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Welcome to part three of the lecture on instruction scheduling and software pipelining. 

Today, we will continue our discussion on instruction scheduling. More specifically the 

superblock and hyper block scheduling, and then we will continue with software 

pipelining. 
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So, to do a bit of recap global acyclic scheduling is the general name given to all the 

scheduling algorithms, which look at more than one basic block. So for example, you 

know trace scheduling, superblock scheduling, hyper block scheduling, software 

pipelining, all these belong to this type of you know scheduling called global acyclic 

scheduling. 

The reason why such an algorithm is required is due to the size of the basic block being 

quite small on the average. So, if with very small basic blocks instructions scheduling of 

the basic block kind becomes a bit ineffective. And this is a serious concern in 

architectures such with lots of instruction level parallelism such as VLIW and 

superscalar. 
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So, trace scheduling is a method of scheduling and there are many types within that such 

as, ordinary trace scheduling, superblock scheduling and hyper block scheduling. A trace 

is nothing but a frequently executed acyclic sequence of basic blocks in a control flow 

graph. So, this is a part of a path, so there is no very rigorous definition of a trace you 

can make the trace as big as possible or as small as necessary, but the reasons why we 

may want to make it big or small should also be kept in mind. 

So, identifying a trace we identify the most frequently executed block and then extend 

the trace starting from this block forward and backward along the most frequently 

executed edges. So, when we perform trace scheduling basically we combine the blocks 

of the trace and schedule them as if all of them together form a single basic block. 

So, when we do this instruct the execution time for the trace usually reduces, but the 

execution time for other paths definitely will increase. However, the overall performance 

generally increases, but the concern is regarding compensation code which needs to be 

you know inserted for the off trace blocks. So, sometimes such compensation code may 

become quite large in size. And that may be a reason why we do not want extremely 

large traces, but would like to reduce the size of the traces. 
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So, the second variety of scheduling is the superblock scheduling. A superblock is 

nothing but a trace again, but it does not have side entrances. The reason we the trace 

you know it is because of the side entrances, that we had to introduce compensation code 

for the you know ordinary traces. 

So, control can enter only from the top in a superblock, but many exits are possible. And 

this eliminates several book keeping overheads, specially the compensation code 

insertion. So, how do you form superblocks form a trace as before and then duplicate the 

tail to avoid side entrances into a superblock of course, this will increase the code size. 
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So, here is a simple example of the same set of instructions and the control flow graph. 

So, we had this block, this block, this block and these two were combined into a single 

block here, we formed this, this and this as the main trace. And now for the off trace we 

form a copy of this block b 4 so, that the side entrance into from the off trace into the 

main trace is avoided. 

So, with the and then of course, the scheduling continues as before, we combine these 

three blocks and schedule them. And then we combine these two blocks and schedule 

them, but observe that there is code duplication here. And in general you know with a 

large control flow graph will have a lot of such duplication of code and this increases the 

code size. So, in the superblock we have done even better, there are only 5 cycles 

required for the main trace and 6 cycles for the off trace. 

The reason why it has reduced further is because of this you know the duplication of 

code. So, we do not have to jump into the middle of the main trace and we do not have to 

jump out of the middle of the main trace etcetera, etcetera the only jump is here. So, the 

code this is the main trace so, 0 1 2 3 4 so we take 5 cycles and this is one part of the 

main trace. And here, it says if r 1 less than r 6 goto i 1 so, this is the loop part so here. 

So, we execute these as if there is no and in the middle here there is an if-condition, if r 2 

not equal to 0 goto i 7. So, that would be the off trace we jump to the off trace if the 

condition indicate so. Otherwise, we just continue and everything has been scheduled in 



a very packed fashion and for the off trace we require up to this anyway 0 1 2. And then 

let us say we jump here so 3 4 5 so, that would be 6 cycles whereas, for this we require 0 

1 2 3 4 5 so, 5 cycles for the main trace. So, the advantage of superblock is it is even 

better than the ordinary trace, but it requires extra code, because of the duplication. 
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Then the next technique in trace scheduling is called as hyper block scheduling. 

Superblock scheduling does not work well with control intensive programs, which have 

many control flow paths because if you have many control flow paths. Then the code 

duplication would be excessive so, this does not work well. Hyper block scheduling was 

proposed to handle such programs. 

The basic idea is to introduce guarded commands so with a rather predicated commands. 

So, the control flow graph is actually it goes through a process called if-conversion, I am 

going to give you an example of this very soon. To eliminate the conditional branches 

and if-conversion replaces conditional branches with appropriate predicated instructions 

now, the control dependence gets changed to a data dependence. 



(Refer Slide Time: 08:07) 

 

An example, of if-conversion we have a loop i equal to 1 to hundred do, if a i less than or 

equal to 0 then continue and otherwise we go down and perform a i equal to b i plus 3. 

So, if i a i is greater than 0 we do this otherwise we go to the next iteration of the loop 

Now, because of this condition we would have code duplication so, instead of that we are 

going to compute a i less than equal to 0 as a predicate so p. 

And if the hardware permits predicated instructions, then we can say a i equal to b i plus 

3 will be executed as a predicated instruction. So, that is how we work and if the 

predicate is you know true, then this will be executed and if the predicate is false, then 

you know the loop just continues so, that is how it would be. So, I think there is a minor 

mistake in the predicate computation and the guard. 

So, the predicate is a i less than or equal to 0 and if it is false then a i equal to a b i plus 3 

will be executed so, it is indicated as p here this should have been not p. Now, the other 

example has four statements and there is a for loop, for i equal to 1 to n. And inside that 

we have a i equal to d i plus 1 if b i greater than 0 then c i equal to c i plus a i otherwise d 

i plus 1 equal to d i plus 1 plus 1. 

So, there is a block of code which is executed in the then part and also another block of 

code, which is executed in the else part. As before, we compute the predicate p equal to b 

i greater than 0, if the predicate is true then we must execute this. So, what we do is the 



predicated instruction has c i equal to c i plus a i and if the predicate is false, then we 

execute the second statement. 

So, the second instruction is predicated with not p so, not p has d i plus 1 equal to d i plus 

1 plus 1. So, the semantics are as before if this instruction executes only when the 

predicate is true and this instruction is executes only when the predicate is this predicate 

is false. So, but this requires extra support from the hardware side. 
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So, coming back to our example so, we have you know one piece of code which is 

executed in the then part, another piece of code which is executed in the else part and 

then the join executes one more instruction. So, we have 4 basic blocks as before so, this 

was the diagram we have already seen. 
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Now, the hyper block is actually the entire control flow graph in this case, except for this 

back arc all right. So, we require 6 cycles for the entire set of predicated instructions. 

Now, if you observe this code the integer unit 1 and integer unit 2, they compute 

instructions load a r 1 and load b r 1. And then the instruction i 2 prime computes the 

predicate. 
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So, the predicate was here right this a i equal to 0, that was the predicate here. So, that is 

computed here right if r 2 not equal to 0. 
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So, r 2 equal to 0 is the predicate that we compute here and then the instruction b r 1 

equal to r 4. If p 1 is the predicated instruction which executes, if p 1 is true and b r 1 

equal to r 2 if you know p 1 is false so, not of p 1. So, if p 1 is false this is executed if p 1 

is true this is executed. Then we have the other instructions as before, but we also have 

the second instruction r 4 equal to r 2 if not of p 1 all right. So, we have two instructions 

under the not p 1 category and one instruction under the p 1 category and then of course, 

we have other instructions which are not predicated. 
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So, this is how it is so in this case, you know we have two instructions in this basic block 

b 3, this is the off trace that is the reason, why we have those instructions here as well in 

the else part. 
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So, this is the hyper block scheduling example basically, we do an if-conversion which 

implies we compute the predicates and emit predicated instructions. And those 

predicated instructions are scheduled as if they are ordinary instructions. So, if you 

observe here there is absolutely no except for the last instruction here, there is no branch 

at all everything is a predicated instruction. 
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So, now we move on to the next technique of global scheduling so, this is called software 

pipelining. And here I cannot say that this is acyclic scheduling because it is essentially 

for loops. So, this is a cyclic scheduling strategy, but it is a global scheduling strategy 

because it looks at more than one basic block. So, the most important aspect of software 

pipelining is that it overlaps execution of instructions from multiple iterations of a loop. 

So whereas, instruction scheduling looks at exactly one iteration of a loop. Whereas, the 

software pipelining scheme it overlaps execution of instructions from multiple iterations. 

So, I am going to give you many examples of software pipelining very soon. So, it 

execute instructions from different iterations in the same pipeline so, that the pipelines 

are kept busy without stalls. 

So, instruction you know scheduling actually helps in cutting down stalls, but if we take 

instructions from different iterations. Then there are even more possibilities for 

executing instructions without stalls. The objective is to sustain a high initiation rate so, 

initiation rate basically says how soon we can start the next iteration. So, iteration of a 

subsequent initiation of a subsequent iteration may start even before the previous 

iteration is complete. 

So, one of the iterations you know which has been started may be going through many 

phases. So, before it is complete it has completed all the phases the second iteration may 

actually begin so, this is the objective of software pipelining. The other way of doing it 



you know appears to be unrolling loop several times and performing global scheduling 

on the unrolled loop. 

But definitely this is much better than you know scheduling you know loops without 

unrolling, but there is no overlap between across the iterations of the loop. Usually, even 

if there is then it would be no only near the border of the loop. So, this and of course, 

software pipelining in general has been observed to provide much more speedup than 

this sort of unrolled loop scheduling. 
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This technique is obviously more complex than instruction scheduling and just like 

instruction scheduling this is also an n p complete technique. So, there is no option, but 

to use heuristics, the basic idea involves finding what is known as an initiation interval 

for successive iterations. So, again initiation interval says this is the interval with which 

we initiate the iterations of a loop. So, if the initiation interval is 1, then we can start each 

iteration after 1 cycle in successive cycles we can start the successive iterations. 

Whereas, if the initiation interval is say 3 then we start the iteration i and the next 

iteration can be started only you know in i, i is the iteration i plus 1, i plus 2 we can start 

it only in i plus 3. So, this is the you know significance of initiation interval, how do you 

find the initiation interval there is no short cut to it, it is only a trial and error procedure. 

So, we start with the minimum initiation interval, which can be computed using some 

techniques which we are not going to discuss here. 



Then we schedule the body of the loop using one of the approaches below and check if 

the schedule length is within bounds. So, if yes stop otherwise try the next value of the 

initiation interval. Basically, it requires a modulo reservation table so, this is a global 

reservation table with i i which is the initiation interval i i number of columns and r is a 

number of resources r rows. So, instead of the GRT having as many rows as the rather 

you know as many columns as the number of the length of the schedule here, we have i i 

columns and r rows. 

Schedule lengths are dependent on the initiation interval and dependence distance 

between instructions and resource contentions. So, it is not the just the precedence and 

resource constraints, but we have the you know schedule length being dependent on the 

initiation interval. The dependence distance between the instructions and the resource 

constraints so all these form a part of the package. So, computing the initiation interval 

and then checking out whether the schedule is within the bounds is the only way to find a 

proper initiation interval. 
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So, let us take this simple example, we have a for loop i equal to 1 i less than or equal to 

n i plus plus. Then we have a i plus 1 equal to a i plus 1, b i equal to a i plus 1 by 2 c i 

equal to b i plus 3 and d i equal to c i. The dependence diagram for this the instructions 

in this loop is shown here, so let us say these are the 4 instructions in the loop. And the 

first instruction is number one and the last instruction is number 4. 



So, the you know a i plus 1 is computed here and then used here so there is a dependence 

from 1 to 2. Then the same is true for b i and c i as well so 2 to 3 and 3 to 4 further, we 

have a we have a computation a i plus 1 equal to a i plus 1. So, in other words in 

computing i plus 1 the i plus one’th value of a we are also using the i’th value of a. So, 

this is the dependence on the same instruction, because this is the instruction which 

computes the value. So, I am computing some value and using it in the next iteration. 

Now, coming to the labels on these arcs the first component of the label is the, what is 

known as the dependence distance and the second component is the well-known delay. 

So, the second one is the time required to execute the instruction whereas, the first one is 

the dependence distance. Dependence distance, simply says the number of iterations 

between the definition and the use, if you consider b i and c i, b i is computed in 

instruction and the value of this value which is computed here, is used in the same 

instruction same iteration, but in the next instruction. 

So, the dependence distance between these two is really 0 because the usage is in the 

same iteration. Therefore, from 2 to 3 so we have a dependence distance of 0 here. 

Similarly, from 3 to 4 also we have a dependence distance of 0 and from 1 to 2 again 

both are a i plus 1. So, the dependence distance is 0 here as well, but this usage versus 

this computation this is from the previous iteration and this is in the current iteration. So, 

the dependence distance is actually 1. 

So, dependence distance 1 indicates that the value computed one iteration before is being 

used in the current iteration. So, this is our dependence diagram and any schedule that we 

produce must satisfy the dependences and the delays in this diagram. So, let us see how 

we can schedule the instructions here, so this is the time line and these are the iterations. 

Now, we have the instruction s this is s 1 s 2 s 3 and s 4 so, in timeslot 1 we start s 1 so 

absolutely no issues there. And then in the timeslot 2 obviously s 2 executes, timeslot 3 s 

3 executes and timeslot 4 s 4 executes. So, all these actually belong to the same iteration. 

Now, the question is in a given enough number of resources it is possible to start the 

iteration number 2 in the timeslot 2 itself. That is, the first instruction of iteration 2 can it 

be started in timeslot 2, concurrently with the second instruction of iteration number 1, 

the answer is yes. Let us, look at the dependence diagram to understand why, this is s 2, 

this is s 1. 



So, between these two the dependence distance is actually 0 and so there is absolutely no 

problem in executing s 2 and s 1 together all right, but now the s 2 of course, belongs to 

the previous iteration and s 1 belongs to the next iteration. So, otherwise we could not 

have, we actually could not have started s 1 of the second iteration in this timeslot 1. 

That is not possible, but that is because from you know from s 1 there is a self-loop on 

itself with a dependence distance of 1. 

So, in other words the value computed in iteration number 1 and the instruction number s 

1 is required for the next iteration instruction number s 1. So, and it requires one cycle to 

complete s 1 so, we could not have started s 1 here for the second iteration. We can start 

s 1 only in the second cycle so, s 1 of the second iteration we can start it only in the 

second timeslot. So, that should be clear. 

Now, there are no resource constraints so this thing completes on its own in a on the 

hardware. Now, this also begins its execution in time step 3 we have s 2 of iteration 2, in 

time step 4 s 3 and time step 5 we have s 4. Now, the same question can be asked again 

in time step 3 can we start another iteration concurrently with s 3 of iteration 1 and s 2 of 

iteration 2, the answer again is yes, if there are enough resources. 

Of course, as I told you before we could not have started s 1 here because of this 

dependence distance being 1. So, this is the and of course, we could not have executed s 

1 s 2 s 3 s 4 in parallel because of these dependences. This is strictly sequential and again 

we have to wait for one cycle to start another s 1, but once started we can continue. So, 

the same is true for time step 4 we start another s 1 here. 

Then onwards you know it is a kind of a stable situation steady state, in time step 5 the 

iteration number 1 has completed because this is the last instruction of iteration number 

1. So, this has actually completed, what we are left with is only the instruction number s 

4 of iteration 2, s 3 of iteration 3, s 2 of iteration 4 and s 1 of iteration 5. So, this situation 

continues here, this completes so this iteration is over. So, at any point in time if you 

observe this steady state there are only four instructions which are executing start you 

know. So, this is the most recent instruction and this is the last instruction now latest you 

know or the last instruction. 

And each of these instructions belongs to a different iteration number so and this s 4 s 3 s 

2 s 1 is the software pipeline that we are trying to understand. Here, the initiation interval 



is 1 because we have been able to initiate a new iteration in every cycle. So, in fact the 

software pipeline consists of just these 4 instructions. And assuming that there are 

enough resources to take care of all the instructions here, this all the four can execute in 

parallel. So, this is the concept of software pipeline, so let us go further and take another 

example. 
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Here, again the example is quite simple a i equal to s star a i and here is the machine 

code corresponding to it. So, we have load and then we have a multiply and then we have 

a store instruction. Then the other instructions correspond to the loop increment value 

etcetera, etcetera, then we are checking the loop and going back to i 0. If the loop is not 

yet complete we keep iterating and then we get out. The dependence graph for this small 

program is shown here. 

So, as usual the dependences are shown by these arcs and the dots on the you know arcs 

are the tokens present on the arc, indicates the dependence distance. So, here i 3 actually 

supplies a value to i 0 we can see that, i 3 supplies a value to i 0. And this single token 

indicates that the value computed in this iteration is used by i 0 in the next iteration. So, 

dependence distance of 1, i 3 also supplies a value to itself and with a dependence 

distance of 1. So, i 3 is actually t naught equal to t naught plus 4. So, this is the value 

from the previous iteration and this is the new computed value. 



So, there is a self-loop, self-dependence and the dependence distance is also 1, so 

because of these two. Similarly, from i 3 to i 2 there is a dependence so, this is i 3 and 

this is i 2 with a dependence distance of 1 again. So, the a t 0 which is used here is you 

know we compute it here in iteration i and use it in the next iteration i plus 1. So, this is 

the way the dependences are to be understood. So, let us understand how to schedule 

these. 
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So, the number of tokens indicates the dependence distance this is something which I 

already explained. Assume, that the possible dependence from i 2 to i 0 can be 

disambiguated i 2 to i 0. 
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So, here is t 4 and we are writing into the same location t 4. So, let us assume that we can 

disambiguate it so, just for the sake of example so i 2 to i 0. So, this is i 2 and here is i 0 

so that is why there is no dependence that we have shown between the two. 
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So, assume there are two integer units with a latency of 1 cycle, 2 floating point units 

latency 2 cycles and then we have one load store unit with a latency of 2 cycles and 1 

cycle each. So, load has 2 cycles latency and the store unit has 1 cycle latency. The 



branch can be executed by integer units, so the acyclic schedule takes 5 cycles so we let 

me show you the picture. 
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So, here is the acyclic schedule which has i 0 then there is a knop instruction and finally, 

i 2 there is another knop instruction here and then i 2 and i 5. So, in the timeslot 2 there is 

i 1 i 3 and i 4 whereas, in timeslot 4 there is i 2 and i 5. Compare to this if we do a 

software pipeline then we really require only 2 cycles. So, by the way before this we 

have instructions to fill up the pipeline and after this we have instructions to empty the 

pipeline. 
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 So, let me show you that in the previous example so, let us assume that that entire loop 

completes in ten time units. So, actually this is these are all the instructions which are 

required to fill the pipeline. Now, the pipeline is full at this point it continues in that state 

until here and once the you know, the pipeline cannot be sustain and the loop starts 

coming to an end we execute the rest of the iterations in this epilogue. So, this is the 

prologue this is the epilogue and this is the kernel or the steady state of the pipeline. 
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So, let me show you how it requires only 2 cycles instead of the acyclic normal basic 

blocks schedule of 5 cycles. 
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So, this is iteration 0, iteration 1 and iteration 2 and here are the time steps required for 

this pipeline execution. So, iteration 0 we have this schedule so as usual this is a you 

know there is a load here, then the knop, multiply, add then sub store branch greater than 

equal to. So, this is iteration 0 and here are the instructions which have been scheduled. 

And now, at time step 2 we can actually initiate i 0 of the iteration 1. 

So, this iteration now starts executing in the pipelines, these two execute in a parallel 

fashion. There is nothing to execute here in parallel and then this and this execute in 

parallel this and this execute in parallel. And in at time step 4 now we can actually 

initiate iteration 2 so, this again has these instructions following it. Now, if you observe 

this is our steady state right so, if we actually have another instruction, which is going to 

be you know for the iteration 3 that would be here. 

So, again we see the same pattern so sub mult and then load and here store b g e and add. 

So, these two instructions actually form the kernel or the steady state of the pipeline. So, 

we are going to iterate over this steady state of the pipeline as long as the loop executes 

and finally, the epilogue part of it executes the rest of the iterations. 
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So, this is what was shown here it requires three cycles 0 1 2 3 4 cycles to actually fill 

the pipeline that is the prologue and then from 4 onwards, there is a steady state which 

executes many times. 
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And then an epilogue of a couple of cycles to flush the entire pipeline. So, this is the way 

a software pipeline loop executes, so in the steady state is executing many instructions 

from different iterations and the pipeline stages are all these are the various pipeline 

stages. This is the first stage this is the second stage and this is the third stage. 
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So, let us take another example here again we have you know 0 1 2 3 4 5 6 instructions, 

this is the dependence diagram for these instructions so and there is a cycle as well. So of 

course, if we unroll you know and start scheduling the instructions here, according to the 

software pipeline. So, we can execute 0 1 2 in one cycle 3 4 in another cycle and 5 in the 

next cycle because that is indicated by the dependences here without looking at this. 

And because of this we can actually begin the next iteration only concurrently with 5. So, 

that is what we really do here, so i equal to 2 we have again the same pattern 3 4 and 5, i 

equal to 3 we have again 0 1 2 3 4 and 5. So, this will turn out to be the steady state for 

our software pipeline in which we have 3 4 executing, you know in time step 1 and 5 0 1 

2 all of them executing in the time step number 2. 

So, this is actually driven by the resource constraints as well so, we have two multipliers, 

two adders, one cluster single cycle operation. So, this make sure that we execute the 

instructions in this fashion. So, you know this is the software pipeline loop which is 

executing in a steady state. And of course, I have shown you some prologue instructions 

and epilogue as well here. 
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Now, that is the end of software pipelining instruction scheduling etcetera. Now, we 

move on to the next topic, which is very important called as the automatic 

parallelization. 
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So, why do we require automatic parallelization and what is the process. So, automatic 

parallelization is the automatic conversion of sequential programs to parallel programs 

by a compiler. So, in other words the programmer does not write a parallel program, the 

programmer writes a sequential program and an automatically parallelising a compiler 



converts the sequential program to parallel programs. So, this is the purpose of automatic 

parallelization. 

The target machine may be a vector processor so, in which case it is called as a 

vectorization. It could be a multi core processor in which case it is called as 

concurrentization or a cluster of loosely coupled distributed memory processors, in 

which case it is called as parallelization. Of course, we use parallelization and 

concurrentization you know with the same meaning we do not really differentiate too 

much between them, but vectorization definitely is a different process. 

So, we are going to see examples of vectorization and also parallelization. So, why is 

vectorization relevant at all you know some of the single core, even single core 

processors of the x 86 variety? They actually have a small vector set of instructions for 

multimedia operations. So, even those can be used if we are able to perform some 

vectorization the efficiency of the program will thereby increase. 

Parallelism extraction process is normally a source to source transformation. So, in other 

words if we take c or Fortran code the output is also c or Fortran. It is not as if we go 

through the entire process of till the intermediate code generation and then perform 

parallelism extraction. In fact some, of the parallelism may not be so easily visible at the 

lower levels. So, this is the reason why we want to perform parallelism extraction at the 

source level itself. 

It requires a technique called dependence analysis to determine the dependence between 

the statements. Informally, I have already shown you many examples in the instruction 

scheduling and software pipelining and of dependence diagrams, but we have still not 

learnt how to determine the dependences. So, this is a fairly complicated process I am 

going to give you only a flavour of dependences in this lecture. 

The implementation of available parallelism is also a challenge. So, you know if you 

have a multi core processor say with you know 8 cores, then it is easy to see that 8 

iterations can run in parallel on this multi core processor, but suppose we have a 2 nested 

loop right. Then is it possible to really run both the loops, the outer loop and the inner 

loop in parallel mode well it is not so easy. In fact we know how to run single loops in 

parallel, but running nested loops in parallel would be a very difficult task because of 

resource constraints. 
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So, let us look at some examples here is a very simple loop for i equal to 1 to 100 x i 

equal to x i plus y i. So, if we have some vector instructions on the machine then this 

code can be very easily converted to this vector code. So, this can be read as the vector x 

1 to 100 is vector x 1 to 100 plus the vector y to 1 to 100. So, assuming that there are 

vectors of length 100 we basically, read x 1 to 100 into a vector set of registers. And add 

this you know all the vector registers are parallely added. 

So, 1 to 100 of x will be added to 1 to 100 of y in a parallel manner so all this can happen 

in one time. And then in the next cycle we can actually store the value into x so, if the 

instruction permits direct addition into the same register, then there is no need to actually 

write it back to the memory location. So, the vectors x and y are fetched first so, that is 

very important. 

So, usually the vector set of registers are used and then they are stored back into memory 

as well. So, this is very important this is read first, this is read again and then the 

computation happens. So, there is a overwriting all right, but the values from the 

previous iteration are not used in the current iteration. So, there is no dependence from 

one iteration to the next iteration so that is very important. 
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If we want to run the same code on a multi core processor we can do that. Assume, that 

we can start 100 threads so, each one of the iterations can actually become an 

independent thread. And for each value of i 1 to hundred there would be a separate 

thread, which does the addition x i equal to x i plus y i. None, of these interfere with each 

other that is very clear each iteration is different and each thread will do the work of just 

that iteration. So, this can be run in parallel on a multi core processor as well. 
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Now, suppose there is a change in the code so, this is x i plus 1 becoming is being 

assigned value of x i plus y i. So, this cannot be converted to this vector code, that is 

even though it simply appears as i plus 1, it looks like we are computing x 2 here we are 

using x 1 here and y 1 here. So, if we simply write this as x 2 to 1 0 1 x of 1 to 100 plus y 

of 1 to 100 it would be incorrect. The reason is there is a dependence here that becomes 

very clear when we expand the loop. 

So, this first iteration becomes x 2 equal to x 1 plus y 1, the second iteration becomes x 3 

equal to x 2 plus y 2, the third iteration is x 4 equal to x 3 plus y 3, etcetera. So, observe 

that what is computed in the first iteration is being used in the second iteration, what is 

being computed in the second iteration is being used in the third iteration. So, there is a 

dependence of values from first to second from second to third etcetera, etcetera. 

So whereas, this particular code does not actually respect this dependence that we have 

shown here. This says, read the value of x from 1 to 100 the vector, read the value of y 1 

to 100 and then add them and put it into 2 to 1 0 1. So, in other words the value which is 

computed in a particular iteration is not being used in the next iteration, but the old 

values are being used. So therefore, this vector assignment is incorrect. 

(Refer Slide Time: 46:40) 

 

Just to do a bit of recap on the data dependence relations, so if we have an assignment to 

a scalar variable x and then we have an read of x and there are no more assignments to x 



here. Then it is a flow dependence or true dependence. If we have a read of x here and 

then a write into x here and there are no other writes into x here. 

Then this is known as an anti-dependence. And the output dependence is similar we have 

two writes nothing. In between no other writes in between, then from s 1 to s 2, we have 

an output dependence here. This is anti-dependence from s 1 to s 2 and this is flow 

dependence from s 1 to s 2. 
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Then we also have to understand, the notion of a data dependence direction vector you 

know, what data dependence relations are. We augment this information with a direction 

of data dependence, this is a vector called the direction vector. So, I will give you 

examples to show what this is so, there is one direction vector component for each loop 

in a nest of loops. 

So, if it is a 3 nested loops so, in other words there is one loop outer, another loop inner 

and third loop which is inside the second. Then the direction vector will have three 

components one for each of these loops. Then the data dependence direction vector is 

written as psi equal to psi 1 comma psi 2 etcetera psi d, where is d is the depth of nesting. 

So, this makes it one component for each level of nesting. 

And each of these psi k’s can be one of these six less than, equal to, greater than, less 

than or equal to, greater than or equal to, not equal to and star. Out of these the primary 



direction vector components are less than equal to and greater than. This less than or 

equal to is a combination of these two, greater than or equal to is a combination of these 

two, not equal to is none of these and star may be any one of these. 

So, the last three are last four are basically combinations of these. So, we must basically 

understand less than equal to greater than in detail and the rest automatically can be 

understood. There are 3 types of directions possible so, that is what is shown here less 

than equal to and greater than. Less than is called as a forward direction, which means 

that the dependence from is from iteration i to i plus k. That is, we compute a value in 

iteration i and use it in iteration i plus k, k being positive. 

So, if the loop is running backwards even then you know the iterations actually the 

values may run backwards, but the iterations always proceed. So, if we number the 

iterations as 1 2 3 4 etcetera, then we take i and then go to k, plus k so k is always 

positive. So, this is the forward direction. 

The second is the backward direction, which means we compute in i and use it in i minus 

k, well looks ridiculous right. So, it is true that this is not possible in single loops, but in 

2 or higher levels of nesting this is definitely possible and I am going to give you some 

examples later. The third type of direction is the equal to direction, which means that the 

dependence is in the same iteration. That is computed in iteration i and used in iteration i. 
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So, let us understand the less than equal to less than and equal to greater than can be 

understood only with respect to doubly nested loops. So, we have a loop j equal to 1 to 

100, the statement is x j equal to x j plus c. So, let us expand the loop twice x 1 equal to x 

1 plus c, x 2 equal to x 2 plus c so, here you know we have actually used x 1 and then 

computed into x 1. 

So, the x 1 is being and we are not using x 1 again in any other iteration. So, we are 

using and then computing so, that means it is an anti-dependence so delta bar. And since 

the iteration in which we are doing it is the same iteration right. Here, in this case it is 

iteration number 1 here, it is iteration number 2 etcetera. So, the direction vector has the 

component equal to, indicating that the value is used and then computed into in the same 

iteration. 

This is a single loop so we have only one direction vector component. Here, we have j 

equal to 1 to 99, x j plus 1 equal to x j plus c again when we unroll we find this as x 2 

equal to x 1 plus c and this as x 3 equal to x 2 plus c. So, we have produced a value x 2 in 

1 of the iterations and in a next iteration we are using it. So, there is a flow dependence 

between these 2 values that is easy to see. 

Now, this is iteration 1 and this is iteration 2 so that means, we are producing in iteration 

i and using it in iteration i plus 1. That would be the direction vector would be less than 

and the dependence is flow dependence delta. So, we indicate it as s delta less than s 

saying, the value which is computed by this statement s in a particular iteration i is going 

to be used in a later iteration in this case of course, it is i plus 1. 

The third example, j equal to 1 to 99 do, x j equal to x j plus 1 plus c again when we 

unroll we find that this is x 1 equal to x 2 plus c and this is x 2 equal to x 3 plus c. So, we 

have used x 2 here and then computed x 2, this iteration 1 and this is iteration 2. So, there 

is a there is an anti-dependence between these two and the iteration number is 1 here and 

2 here. So, this is use first and computed later, it is an anti-dependence with a direction 

less than because the usage happens first and then computation in a later iteration 

number. 

Just to give you an example, of a loop which runs backwards j equal to 99 down to 1, x j 

equal to x j plus 1 plus c. So, unrolling again we have x 99 equal to x 100 plus c x 98 

equal to x 99 plus c etcetera. So, the loop the iterations are going forward, but the 



increment is negative. So, observe here that in this iteration again if we number the 

iterations as 1 2 3 etcetera, in this iteration we compute and in the next iteration we use. 

So, even though the loop is running with a negative increment since the loop is running 

forward you know the iterations are increasing, we have a flow dependence with a less 

than from s to s. So, compute in a particular iteration use it in the in a later iteration. And 

this example shows j equal to 2 to 1 0 1 of x j equal to x j minus 1 plus c. 

The idea of all these examples is to you know make you familiar with the usual type of 

subscripts. That are used in various automatically parallelising you know rather the loops 

which can be automatically parallelize. Again, this is x 2 equal to x 1 plus c and this is x 

3 equal to x 2 plus c. So, there is a flow dependence with a forward direction so, this is s 

delta less than s. So, we will stop here and continue with rest of the parallelization in the 

next part of the lecture.  

Thank you. 


