values we got.

(Refer Slide Time: 21:40)

And in iteration two, the production a A S gives us follow of S equal to a c dollar, so that

is there is no change their, whereas follow of A equal to follow of A union first of S

minus Epsilon, union rest that is because S produces an Epsilon. So, that gives us a c

dollar now the follow set has changed, so follow of A was different, now it has changed

and the production A to SB, we compute follow of b. So, that again changes to a c dollar.

Follow of S does not change and at the end of iteration two, we have follow of S equal to

follow of A, equal to follow of B, equal to a c dollar and the follow sets do not change

any further. So, here in these cases we required two iterations, but it is possible that more

than two will be required that is easy to see.

(Refer Slide Time: 22:43)

So, let us consider the LL (1) conditions now, so far we computed the first and follow, so

now, we are going to define the LL (1) grammar condition based on the first and follow

the reason, we want to do that is we want to show an algorithm for computing the

parsing table for LL (1) grammars and those are based on first and follow. Suppose, G is

our grammar G is LL (1), if every pair of productions A to alpha and A to beta, the

following conditions satisfies.

So, the point is during LL (1) parsing, when there is a choice of productions A going to

alpha or A going beta, we should be able to say that one of them applies by looking at

the next symbol in the input. So, this can be asserted if for every choice of productions,

we are able to satisfy this particular condition which is stated here the condition says

direction symbol, set of alpha intersection directions symbol, set of beta is phi. So, what

is direction symbol set direction symbol set of gamma is if Epsilon is in the first of

gamma, then it is first of gamma minus epsilon union of follow here.

Otherwise, it is just first of gamma, so if you know gamma stands for either alpha or

beta, so in other words you know whatever A symbols alpha derives and beta derives the

first symbols of these should not be the same. Otherwise, it is the choice cannot be made

by looking at the next input symbol, so there is an equivalent formulation in the you

know Sethi and Ullman’s book, Sethi and Ullman, it says first of alpha dot follow a

intersection first of beta dot follow A equal to phi for the same productions c 2 alpha and

A to beta.

These conditions are identical it is easy to see that, because suppose alpha does not

produce any Epsilon, in that case Epsilon in first of alpha is false, so the direction

symbol set simply becomes first of alpha. So, the follow is inconsequential in that case

suppose alpha does produce Epsilon, so first of alpha contains Epsilon in such a case, if

this is Epsilon then the follow set of a will also be included in the first computation. So,

we also do that here you know if Epsilon is in the first of gamma, first of gamma minus

Epsilon union follow of A.

So, all the elements in the follow of A will also be included in direction symbol set of

alpha, in this case the same is true for this as well first of beta dot follow here. So,

direction symbol intersection or this intersection or identical as far as the LL (1)

condition holds. Now, this is the condition for the grammar to satisfy the LL (1) parsing

property, suppose we condition is satisfied can we build a parsing table LL (1) parsing

table from the grammar definitely.

The process is quite simple for each production A to alpha, we check each symbol S in

direction symbol alpha. So, S may be either a terminal symbol or the end of file symbol

dollar just add the production A to alpha to the parse table A at the point, A comma S,

we will see an example of this, so and make each undefined entry has error. So, with the

other formulation first and follow of formulation the table construction is very similar

consider the first of alpha add the productions.

(Refer Slide Time: 27:11)

And if Epsilon is in first of alpha, then add for all follow of A as well and if dollar is in

the follow of A add it for the dollar as well. So, after the construction of the table, so of

course, we could test the productions for the LL (1) property and then build the table or

we could build the table and check if any slot in the LL (1) table has more than one

production to or more then the grammar is not LL (1), so these two conditions are

identical.

(Refer Slide Time: 27:58)

So, let us take up a few examples and understand what exactly this LL (1) property

means, so here is a very simple grammar the sentences or the statements are either if A, S

else S or while a S or begin SL end, where SL is a statement list. So, we derive S prime

from SL and S prime derives semicolon SL or Epsilon as far as production one is

concerned each of the three alternatives begin with a different token here is if here is

while and here is begin.

So, these three terminal symbols are all different, so as far as P 1 is concerned there is

the LL (1) property is satisfied for P 2 there is no choice. So, there is nothing to that LL

(1) property is trivially satisfied for P 3, we have s prime going to a semicolon SL or

Epsilon. So, we need to compute the direction symbol set for this side and direction

symbol set for this epsilon as well, direction symbol set of semicolon SL all the strings

begin with semicolon.

So, it similarly just non null symbol, so it is just semicolon and direction symbol set of

epsilon to compute that the symbol of Epsilon kit produces an Epsilon of course,

therefore, it is nothing but the follow of S prime to compute, the follow of S prime, we

look at the production where S prime is placed. So, this production has S prime of the

right hand side and since this is the last symbol here it tells us that follow of S prime you

know is nothing but follow of SL.

Now, look at SL is contained here and what follows SL is this token end, so direction

symbol set of Epsilon is end and again semicolon and end are two different symbols they

do not intersect to non phi therefore, the LL (1) indeed LL (1).

(Refer Slide Time: 30:19)

Here is a different example, so if you observe in this example I carefully avoided the two

possibilities of if statements if a then S, if A then, S else, S these are the two possibilities.

So, I included only one of them what happens if we include both, so let the grammar be

S prime going to dollar S going to if id S or if id S else S or A. So, A is any other you

know statement now trivially you can see that these two alternatives begin with the same

symbol if and therefore, our hunch is that the LL (1) test will be not satisfied.

So, let us formally check it out for this you know s prime are producing S dollar, so

direction symbols are tough S dollar is if comma A because direction symbol set is

nothing but the first set, if there is no Epsilon involved. So, S produces if and A as the

first symbols or the first tokens, so if and A are included in the direct symbol of S dollar

direct symbol of the terminal symbol A is of course just a direct symbol of or symbol.

If i d S is if because the first symbol is non null if symbol here also it is non null and if so

this is also if so if you look at the alternatives these two these two. And then this and this

for the first pair it is indeed five the intersection is phi for the second pair the intersection

is phi, but for the third pair if i d S and if i d S else, the sets contain the symbols if and

therefore, it is not equal to phi.

So, the LL (1) test fails let us see what happens, if we fill the table because using

directions symbols to check the LL (1) property is one way building the table and then

now checking the slot is a simpler option. So, let us see how it can be done, so for the

non terminal S prime, so S prime going to S dollar, so we consider the direction symbol

set of S dollar, it contains two symbols i f and A, so the production S prime going to

going S dollar is added for the two symbols i f and A.

For the production S going to i f, i d S, we look at the our direction symbol set of i d S

and that that is just if so for the non terminal S on the symbol, if we add the production S

going to if i d S, and for the second production S going to if i d else S. The direction

symbol set again contains if so for the non terminal S for the symbol, if which is

contained in the direction symbol set we add the production S going to if i d S else S and

the last one S going to A direction symbol set of A is A.

So, for the combination of S and A, we add the production s going to A. So, now this

stool you know contains two alternatives, so two productions and therefore, the grammar

is not LL (1) of course, the problem with this grammar, is it is ambiguous we have seen

this example before.

(Refer Slide Time: 34:19)

So, if you look at this the two parse trees which are produced by for the same string if i

d, if i d A 1 else A 2, we already know this example we know that there are two parse

trees possible because the grammar is ambiguous and therefore, precisely what creates

the make the grammar fail the LL (1) test.

(Refer Slide Time: 34:44)

This is the original grammar that we just now saw suppose we apply what is known as

left factoring. So, the problem is if i d S is common to both these productions, suppose

we make a you know factoring out of it make the if ideas as common to both these

productions and introduce a new non terminal called S 1 which goes to either Epsilon or

else S. So, between these two if we simply expand S 1, we get both the productions

which are here the rest of the grammar remains the same.

Now, you compute the direction symbol sets for S dollar, it is the same for A it is the

same for if i d S, S 1, it is just if single one if i d A and then direction symbol set of else

S is just S and for the Epsilon, so here is Epsilon. So, direction symbol set of this Epsilon

will be follow of S 1 is here. So, it tells us that follow of S 1 is nothing but follow of S is

now in two places this S give rise to gives rise to dollar and this S gives rise to first of S

1.

So, first of S 1 contains else, so direction symbol set of Epsilon contains else comma

dollar, if you look at the intersection this intersection of course, this is this has if and that

has A. So, it is non phi, but for this intersection we have non phi you know which is the

previous intersection, if and A, it is phi whereas for this inter section it is not phi. So, this

contains else and this contains else and dollar, if you fill the table entries, so exactly the

way before S prime gets these two entries S.

Now has just one entry for if and one entry for A, but the two entries are now shifted to S

one and else, so the problem has just shifted to a different set of productions from the if i

d production to else S production this grammar is still ambiguous. So, if you look at the

string if i d, if i d A 1 else, A 2 and we know that we can produce these two parse tree, so

until this point the parse trees are identical. So, both of them are the same, but here do we

produce this Epsilon or do we produce else S A 2 else.

This is one you know ambiguity and for this S, again the expansion is if i d S, S 1, so if i

d S, S 1 and for this S, we produce an Epsilon or do we expand it to else a two this is the

ever ambiguity. So, because of these two the two parse trees set are different and because

the grammar is you know ambiguous and it fails the LL (1) test.

(Refer Slide Time: 38:15)

So, another example and in this case the grammar is indeed LL (1), so you have this

good hold grammar S prime going to S dollar, S going to a A S or c, A going to b a or

SB, B going to b A or S. We have already worked out the first end follow sets so I just

reproduce them here, now let us see what the directions symbol sets are for S dollar, it is

the first of S. So, first of S contains a c, so direction symbol set of S dollar is a c for the

string a A S direction symbol, set is obviously little a, because A is not a normal

character.

Similarly, direct symbol C is c m, direct symbol of b a is B direct symbol of SB is really

first of S, so which is nothing but a comma c direct symbol of b A is little b, because it

starts with B and direct symbol of S is first of S which is a comma c, now these are the

three pairs which we have here for a A S and c the direction symbol sets do not intercept

they produce phi for b A and SB. This is b A, this is SB, so b A is b and SB is a comma

c.

Again they produce A file for b A and S 1 is a little and the other one is a comma c,

again it produces A phi. So, the LL (1) test is satisfied, now let us fill the table for the

production S prime going to S dollar for the symbols a and c, we place this production S

prime going to S dollar in the table.

For the two productions a A, S and c lets take one at a time S going to a A S, the direct

symbol is A, so we place this production for the combination S and A for the production

S going to c has direct symbol c equal to c. So, for the combination of S and c, we place

S to c, so similarly A to b a is placed you know for the combination A to b a and A to SB

has first of S equal to b A direct symbol is also b A, so direct symbol of S is a c.

 So, for A and c, we place the production A going to SB and A going to SB, similarly for

these two productions for b, we provide the production B going b a for the first of S, that

is a comma c, we place the productions B going to S. So, that table has no conflicts that,

is no slot has more than one entry and therefore, the grammar is indeed LL (1).

(Refer Slide Time: 41:22)

Another example, so this time the example tries to show that rewriting a grammar or

transforming a grammar makes it LL (1), so here is a grammar for statement lists S prime

going to SL dollar and statement list is SL or S going to A. So, we as A is the any

statement, so we produce as many A as necessary using the recursive production here.

So, note that this is a left recursive grammar the theorem is that all left recursive

grammars fail to be LL (1) here is a hint of why that happens.

See SL produces and S and SL also produces S, so in some sense the first of SL and this

first of S, obviously will contain the same entries and therefore, direct symbol of these

two will obviously, not be phi and that is why the you know LL (1) property fails. So, we

can see that happening here direct symbol of SL dollar is just A, because first of SL is

nothing but a first of SL is first of A and that is a direct symbol of A is a direct symbol of

SL, S is also A, because that is nothing but first of SL which is first of S and that is A

and direct symbol of S is A.

So, you can easily see that the interception of direct symbol SL and direct symbol S

which is here is not phi and therefore, the table has entries SL going to SL dollar and SL,

S for the combination SL and A, so the grammar is not LL (1). Suppose this left

recursive grammar is mode into A cursive grammar, so it is actually the same language it

is just that, we rewrite the grammar as A recursive grammar.

So, s prime produces SL dollar that remains as it before instead of SL going to SL, S bar

S, we make the production as SL going to S c rewrite it and then A going to S A or

Epsilon S going to A remain as it is. So, between these two the A part produces as many

instances of this treatments as necessary. So, but the grammar is not left recursive

anymore it is recursive, because a appears here and it is the same symbol as the LH S

here. So, this is your recursive production whereas, this is a left recursive production.

So, if we compute the direction symbol sets for this we get for SL dollar and A, we get

the same sets for direct symbol of SA, we get a because direct symbol of SA happens to

be first of S and that gives us A and what about direct symbol of Epsilon. So, here is

epsilon this is null able, it produces an Epsilon that is so it includes the direct symbol of

epsilon will include the follow of a and let us see where A occurs it occurs here, but that

again tells us that it is follow of A it occurs here.

So, that tells us that the follow of SL is also required and SL occurs here and that

includes a dollar the follow of SL includes the dollar, so direct symbol of Epsilon gives

us dollar and now for the alternatives S, A and Epsilon, we have S, A, as a direct symbol

of S, A as A and direct symbol of Epsilon as dollar. So, these two actually intersect to

phi therefore, the grammar is indeed LL (1) and we can fill up the table in this fashion

there are no conflicts here. So, A going to A, and A combination is a going to S, A and A

and dollar combination is a going to Epsilon.

So, this is the LL (1) parsing table for the right recursive grammar, now this gives us A

hint that I, we are able to convert left recursive grammars to right recursive grammars

then may be some of the grammars which fail the LL (1) test can be made to succeed in

the test it is indeed true.

(Refer Slide Time: 46:22)

So, now we study some of the grammar transformations, so as I mentioned before to

compute the first and follow sets we must make sure that the grammar has no useless

symbols and I also mentioned at that time that the elimination of users symbols will be

dealt with later. So, now we come to the algorithm which eliminates the useless symbols

what exactly is a useful non terminal and what is a useless non terminal the grammar

transformations that, we study are elimination of useless symbols elimination of left

recursion and what is known as left factoring.

We have seen instances of this before, but let us do it formally, now so the grammar you

know let it be NPTS as usual suppose a non terminal X is in is it occurs in a sentential

form that is s derives alpha X beta and this alpha X beta finally, derives W which is a

string in the language of G.

So, S derives w, so here I should have put A star here to show that there are more than

one productions possible and that is the non terminal must occur in a sentential form and

finally, we should be able to derive a string from the sentential form in which the non

terminal occurs if both these happen then you know the non terminal X is useful.

Because, it has been instrumental and producing A string in the language if it is not, so

then X is useless, so now, let us be more you know you know let us pin down the

conditions which are required to make x useful the first condition i S X must derive W

and w must be a string. So, that is X derives some terminal string the second condition is

S X must occur in some sentential form S derives alpha X beta.

So, there is X occurs in some string derivable from S, both these conditions must hold at

the same time if we consider them individually then you know actually some useless

symbol may slip into other grammar let us take an example here is S, the grammar is S

going to a b or c a b going to b c or a b a going to a c going to a b or b d going to d. So,

let us see, if what these conditions yield. So, we are before that if you look at the

productions it is very clear you know intuitively that this non terminal b is useless why

see what happens is this non terminal b again has two production b going to b c and b

going to a b, but there are no productions which yield terminal string for b.

So, in other words if we apply the production s going to a b we can keep on applying b

going to b c or b going to a b,, but we will not be able to finish it off by using a terminal

production because it has none. So, that the reason why b is a useless symbol and it. So,

happens that once b is useless the productions containing b will also be useless and the

have to be eliminated. So, s going to a b must be eliminated b going to b c must be

eliminated b going to a b of course,, must be eliminated and then c going to a b must also

be eliminated. So, what we really do is we systematically apply the two conditions here

we collect the non terminals which produce terminal strings to begin with. So, a going to

a and c going to b these are the two production which have only terminal symbols on the

right hand side.

So, they indeed produce terminal strings now we take those non terminals which have

only the non terminals corresponding to these productions on the right hand side it. So,

happens that S going to c a is such a production and of course, D going to D is other

production which has been included because it produces only terminal strings on the it

has only terminal strings on the right hand side. So, S going c a has c and A which are

already included here. So, the first condition now is satisfied right every non terminal

produces some terminal symbol. So, those are the only productions which we have

included.

But, now what about the non terminal D even though it produces A terminal string on its

own does it occur in a sentential form which is derivable from S definitely not because S

to c a is the only production which we have considered which contains non terminals on

the right hand side and there is no D in it. So, D going D is also useless and the symbol D

happens to be useless. So, finally, applying the condition to above we get s going to c A

A going to a and c going to b, the this is the grammar which contains only useful

symbols.

(Refer Slide Time: 52:30)

So, now let us formalize the two algorithms and see how they can be stated. So, the first

condition X derives W, so G be the grammar and G prime is the new grammar. So, we

iterate we start with N old equal to phi and N, new is all those non terminals X which

have only terminal strings on the right hand side. So, those are included in N, new while

N old not equal to N new keep iterating. So, we accumulate N, new in N old or rather

retain it in N old and N, new becomes N old union all those symbols X, such that X to

alpha is a production and alpha contains only those symbols which have already been

included N old and of course,, otherwise it is a terminal symbol. So, this gives us a few

more symbols hopefully and that will be our n new.

We go back now N new is bigger therefore, A it is not equal to N old, so again expand N

new by including more and more symbols, until we cannot grow it anymore and we

come out we say N prime is N, new T prime is the old T, itself S, prime is S and P prime

is all the symbols P, you know all the productions P which contain only the symbols in N

prime union T prime in the right hand side part of the production. So, this is exactly what

I explained just now you know in this example. So, we included A to a c to b d to d and

S to c a in this first step.

The second algorithm checks whether the non terminal X is present in any sentential

form that is whether it can be derived from S, so to do that we start with this start symbol

and then try to include as many symbols as possible in the set N prime consider the

productions of the symbols which are present in N prime. So, A going to alpha 1 to alpha

2 alpha, 3 alpha, 4 etcetera any of these you know with A in N prime. So, to begin with

its always S going to something the all the productions of S. Now consider the you know

non terminals of alpha 1, alpha 2 etcetera add them to N prime consider, the terminal

symbols of all this and add them to T prime.

Here I must stress that the grammar G that, we consider here is the one in which we have

applied the production or rather the algorithm which is presented here that is we have

removed some of the useless symbols already. So, this is repeated until there is no

change in N prime and T prime, then we accumulate in P prime, the productions all of

the symbols are in N prime union T prime. So, this is what we did here you know once

we did is start from S, we include c and a and those productions, and those are the only

ones which will be included in the set of productions. So, let us stop here and in the next

lecture we will consider a recursive descent parsing.

Thank you.

