
Principles of Compiler Design 

Prof. Y. N. Srikant 

Department of Computer Science and Automation 

Indian Institute of Science, Bangalore 

 

Lecture - 4 

Lexical Analysis-Part-3 

 

(Refer Slide Time: 00:20) 

 

Welcome to the lecture on lexical analysis part three. So, in part one we covered the 

basics of lexical analysis the motivation, etcetera, and we covered the theoretical 

fundamentals, finite automata, regular expressions, and transition diagrams in part 2. 

Today we will continue a little more about transition diagrams and generation of lexical 

analyzers and then study ((Refer Time: 00:46)), which generates lexical analyzers. 



(Refer Slide Time: 00:49) 

 

So, to do a bit of recap transition diagrams are generalized deterministic finite automata, 

but there are a few differences. The edges may be labeled by a symbol set of symbols or 

a regular definition, some accepting states may be indicated as retracting states. And 

when we reach a retracting state we really do not consume the symbol which brings us to 

that particular state. And then with each accepting state there is an action which is 

executed when that state is reached. Typically we use this action to return a token and its 

attribute value, but very important transition diagrams are meant for you know manual 

translation and not for machine translation. 

(Refer Slide Time: 01:48) 

 



So, let us understand how exactly transition diagrams can be translated to lexical 

analyzers. So, the first transition diagram will be considering is the one for reserved 

words and identifiers. So, this a fairly simple and straight forward transition diagram. It 

starts in state 0 then on a letter we reach state one we keep on consuming letters and 

digits in state one and when we finally, get some other symbol other than letter or digit 

we reach state two, where we return the token code or say for the reserved word or for 

the identifier itself. So, how does this really translate to a program? 

(Refer Slide Time: 02:21) 

 

So, the lexical analyzer you know is called a get token and it returns a type called token. 

So, inside the lexical analyzer we have two local variables my token and c. So, there is a 

while loop, which runs until the end of file. So, which has a switch on the state. So, to 

begin with we will always be in state 0 and then you know for this particular transition 

diagram, we will be in state 0. And as we read a character in state 0 if it is a letter we 

change to state one, otherwise we report it as a failure that is because here the only legal 

character is a letter.  

And in state one we check whether it is a letter or digit after reading a character if 

serviced we remain in the same state otherwise we switch to state two. In state two we 

have actually we have got ready to announce a token. So, the symbol which brought us 

to state two is not consumed it is push back to the input. The token is obtained by 

searching the table of tokens. So, if it is a reserved word then you know the reserved 



word token is returned by the search token and if it is an identifier then we simply get the 

string corresponding to the identifier, put it in my token dot value and return my token. 

(Refer Slide Time: 03:56) 

 

 (Refer Slide Time: 04:00) 

 

Similarly, when we want to… You know catch constants various types of constants hexa, 

octa, etcetera, etcetera we start in state 0 and little X or a X we go to the hex constant 

part. And on d oct the octal digit we come to the octal part, we keep consuming digits 

here until we reach return a token. So, this is the scheme both for hexadecimal and octal 

you know digits rather constants. So, this is fairly straight forward, we remain you know 



if the character is a 0 than it is an octal constant. So, we go to state four and if it is not a 0 

then it is a failure because it is an illegal character and in state four we check you know 

whether it is an X or x. So, it could be a hexadecimal constant or it could be an octal 

constant.  

So, in you know if it is a hexadecimal we go to state 5 and if it is octal the we go to state 

9 and. So, the two constants hexadecimal and octal are separated by you know one of 

them the hexadecimal is prefixed by X whereas, the octal constant is not prefixed by X. 

So, if neither of these appear in the input then it is a failure in state 5 we go on checking 

the for the hexadecimal digits and we go to state 6 on receiving hexadecimal digit. 

(Refer Slide Time: 05:36) 

 

We remain in state 6 until we get hexadecimal digits and then we either go to state 8 or 

state seven depending on the qualifier presence or otherwise. So, here again you know 

we return the token called integer constant because hexadecimal constants are also 

integers. So, after and we evaluate hexadecimal number and return its value as the 

attribute of the token. So, in state 9 we do something similar and check the octal digits 

here. 



(Refer Slide Time: 06:12) 

 

So, and finally, we return int const the evaluated octal number as the token and its value. 

(Refer Slide Time: 06:22) 

 

So, for integer constants it is even simpler n number of digits are consumed and then the 

qualifier or otherwise is checked and we return in int const. 



(Refer Slide Time: 06:34) 

 

So, the integer constants are very easy we check whether it is a digit otherwise it is a 

failure, we consume digits, and finally in state 15 we get the we return the integer 

constant token along with its value. 

(Refer Slide Time: 06:53) 

 

So, this an overview of how the transition diagrams are translated into you know lexical 

analyzer programs, but there are some reality checks that must be done here. So, we 

actually saw program segments corresponding to different you know transition diagrams. 

So, these transition diagrams must be combined appropriately to make a big transition 



diagram. And then that transition diagram will have to be translated to manually into a 

lexical analyzer program. Unfortunately combining the transition diagrams is definitely 

not trivial and it is possible to, you know one possibility is order the transition diagrams 

in particular order say transition diagrams for reserved words, then constants then 

identifiers and operators, try each of these transition diagrams in a in that order.  

So, in other words the programs are also listed exactly in that order. So, when there is a 

failure it goes to the next transition diagram and starts looking at that particular diagram. 

So, if this is followed you know it this is fairly easy to program; however, this does not 

use the longest match characteristics. In other word the word t h e n e x t would be an 

identifier and not a reserved word then followed by identifier e x t.  

So, it should not be rather, but what happens is if you actually order the transition 

diagram for identifier first the next would be an identifier. But if you order the reserved 

word transition diagrams first then you know you would have the reserved word then 

followed by identifier e x t really, in reality it is better to use the longest match so. In 

fact, the next should be identifier rather than then followed by identifier e x t. So, how do 

we get this longest match? The transition diagrams must be tried in you know all of them 

must be tried, then all the matched must be recorded and the longest match must be used. 

So, if this is done or if the programmer is able to order the transition diagrams 

appropriately, in either case the longest match can be used. Using lex to generate lexical 

analyzers, really makes it easy for the compiler writer. So, we will see how this works in 

the next few slides. 



(Refer Slide Time: 09:46) 

 

So, now you know. So, far we saw how to generate regular how, how to generate lexical 

analyzers you know manually using transition diagrams, this or that approach is fine as 

far as small lexical analyzers small lexical analyzer small languages are concerned. 

However, for professional languages such as c c plus plus java the lexical analyzers are 

very difficult to write by hand. 

So, there is a language and corresponding tool available for describing lexical analyzers. 

So, lex is such a tool available in unix. So, lex has a language for describing regular 

expressions, which are at the heart of the lexical analysis. So, you just write down you 

know all the regular expression, specifications for each of the patterns that we are going 

to detect in lexical analysis, then it generates a pattern matcher for the regular expression 

specifications, which are given to the lex tool. And once it is done the lex tool generates 

programs, which are appropriate for the lexical analysis. We are going to see how this is 

done. 

The general structure of a lex program is that you have definitions we will see what these 

are then we have what are known as rules and finally, we have user subroutines. Out of 

these definitions are optional, but rules and user subroutines are essential parts of a lex 

program are lex specification. And on a unique system how do we use lex to create a 

lexical analyzer. So, you just type lex e x dot l and it creates a c program by the name lex 



dot y y dot c then compile the program using g c c it produces e x dot o and e x dot o is 

your lexical analyzer which carves out tokens from its input 

(Refer Slide Time: 12:01) 

 

So, now let’s see how exactly a simple lex program looks like and then go into some 

details. So, here is a comment next specification for the example this is a c style 

comment and we do not have any definitions in this particular program. So, between 

these two percentage marks we have the patterns and then we have a little bit tough user 

written code. So, this is very simple there is a main program which calls lex and there is 

a y y wrap program, which wraps up the lexical analysis. And in fact, y y wrap hardly 

has anything a unless we want some files to be closed explicitly, we want we will see 

examples of this little later.  

Coming back to the rules section or the patters section this is a pattern a dash z plus, 

which stands for you know any of the letters a to z any number of times one hour more. 

So, this is a set notation a you know a to z. So, all the characters a to z are in that set and 

a to z plus implies any of these characters any numbers of times once or more times. So, 

if this pattern is detected then the echo statement generates you know echo’s the pattern, 

which is rather the text reaches matching this pattern. And then its prints out a new line 

character dot slash you know bar slash n indicates dot indicates any character, but new 

line and slash n indicates new line.  



So, if in the absence of a match here all other characters are actually matching here and 

we ignore them. The semicolon is just empty code. So, it ignores all other characters. So, 

here is a sample. So, we have input here which contains both lower case and upper case 

characters, but the output filters and produces only the upper case characters that is very 

easy to see. So, a to z plus matches all these w you know w o e o e etcetera, etcetera. And 

then for each of the matches it prints out the characters which match and followed by a 

new line, where and it ignores all other lower case or any numbers characters etcetera, 

etcetera. 

(Refer Slide Time: 14:37) 

 

The definition section of the lex program, it contains you know we have already seen 

regular definitions. So, they are similar to that there are similar definitions written here 

and there is also some code which can be included for initialization and other purposes. 

So, definitions are like macros and they are actually like short hands. So, and they have 

the form name followed by its translation there are two simple examples here the name 

digit really stands for the set 0 to 9. And the name number stands for you know the digit 

pattern which is defined here followed by digit star, which implies 0 or more occurrences 

of digit.  

So, here we are writing a regular expression digit digit star and the digit part is defined 

here. So, these two together define a number as 0 to 9 followed by you know any one of 

0 to 9 followed by any 1 of 0 to 9 0 or more times. So, that is the number and this is the 



you know definition for that number. So, when we use such definitions it become easier 

for us to write bigger regular expressions as they are going to see very soon. So, any 

code for initialization etcetera that be include here any variable that we want to use are 

all included between this percent bracket and percent bracket. So, that is the initialization 

part. 

(Refer Slide Time: 16:12) 

 

The rules part it contains the is the heart of any lex specification or lex program, it 

contains patterns and it contains c code. So, a line starting with white space or material 

enclosed in percent bracket etcetera is c code. So, any c code lines are copied verbatim to 

the output they are to the generated c file they are not changed in by any fashion. And a 

line starting with anything else is a pattern line that is inside the rule section. So, pattern 

lines contain a pattern followed by some white space and then followed by some c code 

which is optional. So, that is here. So, there is a pattern followed by some white then 

there is c-code.  

So, this c code and the initialization c code are all copied exactly in the same order to the 

output c code file, there is no change at all. So, what happens for the patterns? The 

patterns are nothing but regular expressions they are first translated to NFA’s then the 

NFA’s are converted to DFA’s. So, we have not studied the you know particular 

algorithm for optimization of DFA, but let me tell you that DFA’s can be comprised and 

optimized. So, that they are compacted rather compacted and optimized, it is the number 



of the states of the DFA’s the number of transitions they make etcetera can all be made 

you know optimal. And it so happens that you can find for same language any other NFA 

or DFA will always be optimized to a particular unique DFA.  

So, these DFA’s are stored in the form of table and a driver routine as well. So, this is 

easy to understand the driver routine on a particular state looks up the table and then 

finds out what the action is and performs that particular action on that symbol. The 

action associate with the pattern is executed when DFA recognizes a string, which 

brought you to that particular final state. So, once we reach a final state we may want to 

announce a token and that can be done with the help of this particular action.  

(Refer Slide Time: 18:46) 

 

So, now let us go into details of the syntax of a lex and then take up adequate number of 

examples to understand them. So, strings in lex are nothing but concatenation of various 

characters. So, integer when a57d hello these are all examples of strings any symbols 

which actually you know can be put together and made into a string, but there are some 

operator symbols which need to be handled in a special way. So, for example, the double 

cote the back slash the square brackets this caret etcetera, etcetera have a star plus mid 

this you know bar etcetera, they are all special operators we are going to understand the 

their work and you know usage as we go on.  

So, to begin with this back slash is an escape character. So, if you want to use any you 

know its usage similar to that of c. So, if you want to use any of these special characters 



in your string representation, then you can say back slash question mark or a back slash 

dot to get that particular dot as a character into a string, character into as a string. Now 

very important notations is tough character classes. So, we have left brackets square 

bracket and the right square bracket anything with in enclosed in between is character 

classes. So, in side only you know the back slash the dash and the caret have special 

meaning all others are just characters inside the set notation.  

So, for example, the notation minus plus in one square bracket pair and another pair 

contain 0 dash 9 plus. So, this stands for minus plus is set containing minus or plus and 0 

to 9 plus is set containing 0 or 1 or 2 etcetera and up to 9 followed by plus this is a 

regular expression as we can see. So, it is start with whether it’s minus or plus followed 

by you know any of the digits any number of times.  

So, similarly a to d 0 to 4 a to c. So, this says any character a to d followed by any of the 

let character, you know any of the character 0 to 4 and finally, any of the characters 

capital A to capital C. So, this is the set of characters corresponding to this regular 

expression notation, this notation says the character a b c inside the square brackets. So, 

this simply says its complement operator all characters except a b or c. So, a, b, c as 

usual stands for a or b or c and caret front complements inside it says all characters a 

except a or b or c it including all special and control characters as well two more 

examples plus back slash minus followed by 05 plus.  

So, I said this back slash really stands for the black slash minus really stands for the 

minus operated itself. So, it is either plus or minus. So, here difference is the minus 

started in beginning. So, it was actually understood as the minus character, but here we 

wanted to make it that second character, which cannot be done because it is use to you 

know ah used as when it is used as when it is used as second character that should be 

third character as well. So, get right of this problem we used the back slash to put the 

order of the put plus to the minus characters and the 0 to 5 plus is 0, 1, 2, 3, 4 or 5 plus. 

So, again caret a to z and a to z says all characters which are not letters. So, this is a to z 

is all lower case characters capital A to Z is all says as upper case characters and 

character complements them. So, it all characters which are not letters so; that means, 

you know all the digits special characters etcetera or all included in the set.  



(Refer Slide Time: 23:03) 

 

There is dot operator, which matches any character except newline and question mark 

operator is used to implement the epsilon or null string option. For example, a, b 

question mark c stands for a followed by b or epsilon followed by c then we also have 

repetition alternation and grouping characters. So, a b bar c d plus question mark e f star. 

So, this regular expression, which stands for. So, observe that we have used ordinary 

parenthesis not the square brackets. 

So, a, b is the string a b, c is the string c d plus stands for the d any number of times, then 

the question mark says epsilon place of any of the that is bar epsilon and then e f star 

says repeated number of times. So, that is e f star. So, this is the regular expression 

notation in the ordinary form, where as this is the lex notation. There are context 

sensitivity operators as well slash then and the caret and dollar. So, if we use caret as the 

first character of the first expression, then the expression is matched only at the 

beginning of the line. So, for example, if we say caret a b is the pattern on its own 

remember caret character inside the square bracket as the different meaning, this is 

outside the square bracket. 

So, this means line beginning with a b. So, it is matched only if the line starts with a b, a 

b dollar the dollar is end of the line end of you know it matches to the last ends with the a 

b. So, dollar if the last character of an expression is matched only the end of the line. So, 

then the look ahead operator is little more complicated we want to say that d o is the 



pattern it should be match provided there is a pattern following it string matches this 

particular pattern. So, that is letter or digits star equal or letter or digit star comma. So, if 

this pattern entire big pattern mattes after the d o then the d o is a pattern, where which 

string which is to be where pattern which is to be matches if not otherwise. 

So, in that in the sense slash operator is a look ahead operator which it looks at all the all 

the pattern, the pattern which is following, but which does not consumes the symbols 

which match the following pattern. It consumes only two characters which is d o the rest 

i is going to be i u know match again after the d o match is finalized. 

(Refer Slide Time: 25:54) 

 

What are the actions of lex? For example, the default action is to copy input and output. 

So, those characters which are unmatched. So, if there is no match. So, just copy to the 

output. So, we need to provide patterns which really catch characters that is our purpose 

and what is caught that retend the buffer y y text. So, echo actually empty’s is the y y 

text into the output y y length contains the number of characters which are matched and 

whose character string is present in y y text.  

So, lex always tries the rules in the order written down and the longest match is 

preferred. So, we remember we discussed this longest match requirement in the lexical 

analyzer and transistor you know the transition diagram part. So, for example, here this is 

a word integer and here is a regular expression corresponding to any lower case character 



a to z plus . So, corresponding to the integer action one and corresponding to the second 

one is action two.  

So, if you have a minor variation and we say the integers then really speaking integer 

there are several possible matches integer matches the first part. And s matches the 

second part it is also possible to matches the entire thing integers in the second with the 

second pattern as well. And since the longest pattern is always used it this is the pattern 

which is pattern actually which is matches to the our input integers. 

(Refer Slide Time: 27:38) 

 

So, now let us start looking at several examples to understand how exactly lex performs 

its matching. In fact, the files which contains this all programs match and here X 1 2 and 

etcetera, etcetera. So, all the available in NPTEL repository and you can download them 

compile them and execute them to see whether the output generated properly try with 

different variations so on and so forth. So, for example, this is program which already 

saw. So, let us on discuss with once more it captures all the upper case characters in the 

input. So, a to z plus is printed out along with a new line. So, this is the input. So, all the 

upper case characters are printed out along with new lines that is really simple straight 

forward program. 



(Refer Slide Time: 28:42) 

 

So, let us take a another simple example. So, the first pattern says you know beginning 

with any number of blanks 0 or more blanks followed by a new line. So, this is the 

pattern. So, in other words the simple explanation is all blank lines. So, they may contain 

a blank space character or they may contain only a new line character or they may 

contain several blank spaces followed by new line, but in the sense they must all be 

blank lines completely blank lines without containing any other character. So, if this is 

the pattern is called pattern this is ignore this is no action corresponding to it, then if they 

remember the ordering of these as well. 

So, if it is a new line character, the new line is a echo and variable y y line number is 

incremented. Any other character apart from new line dot star any number of them is 

called in the third pattern and when this matches it prints out y y line number 

corresponding to that particular line that particular time and y y is a text, which matches 

the patterns dot star. So, this is printed out. So, the y y where have the patterns does 

nothing it just you know its require for to complete some formality and in the main 

program we initialize y y line number to one and call y y lex. So, the way this operates 

the in the input all the blank lines are ignored. 

And then since the longest match is suppose there is a reject non blank lines containing 

other character as well as along with blank, then there would match this, but the new line 

will not match as dot star as I told you dot matches only all characters accept new line. 



So, all the characters all the line which contain non blank character will match this first 

for all the non blank character accept new line and this next further and new line 

character. So, between this to where printout the character and also the line number. So, 

let see how the input is transform to an output. 

(Refer Slide Time: 31:05) 

 

So, here is a non blank line this is another non blank line then we have a blank line then 

there are a few blank spaces followed by non blank character, another blank line non 

blank line and another non blank line. So, over all there are 1, 2, 3, 4 and 5 non blank 

lines. So, we have 1 the first non blank line 2 flowed by the second blank non blank line 

three the third, four the fourth and finally, 5 the 5. So, remember the blank character 

which are here you know in the input are also copied, what is important is that they 

contain non blank characters. Suppose we had after this a couple of blanks followed by a 

b this particular line would still be written on at as all this followed by 2 blank or 3 blank 

whatever is the present in the input followed by a b.  

So, the blanks in the non blank line are copied as they are, but if the input is a complete 

blank line. For example, forward line is here and the fifth line here we are complete 

blank we are not copied to the output they are ignored. So, this is what this was supposed 

to do, all the non blank line are caught here and the new line caught here, but all blank 

character blank line caught here.  



(Refer Slide Time: 32:37) 

 

So, now the example becomes little more complicated. So, here we have a code part in 

which we describe you know there is a declaration called file star decifile. So, we declare 

a file variable for use our action later on and then we have a remember the this 

declaration is a user written code and it is enclosed in this 2 special markers, following 

that are a number of declaration rather patterns. 

(Refer Slide Time: 33:30) 

 

So, finally, let us go to the next first the in the role section what we have is a regular 

expression called declaration, which is explained in the previous slide we will come go 



back to it in a minute. So, whenever a declaration is caught it is printed out to a file 

called decifile which we have already declared and what is printed out the corresponding 

text, you know which was matched. In the y y wrap routine we just call f close to close 

the declaration decifile variable and in the main program we open the decifile for write 

purposes then call the lexical analysis. So, let us look at the output and go back to the 

patterns after that. 

(Refer Slide Time: 34:23) 

 

So, this is the input this is the you know matched output and this is the rejected input. So, 

as you if look at the matched input which is printed as the output. So, we have a float c d 

coma e f right then we have I n t g h t coma a s j h e w 37 coma f u i r coma g j 45 

followed by semi colon. Then we have a float i r e coma d e h j 80 semicolon. Now, let 

see what happened what is present in the input the number of you know variable 

followed by semi colon, then there is I n t a b coma float c d coma e f and then another 

set of characters another i n t g h t etcetera.  

So, in this input which seemingly seems to be meaningless, there actually some c type 

declaration. So, the propose of the program that now going to discuss is to extract this 

meaningful c declaration from this seemingly meaningless input and rest of it is ignored. 

So, this is our excise. So, let see how we can do it. 



(Refer Slide Time: 35:50) 

 

So, there are a number of short hand notation that we write down for example, blanks. 

So, blank or tab observe the you know back slash escape character for tab. So, blank or 

tab any number of times letter is a any lower case letter a to z that is the notation for set 

any way the digit short hand is 0 put a 9, then identifier would be a letter or an 

underscore followed by letter or digit or underscore any number of time. So, this is a 

standard you know pattern for identifier that we you know of any later followed by later 

or digit star, but we have also included the underscore here, then we have a number 

which is one or more digits. So, digit plus this is the regular expression notation digit 

digit star. 

Then we permit a array declaration part which says an identifier followed by the left 

square bracket followed by a number followed by right square bracket. So, observe that 

this is a pattern, which uses pattern declared before. So, in other words for the array 

declaration part we must have a name followed by a number. So, that exactly that we 

have in our output here name followed by a number name followed by a number 

etcetera. So, that is the array declaration part and then the short hand notation declaration 

part. So, either in array declaration or a simple name. So, the simple name is you know 

any name that we have already seen here.  

For example, this g h t i r e d e h etcetera are all you know yeah sorry f u i r etcetera are 

all simple names. Then the declaration list basically it is a number of declarations. So, 



declaration part followed by any number of blanks then there was be a coma, any 

number of blanks again and then you know followed by this entire thing declaration 

coma is repeated any number of time including 0 followed by declaration part. So, in 

other words we want to generate a list of declarations. So, this help us in doing that when 

a complete declaration would be beginning with a result word i n t or float followed by a 

declaration list. So, this gives us something like this you know float c d coma e f i n t g h 

t a s j h e which 37, etcetera, etcetera.  

So, this is the int this is they are the declaration list containing either a name simple i d or 

an array declaration part. So, separated by this semicolon and ending with a sorry 

separating by a coma and ending with a semicolon. So, each of this is a repeated in any 

number of times. So, there is a one declaration is here another here third here. So, you 

could have as many of them as you wish. So, that is our declaration and then we have a 

you know the pattern in the rules section which is a declaration. So, here this is what we 

are looking at this is the declaration that we know of. So, any number of them. So, 

declaration whenever there is a match for the declaration it prints out that particular 

declaration.  

So, observe here each declaration has int or float followed by a declaration list. So, this is 

one declaration. So, whenever this declaration is followed by a of course, a semicolon 

here. So, whenever this declaration is matched in the input, it prints out that particular 

declaration into the declaration file all others are a characters which are ignored. So, 

now, let us see how it works here. So, this sequence you know is a sequence of 

characters it is a an identifier, but then it suddenly ends with a semicolon we are going to 

start processing it as a declaration only when it starts with int or float. 

So, this part is ignored. So, this starts very promisingly with an int then there is a an 

identifier also and then there is a comma as well, but then suddenly you know instead of 

a semicolon we have a float. So, therefore, even this sequence of characters is ignored 

and copied into the rejected part whereas, again it starts with a float. So, a new 

declaration pattern is you know going to start here and this happens to be a correct 

declaration because it is just float c d comma e f semicolon. So, that part is separated out 

as a declaration. So, after the semicolon it ends. So, we start processing a new 

declaration if possible.  



So, this entire thing does not correspond to a declaration because it does not begin with 

int this begins with int. So, int g h t a s j h e w 37 f u i r comma g j 45 and semicolon this 

entire thing is a valid declaration, it is copied to the output as valid this is in you know 

invalid. So, it is rejected this is valid. So, it is copied here and this is invalid. So, this is 

also rejected. So, the example really shows that for processing or catching declarations in 

a programming language you know you can actually write lex programs for it. 

Even though we are going to do this more meaningfully using yacc a little later the that is 

after we learn parsing, we will see how to do all this using yacc which is actually a more 

meaningful way. But it is not as if lex is less powerful lex can do quite a bit of work, it 

can actually catch all the declarations in the program etcetera that is simply because the 

declaration part of a program is really a regular in nature you know is this corresponds to 

a regular language. Whereas, when we get into a nesting of statements and records 

etcetera it does not happen to be regular language anymore, and we will require a more 

complicated machinery. 

(Refer Slide Time: 43:27) 

 

Now, we move on to the next example that we have that is the you know how do we 

combine identifiers reserved words, then hex constants oct constants, normal integers 

etcetera. So, I told you that this a fairly intricate problem when we dealt with transition 

diagrams. So, let us see how you know you are writing a lex specification simplifies this 

problem and makes it easy for us to write the specification. So, this lex program also has 



an initialization code. So, we have a variable hex which is initialized to 0 variable oct 

which is initialized to 0 and variable regular, which is initialized to 0 then we have a host 

of these patterns we will discuss them shortly. 

(Refer Slide Time: 44:25) 

 

So, here I have a host of these patterns corresponding to reserved words and then the 

other constants as well. And finally, you know a main program which calls y y lex. 

(Refer Slide Time: 44:40) 

 

So, let us also see the input and output and understand it before we discuss the patterns. 

So, obviously you this is the input and this part is the output u or me happens to be a 



simple identifier it is caught as an identifier. While is a reserved word. So, it is printed 

out as a reserved word we have 0, 3, 4, 5, l a. So, out of this it actually the 0 3 5 for 3 4 5 

l happens to be an octal constant 229, but the A part is a simple identifier which is 

printed out as an identifier. Similarly we have 456 u b the 456 u part is a normal integer 

4 5 6 and the b is an identifier b, here is a hex constant 0 X 786 you know l.  

So, this much is a hex constant 1 9 2 6 and then the h a b c part is an identifier. And now 

watch this we have b followed by 0 X 34 here it is not recognized as b an identifier 

followed by a hex constant because of the longest match characteristic, b followed by 

this entire sequence of 0 X 34 is actually matched against an identifier and it is denoted 

as an identifier. So, you know this is how the longest match is useful in identifying 

various tokens. So, let us go back to the patterns and study them in full.  

So, here is a letter which is already well known a to z or a to z or followed by and you 

know or underscore. So, any little a lower case or upper case character or underscore is a 

letter for us digit is 0 to 9, digits is a digit any number of times one or more digit octal is 

a just 0 to 7, 0 1 2 3 4 5 6 or 7 digit hex would be 0 to 9 or a to f. So, any of these are 

hexa digits integer qualifier is a u capital U lower case l or capital L blanks as usual 

blank or tab any number of times one or more now. Now, we look at identifiers. So, 

letter followed by letter or digit star. So, this a well known regular expression for 

identifiers, then we have a integers digits followed by integer qualifier optional. So, this 

question mark remember implements epsilon.  

So, this is really speaking integer qualifier or epsilon digits followed by integer qualifier 

or epsilon would make up an integer x constant is 0 followed by either this is remember 

this is square bracket x X square bracket. So, either little X or bigger X followed by hexa 

digits any number of times once or more followed by integer qualifier either you know or 

epsilon. So, we have any 0 followed by X followed by any number of X digits of course, 

integer qualifier is a optional octal constant similarly is 0 followed by octal digits any 

number of times followed by integer qualifier optional. 

Then we have the reserved words if else while and switch. So, now, we come to the rules 

section with a percent percent. So, for the 4, 5 reserved 1 2 3 4, 4 reserved words the 

action is simply print out the reserved word and then the identifier. So, since we have 



written down the reserved words and then the identifier, the characters which correspond 

to these will never be matched against identifier. 

Whereas, if we have a word such as switches then even though part of it matches here it 

will be the longest match will be that of an identifier. So, if we place the identifier before 

i f that is the reserved words here be sure to try it out once, these four will never match 

everything matches against the identifier. Now, the hexadecimal constants when they are 

caught the s scan f is used to read the integer inside the hexadecimal notation and print it 

out along with the text. Similarly octal constants are converted to decimal constants 

using the scan f function and print it out integers are also converted to the normal integer 

the characters are converted to normal integer and print it out. Finally, any other 

character which is caught is ignored. So, dot or new line they are all ignored. So, this is 

what we just now went through. So, the patterns are all caught and the output is 

generated. 

(Refer Slide Time: 50:09) 

 

So, let us look at the floating point numbers which are a little more complicated than 

normal integers. So, as usual we have lexical analyzer program for floats in c the digits 

are 0 to 9 plus and then we have an exponent, which is either big E or small e followed 

by plus or minus, it is optional the sign is optional followed by digits. So, if we write e 

plus 9 or e 9 it amounts to the same number, same exponent then the blanks blank tab or 



new line any number of time and floating qualifier is f F l L, right? So, then there are the 

patterns. So, let us look at the output and then go back to the pattern it is self. 

(Refer Slide Time: 51:02) 

 

So, 1 2 3 then three 45 dot dot 4565 dot 3. So, really the first output is generated here 

because we do not catch pure integers, we do not catch anything, which does not have a 

blank after a dot. So, this is ignored. So, 4565.3 is you know optional integer part. So, 

this could have been a dot three as well 675 e minus is float with no fraction then 523.4 e 

plus 2 again with a optional integer part. Next one is also with optional integer part 

234.3.4 corresponds to 3.4234 dot should have had a blank after that. So, it does not. So, 

that is ignored. 

345 dot has a blank so that is caught here as optional float with a optional fraction then 

dot34e plus 09L is caught as an optional integer you know possibly no integer part here. 

And similarly 987 is without fraction and the last one with optional fraction. So, let us 

study the patterns here. So, these are the first part first one is digits followed by exponent 

followed by optional floating qualifier followed and then followed by blanks. So, 

remember the look ahead operator. So, this pattern is valid provided it is followed by 

blanks, otherwise it is not valid. So, this will match float with no fraction. So, digits 

followed by exponent. So, this is and this of course, is optional. 

So, this corresponds to floats with no fraction. So, float with no fraction is here 987 e 

minus 6 f here we have a number of digits you know 0 to 9 star 0 or more time iterations 



here followed by a dot compulsorily. So, before the dot there can be an integer part or no 

integer part. So, this is optional integer part, but once there is an optional integer part we 

must definitely have digits followed by an optional exponent followed by an optional 

floating qualifier follow and of course, it matches only if there are blanks after that.  

So, the integer part is optional, but the rest is compulsory at least the digits part is 

compulsory exponent is optional, here we have digits followed by dot followed by the 

optional fraction 0 to 9 star, optional exponent optional floating qualifier, but followed 

by a blanks compulsorily. So, these are the various patterns which match here. So, one 

with no fraction, second one with optional integer part, third one with optional fraction. 

So, these are the various outputs that we already looked at… 

(Refer Slide Time: 54:23) 

 

So, let us look at the another example which is used with the desk calculator as a lexical 

analyzer to generate a lexical analyzer for the desk calculator, which we are going to 

study later, number is 0 to 9 plus followed by dot optionally. So, this is dot or a epsilon 

followed by 0 to 9 star r sorry this is a r. So, this is the bar here which gives you two 

options. So, either 0 to 9 plus followed by a dot or 0 to 9 star followed by A dot then 

followed by a number of digits. 

So, the difference between the two is the integer part here is compulsory where as the 

fraction is not here the fractional the integer part is optional, but the fractional part is 

compulsory you cannot have both of them as optional, otherwise you would have just a 



dot. Name is as usual a to z a to z followed by a to z a to z 0 to 9 star. So, this is the 

identifier part. So, when a number is caught it is converted to a number using s scan f 

and it returns a token called number, the value actually you know is here you know. So, 

that is read into a variable called y y l val dot d val which is a parser variable. So, I am 

introducing this example just to show how interfacing with yacc happens. 

So, yylval is a parser variable used by yacc and this value of number is put into that 

variable. Whenever there is a name caught it is looked up in a symbol table and if the 

name is present you know that pointer is return to is otherwise if the name is absent in 

the symbol table, it is entered into the symbol table and the token name is returned. For 

plus plus we return post plus minus minus we return post minus for a dollar we return a 0 

and new line are any other character, we just return that simple character itself. So, this is 

just to show you that it is possible to do some symbol table operations along with name 

search etcetera inside a lex program as well. So, lex programs can become as technical 

and as complicated as we want them to be. So, with this background let us stop the 

lecture in the next lecture, we will start studying parsers.  

Thank you. 


